

 Abstract— This paper presents a dynamic and distributed
reconfiguration planning algorithm for chain-type self-
reconfigurable robots, by which a robot can autonomously
self-reconfigure from one arbitrary acyclic configuration to
another in a distributed way. The novel features of this
algorithm include: (1) an efficient representation for unlabeled
complex configurations; (2) a distributed comparison to detect
common/different substructures in two configurations; (3)
reconfiguration are limited to those modules that indicate the
differences in topology; and (4) reconfiguration actions are
performed in parallel and distributed fashion, where every
module decides its own actions locally and coordinate
asynchronously to rearrange into the goal configuration. The
algorithm is applicable to any chain-type self-reconfigurable
robots in general.

I. INTRODUCTION
ELF-RECONFIGURABLE modular robots are metamorphic
systems that can autonomously change their

configurations and locomotion, based on the mission and the
environment. Due to their modularity, versatility and
self-healing ability, they have a great potential in achieving
complex tasks in unstructured and dynamic environments.

The automatic self-reconfiguration ability allows the
modular robot to radically adapt to changes in the
environment. For example, in the search and rescue scenario,
a wheeled configuration is used to run quickly on the flat
terrain to reach the rubble pile. Then a spider configuration is
needed to walk over the rubble pile. Once the victim is found,
a snake shape is required to penetrate the cracks to reach the
victim. The ability to self-reconfigure with a large number of
independent modules is one of the vital issues to realize the
versatility of self-reconfigurable robots.

Depending on the hardware design, the self-reconfigurable
robots fall into two groups: lattice-type and chain-type robots.
Currently, most reconfiguration planning algorithms are
focused on the lattice type robots, such as the work done by
Pamecha[1], Yim[2], Kurokawa and Murata [3],
Hosokawa[4], Rus[5], Walter[6] etc. All the above
algorithms were proposed for the reconfigurable robot whose
modules lie in discrete positions in a 2D or 3D lattice.

In contrast, the modules in a chain-type reconfigurable
robot are not restricted to lattice cells positions, but instead
can form movable chains or loops. This offers more

This work was supported by NASA (NNA05CS38A).
Feili Hou, Wei-Min Shen are with Information Sciences Institute,

University of Southern California, 4676 Admiralty Way, Suite 1001, Marina
del Rey, CA 90292,USA. (e-mail: fhou@usc.edu, , shen@isi.edu)

versatility in its locomotion, but opens up more challenges for
the reconfiguration planning algorithm. Configuration
transformation involves the motion of chains instead of only
one module, which increases the dimensionality of potential
reconfiguration actions. Besides, the number of possible
configurations also grows exponentially with the number of
modules included in the robot. How the independent modules
collaborate their local actions to accomplish the goal
configuration is a big challenge.

Hardware implementations of the chain-type robots
include PolyBot[7], Conro[8], M-TRAN[9] and
SuperBot[10]. Currently, only a few works were published on
the reconfiguration of chain-type robots. Casal, A. and Yim
[11] presented a divide-and-conquer strategy to the
chain-type reconfiguration problem. Nelson [12] used the
graph theory for solving the reconfiguration problem.
However, they are all centralized off-line planner that the
goal configuration is predetermined and the action sequences
are stored in the modules beforehand. During the task
execution, features of the environment may be not known
beforehand, or unexpected change may happen. It is
preferable that the robot can figure out the appropriate
configurations and do the reconfiguration actions by itself at
run time. In 2004, Shen et. al. [13] used the hormone- inspired
distributed control for automatic planning and execution of
self-reconfiguration, but it is only limited from “I” shape to
“T” shape.

This paper proposes a reconfiguration planning algorithm
for chain-type robots, with which the robot can autonomously
transform from an arbitrary acyclic configuration to another
in a distributed way. Every module is homogeneous without
ID, and the unlabeled configuration of the robot is
represented by a novel way called configuration string. The
common/different substructure between the robot’s current
configuration and the goal configuration is detected, so that
reconfiguration actions can be limited only to the modules
that indicate the difference. The reconfiguration behavior is
not monitored by a central controller, or any predefined
action sequences, but emerges from the local behaviors of
individual modules and communication between them. Once
the environment is changed and a new goal configuration is
required, every module can form its own local interpretations
and reconfiguration actions, and coordinates asynchronously
to achieve it. Several chains in the robot can move in parallel
to speedup the overall process.

The rest of this paper is organized as follows. Section II

Distributed, Dynamic, and Autonomous Reconfiguration Planning
for Chain-Type Self-Reconfigurable Robots

Feili Hou, Wei-Min Shen

S

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3135

describes the reconfiguration planning problem. The
distributed configuration comparison algorithm is proposed
in Section III, while the distributed reconfiguration actions
are described in Section IV. Section V discusses the features
of our algorithms. Finally, conclusion and future work are
made in Section VI.

II. RECONFIGURATION PLANNING PROBLEM
Before defining the reconfiguration planning problem, we

explain our representation of a robot’s configuration first. A
robot’s configuration is represented by a modular graph,
where each node is a module and each edge is the physical
connection between modules. Nodes do not have any unique
global IDs, and they can have half-duplex communication
only with their immediate neighbors through existing links.
Fig.1 shows a SuperBot configuration and its modular graph.
We define two configurations as equivalent if and only if
their modular graphs are the same. The configuration space is
the set of all configurations that a given set of modules may
form. Two configurations are adjacent if one can be
transformed into the other by one set of reconfigure actions,
which is an attach action followed by a detach action,
together with some motion of chains. Fig. 2 shows an
instance of two adjacent configurations and the set of
reconfigure actions between them. For the purpose of
reliability, we require that the robot remains connected
throughout the reconfiguration process.

The reconfiguration planning problem is defined as how

modules in one configuration rearrange into another using
several sets of reconfiguration actions within the restrictions
of the physical module implementation. In this paper, we only
consider the planning of connectivity rearrangement in
modular graphs. The real word concerns like kinematic
constraint, gravity, collision avoidance etc are abstracted
away and will be the subject of future work. Reconfiguration
between cyclic graphs will also be considered in the future.

III. DISTRIBUTED CONFIGURATION COMPARISON
The modular graphs of the current configuration and the

goal configuration usually have some subgraphs sharing the
common topology, such as the white nodes in Fig. 3(a) and
Fig.3(b). We call these as Not-To-be-Reconfigured (NTBR)
subgraphs, while the others as To-be-Reconfigured (TBR)
subgraphs. To be effort efficient, we have the reconfiguration
changes limited only within the modules in the TBR
subgraphs. Hereby, before describing the reconfiguration
actions, we propose a distributed comparison algorithm in
this section, by which each module can decide whether it
belongs to the TBR subgraph by communicating with their
immediate neighbors.

In the following context, we will use NC to represent the
number of connectors in a module. As an illustration to our
algorithm, we will go through an example from Fig 3(a) to
Fig 3(b), and assume NC = 4 in the example. Please note that
the node IDs in the figures and our assumption of NC value
are just for explanation. The reconfiguration planning
algorithm is applicable to different module design with
arbitrary NC value.

A. Goal Configuration Representation
Once the reconfiguration task is initiated, the modular

graph of the goal configuration is informed to every module
in the robot. In the graph theory, there are many ways to
represent a graph, like adjacent matrix, incidence matrix etc.
However, they all need label each nodes, and here in our
problem all the modules are homogeneous and thus do have
IDs in the modular graph. So a new way to represent the
unlabeled graph called configuration string is proposed here.
First, we define an array called connection number (CN), with
size NC. Each module has a CN variable, where CN[i]
denotes the number of modules connected to its ith connector.
For example, in Fig. 3(b), node A has 4 connectors, where the
first three are connected to 10(module B, C, …, K), 6(module
L, M, …, Q) , and 4 (module R, …, U) modules respectively,
and the fourth one has no connection. So, its CN is [10, 6, 4,
0].

For each module, the sum of all the elements in its CN
equals to the number of modules it connects. Since all the
modules in the robot keep connected, the total number of
modules included in the robot is equal to

Sum_Modules = ∑
=

NC

i
iCN

1
][+1 (1)

, namely the number of all its connected modules plus the
module itself. It can be seen that the sum of CN is the same for
all the modules, and is equals to Sum_Modules-1.

 (a) (b)

Fig. 3. Modular graph of the current configuration and the goal
configuration

Fig. 2. A set of reconfiguration actions to transform from one
configuration to its adjacent configuration

Fig. 1. A SuperBot configuration and its modular graph

3136

Theorem 1[14]: The center of an acyclic graph always
exists. It is a unique vertex or a unique pair of adjacent
vertices such that removing that vertex (or pair of vertices)
from the graph leaves a collection of components each having
less than half of the vertices

According to theorem 1, only one node (or a pair of nodes)
will be the center of any acyclic graph. A node is the center if
all of its CN elements are less than half of Sum_Modules.
Starting from the center node (or an arbitrary one from the
center pairs), we traverse the modular graph of the goal
configuration by Depth-First-Search (DFS). Table I shows
the traversed order and the CN values of all the nodes of Fig.
3(b).

Now, we can represent an unlabeled modular graph by a

configuration string, which is a sequence of all the nodes’ CN
values in the DFS order. The goal configuration is informed
to every module in the form of the configuration string, and
we call it the Configuration String of Goal (CSG), where
CSG[i] is the CN value of the ith node in the DFS order. From
Table I, we know that CSG of Fig. 3(b) is
CSG = [10 6 4 0][11 3 3 3][18 1 1 0][20 0 0 0][20 0 0 0]

 [18 1 1 0][20 0 0 0][20 0 0 0][18 1 1 0][20 0 0 0]
 [20 0 0 0][15 5 0 0][16 2 1 1][19 1 0 0][20 0 0 0]
 [20 0 0 0][20 0 0 0][17 1 1 1][20 0 0 0][20 0 0 0]
 [20 0 0 0] (2)

B. Current Configuration Recognition
Besides being informed the CSG, the robot needs to

recognize its current configuration so as to compare with the
goal. It may involve redundant communication and heavy
computation burden if having a single module sense the
whole robot’s configuration and do the comparison. Here we
have the current configuration information distributed among
all the modules in the way that every module explore their
own CN value, and then collectively do the configuration
comparison. CN exploration and comparison can be achieved
by asynchronous communication with nearest neighbors.

Due to the constraint that the robot keeps connected
throughout the reconfiguration process, the total number of
modules included in the current configuration is the same as
that in the goal configuration. So, every module can
calculates the total number of modules in the current

configuration from the given CSG according to equation (1)
In our example, every module can use the first CN, [10 6 4 0],
in the given CSG and get the Sum_Modules as

Sum_Modules = 10+6+4+0+1= 21 (3)
After that, each module runs the same code to explore its

CN value. A probe message is used, and the probe value
received from a connector describes the number of modules
connected through it. Whenever a module has received
“probe = j” from its ith connector, it will set its CN[i]=j. If its
ith connector has no connection, then its CN[i]=0. When a
module has received probe messages from all of its connected
connectors except one (we call it connector k), it will set

 CN[k]= Sum_Modules-1-∑
≠ki

iCN][(4)

, and send out a probe message through connector k with
value

 probe=∑
≠ki

iCN][+1 (5)

Equation (4) (5) can be derived from equation (1).
Initially, only leaf nodes have only one connected

connector that does not get any message, so they will initiate
the CN exploration process by sending out “probe=1”.
Because all the links are half duplex, in the end there must
one module that will receive messages from all its linked
connectors. The CN exploration process ends then.

In our example, each leaf node in of Fig. 3(a) sends out the
“probe=1” to the neighbor, and set CN= [21-1, 0, 0, 0]=[20, 0,
0, 0]. When module 4 has received two “probe=1” from
module 5 and 6, it will send out “probe=1+1+1=3”to module
3, and set its CN value to be CN=[21-3, 1, 1,0]=[18,1,1,0].
All other modules will act in a similar way, and their explored
CN values are shown in Table II.

C. Configuration Comparison
After knowing the CN value, the distributed configuration

comparison is performed to find out the modules that indicate
the different topology between current configuration and goal
configuration. Each node will do the configuration
comparison locally by comparing its CN value with the
corresponding goal CN in the CSG, and decide whether it
belongs to the TBR subgraph.

According to theorem 1, a node can decide whether it is the
center node by checking its CN. If there is a pair of adjacent
center nodes, they will negotiate to choose one as center.
Duplex communication links avoid the case where two center

TABLE II CN VALUES OF THE MODULES IN FIG 3(A)
Node

ID
CN Value Node

ID
CN Value Node

ID
CN Value

1 [10 6 4 0] 8 [17 2 1 0] 15 [20 0 0 0]
2 [11 5 4 0] 9 [19 1 0 0] 16 [15 5 0 0]
3 [16 3 1 0] 10 [20 0 0 0] 17 [16 2 1 1]
4 [18 1 1 0] 11 [20 0 0 0] 18 [19 1 0 0]
5 [20 0 0 0] 12 [17 1 1 1] 19 [20 0 0 0]
6 [20 0 0 0] 13 [20 0 0 0] 20 [20 0 0 0]
7 [20 0 0 0] 14 [20 0 0 0]

21 [20 0 0 0]

TABLE I DFS SEQUENCE AND CN VALUES OF THE NODES IN FIG 3(B)
DFS

Order
Node

ID
CN Value DFS

Order
Node

ID
CN Value

1 A [10 6 4 0] 12 L [15 5 0 0]
2 B [11 3 3 3] 13 M [16 2 1 1]
3 C [18 1 1 0] 14 N [19 1 0 0]
4 D [20 0 0 0] 15 O [20 0 0 0]
5 E [20 0 0 0] 16 P [20 0 0 0]
6 F [18 1 1 0] 17 Q [20 0 0 0]
7 G [20 0 0 0] 18 R [17 1 1 1]
8 H [20 0 0 0] 19 S [20 0 0 0]
9 I [18 1 1 0] 20 T [20 0 0 0]

10 J [20 0 0 0] 21 U [20 0 0 0]
11 K [20 0 0 0]

3137

nodes communicate simultaneously, which in some situation
would result in both nodes designating themselves as center.

The local configuration comparison starts at the center
node, and an index message is initiated by the center node and
propagated to trigger the local configuration comparison of
other modules. The index message sent to a node describes
the location of its goal CN in the CSG string. The center node
is matched with the corresponding center node in CSG, and
herby its index equals to 1. Since the nodes in the CSG are in
DFS order, the index message sent to a node also depends on
its DFS traversal order rooted at the center node. So, if a node
has its index equal to k, then the index message sent out from
its ith connector, index[i], is

 index[i]=k+∑
−

=

1

1
][

i

j
jCN +1 (6)

If the goal CN , CSG[index], is the same as the module’s
current CN value, it means that the module shares the
common topology with the goal configuration, so it will mark
its TBR state as false, and send out the related index messages
to its neighbors respectively. Otherwise, the module will be
the root of the TBR subtree. Its TBR is set to be true, and this
information is propagated to all its descendent modules to set
their TBR as true. Please note that, since in our modular graph,
module connectivity is abstracted as links without
differentiating the connectors, the CN values are compared
ignoring the order of their elements.

As an illustration, we will go through the configuration
comparison process of Fig. 3(a). First, node 1 will find that it
is the center because all the elements in its CN, [10 6 4 0], is
less than half of the modules in the robot, i.e. 21/2. Then, it
will compare its CN with the 1st CN in the CSG, [10 6 4 0].
Since they are the same, module 1 will set TBR=false, and
send out index messages. According to equation (6), it will
send out “index=1+0+1=2” through its 1st connector to
module 2, “index=1+10+1=12” to module 16, and
“index=1+10+6+1=18” to module 12. After receiving the
index message, module 12 and module 16 will do the same
comparison process as module 1. With regards to module 2,
its CN value [11 5 4 0] is different from the 2nd CN in CSG,
[11 3 3 3], so node 2 will be the root of the TBR subtree. It
then set its TBR=true, and propagate this information to all
the descendants of nodes 3~11. In the end, the TBR value is
false for module 1, 12 ~ 21, and true for module 2 ~ 11. So the
reconfiguration will be performed within the gray subgraph
composed of module 2~11 in Fig. 3(a). Also, module 1 will
ignore its connection with module 2 to exclude the NTBR part
from the TBR subgraph in the reconfiguration process.

IV. RECONFIGURATION ACTION
This section describes the reconfiguration algorithm that

rearranges the TBR subgraphs to convert the robot into the
goal configuration. In our example, Fig 3(a) only has one
TBR subgraph. If there are more than one TBR subgraphs, the
modules in different TBR subgraphs can work simultaneously

in parallel without interfering each other.
It is hard to have a general solution to convert an arbitrary

graph to another directly. One possible solution is to use an
intermediate structure [11]. Here, we first transform the TBR
subgraph into a simple configuration, a line, and then convert
this line to the corresponding parts in the goal configuration.

A. Reconfiguration from an acyclic graph to a line
In a line configuration, every node is connected to at most

two nodes. So, the main idea of the algorithm is that every
node with more than two branches will keep attaching a
shorter branch to a longer one until the above requirement is
satisfied. In the ends, each node will have at most two
branches, and thus a line configuration is formed.

First, all the leaf nodes send out a request message to
request the action of forming a line. When a node receives a
request message, it will create a “parent-of” relationship
towards the sender. A node with two neighbors will relay the
received message, while a node with more than two
connections will wait until it receives two request messages
from two different connectors. It will then do a set of
reconfiguration actions, which includes finding its two
children braches according to the established “parent-of”
relationship, merging one branch into the other by attaching
the ends of the two branches and detaching the connection
with the shorter branch, and clearing the request messages
and “parent-children” relationship through all the nodes on
newly generated branch. We do detaching after attaching to
keep the robot connected all the time. During executing the
set of above reconfiguration actions, all the modules on the
two braches are locked temporary to exclude the interaction
with other modules. In the end, stopping time is reached
when a module with only one or two linked connectors has
received messages from all of its linked connectors. It will
then propagate the stopping message to all other modules.

The reconfiguration steps of converting the TBR subgraph
in Fig. 3(a) into a line is shown in Fig. 4. One thing to note is
that, as stated before, module 2 will ignore its connection with
module 1 to exclude the modules in the NTBR subgraphs from
reconfiguration. So, as shown in Fig. 4(e), when module 8
send request message to module 2, module 2 will ignore its
link with module 1, and just relay the message to module 3.

We do not require the communication speed to be the same
among all the modules. Every module can act asynchronously.
The final topology is always a line, but the position of each
module in the line is not deterministic. For example, in Fig.
4(d), if the message from module 2 reaches module 3 before
module 4, then module 7 will be attached to module 11
instead of module 5, but the final configuration is still a line.

Our algorithm is also robust to the loss of message. For
example, suppose that the message sent from module 4 to
module 3 is lost in Fig.4(c), it can still complete the
transformation into a line, as shown in Fig. 5.

B. Reconfiguration from a line to an acyclic graph
After converting the TBR subgraph into a line, the final

3138

step is to convert this line to the corresponding topology in
the goal configuration.

The process is initiated from the root of the TBR subtree,
which is determined in Section III-C. In our example, it is
node 2. Upon receiving the index message, each module will
rearrange its children branches to be consistent with the goal
CN described by CSG[index], and send out index messages to
its children respectively according to equation (6). For each
module, the rearrangement of its descendents is achieved by
having a line of CN[i] nodes connected to connector i for all
the connectors. All the modules receiving index message can
do the reconfiguration in parallel. The process ends when the
index messages reach the leaf nodes. Fig. 6 shows the
reconfiguration steps for from Fig. 4(f) to Fig. 3(b), where the
numbers on the links are the value of index messages.

V. DISCUSSION OF THE ALGORITHM

The reconfiguration algorithm proposed in this paper has
the following properties that offer great advantages:

It is dynamic and on-line planning. Whenever unexpected
change happens, or confronted with to a new environment,
the robot can self-reconfigure without any prior knowledge of
preplanned reconfiguration steps.

It is effort efficient. Due to the configuration comparison,
substructures that have common topology with the goal
configuration are extracted out, and reconfiguration changes
are made only on the necessary parts. The configuration
comparison is distributed without redundant communication
and bottleneck. In the recognition of current configuration,
probe message passes each link only once, while in the
configuration comparison, the index message is also
transmitted through every link only once. So, the
communication complexity of the comparison is O(N).

It is scalable and time efficient. All the modules
communicate and act locally under the same rule,
independent of the size of the robot. The modules work
asynchronously using only local information and local
communication with neighbors. Many chains can reconfigure

 (a) (b) (c)

 (d) (e) (f)

Fig. 4 reconfiguration steps of the TBR sub-graph in Fig. 3(a) to a line

 (a) (b) (c)

 (d) (e) (f)

Fig. 5 Rreconfiguration steps from Fig. 4 (c) when a message is lost

3139

simultaneously as long as they share no modules. The
parallelism attribute allows for faster performance.

It is fault tolerant. Fig. 5 has demonstrated that it is robust
to message loss to some extent. Moreover, modules are
homogeneous that do not have IDs, and run the same program.
There is not any predetermined special module. Whenever a
module dies, we can just replace it by another one.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a distributed and dynamic
reconfiguration algorithm for chain-type self-reconfigurable
robots to transform from one arbitrary acyclic configuration
to another arbitrary one. The goal configuration is not
generated by any pre-planned action steps, but emerges from
the collaboration of all the modules in the robot. This allows
the robot to reconfigure dynamically in unknown
environments. The algorithm is not limited to the hardware
design of any specific chain-type module, and is general for
all chain-type reconfigurable robots.

One of our future works is to improve our configuration
comparison algorithm for the situation where the center
module has shifted in the goal configuration. In this paper, the
intermediate structure is used and it is redundant in some
cases, so a possible shortcut and more intelligent way for
reconfiguration action will be explored. Another future work
is to extend our modular graph to include the connector
information. The robot with same configuration can function
differently if the modules are connected in a different way.
One more thing to do is to extend our algorithm to make it
applicable to cyclic configuration, and implement it on some
real and physical chain-type robots.

REFERENCES
[1] Pamecha A, Ebert-Uphoff I, Chirikjian G: Useful metrics for modular

robot motion planning. IEEE Trans. on Robotics and Automation 13(4):
531-545, 1997

[2] Sergei Vassilvitskii, Mark Yim, John W. Suh: A Complete, Local and
Parallel Reconfiguration Algorithm for Cube Style Modular Robots.
Proceedings of the IEEE International Conference on Robotics and
Automation May 11-15; Washington; DC. NY: 2002; 117-122

[3] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa and S.
Kokaji, "A Self-Reconfigurable Modular Robot: Reconfiguration
Planning and Experiments", International Journal of Robotics
Research, Vol. 21, No. 10, pp.903-916, 2003

[4] K. Hosokawa, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda, I. Endo,
“Self-organizing collective robots with morphogenesis in a vertical
plane,” JSME Intl. Journal Series C Mechanical Systems Machine
Elements and Manufacturing 42(March 1999):195-202

[5] Zack Butler, Satoshi Murata, Daniela Rus, Distributed Replication
Algorithms for Self-Reconfiguring Modular Robots, Proceedings of
DIstributed Autonomous Robotics Systems 5, 2002

[6] J. Walter, E. Tsai, and N. Amato, Algorithms for Fast Concurrent
Reconfiguration of Hexagonal Metamorphic Robots, IEEE
Transactions on Robotics, Vol. 21, No. 4, pages 621-631, 2005

[7] M. Yim, D. Duff, K. Roufas, “PolyBot: a Modular Reconfigurable
Robot", Proc. of the IEEE Int. Conf. on Robotics and Automation, April
24-28; San Francisco, CA.

[8] Wei-Min Shen, Behnam Salemi, and Peter Will. Hormone-Inspired
Adaptive Communication and Distributed Control for CONRO
Self-Reconfigurable Robots. IEEE Trans. on Robotics and Automation,
18(5):700–712, October 2002.

[9] S. Murata, et al., "M-TRAN: Self-Reconfigurable Modular Robotic
System," IEEE/ASME Trans. Mech. Vol.7, No.4, pp.431-441, 2002

[10] Behnam Salemi, Mark Moll, and Wei-Min Shen. SUPERBOT: A
Deployable, Multi-Functional, and Modular Self-Reconfigurable
Robotic System. In Proc. 2006 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, Beijing, China, October 2006

[11] Casal, A. Reconfiguration planning for modular self-reconfigurable
robots. PhD dissertation; Stanford University. 2002

[12] Nelson, C. A., and Cipra, R. J., "An Algorithm for Efficient
Self-Reconfiguration of Chain-Type Unit-Modular Robots," ASME
DETC'04, Salt Lake City, Utah, September 28 - October 2, 2004,
ASME Paper No. DETC2004-57488.

[13] Kenneth Payne, Behnam Salemi, Peter Will, and Wei-Min Shen.
Sensor-Based Distributed Control for Chain-Typed Self-
Reconfiguration. In Proc. 2004 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, Sendai, Japan, Sept./Oct. 2004.

[14] Gregory L. McColm, On the structure of random unlabelled acyclic
graphs, Discrete Mathematics, 2004

 (a) (b) (c)

 (d) (e)

Fig. 6 Rreconfiguration from Fig 4(f) to Fig. 3(b)

3140

