
  

  Abstract— This paper presents a dynamic and distributed 
reconfiguration planning algorithm for chain-type self- 
reconfigurable robots, by which a robot can autonomously 
self-reconfigure from one arbitrary acyclic configuration to 
another in a distributed way. The novel features of this 
algorithm include:  (1) an efficient representation for unlabeled 
complex configurations; (2) a distributed comparison to detect 
common/different substructures in two configurations; (3) 
reconfiguration are limited to those modules that indicate the 
differences in topology; and (4) reconfiguration actions are 
performed in parallel and distributed fashion, where every 
module decides its own actions locally and coordinate 
asynchronously to rearrange into the goal configuration. The 
algorithm is applicable to any chain-type self-reconfigurable 
robots in general. 

I. INTRODUCTION 
ELF-RECONFIGURABLE modular robots are metamorphic 
systems that can autonomously change their 

configurations and locomotion, based on the mission and the 
environment. Due to their modularity, versatility and 
self-healing ability, they have a great potential in achieving 
complex tasks in unstructured and dynamic environments.  

The automatic self-reconfiguration ability allows the 
modular robot to radically adapt to changes in the 
environment. For example, in the search and rescue scenario, 
a wheeled configuration is used to run quickly on the flat 
terrain to reach the rubble pile. Then a spider configuration is 
needed to walk over the rubble pile. Once the victim is found, 
a snake shape is required to penetrate the cracks to reach the 
victim. The ability to self-reconfigure with a large number of 
independent modules is one of the vital issues to realize the 
versatility of self-reconfigurable robots.  

Depending on the hardware design, the self-reconfigurable 
robots fall into two groups: lattice-type and chain-type robots. 
Currently, most reconfiguration planning algorithms are 
focused on the lattice type robots, such as the work done by 
Pamecha[1], Yim[2], Kurokawa and Murata [3], 
Hosokawa[4], Rus[5], Walter[6] etc. All the above 
algorithms were proposed for the reconfigurable robot whose 
modules lie in discrete positions in a 2D or 3D lattice. 

In contrast, the modules in a chain-type reconfigurable 
robot are not restricted to lattice cells positions, but instead 
can form movable chains or loops. This offers more 
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versatility in its locomotion, but opens up more challenges for 
the reconfiguration planning algorithm. Configuration 
transformation involves the motion of chains instead of only 
one module, which increases the dimensionality of potential 
reconfiguration actions. Besides, the number of possible 
configurations also grows exponentially with the number of 
modules included in the robot. How the independent modules 
collaborate their local actions to accomplish the goal 
configuration is a big challenge. 

Hardware implementations of the chain-type robots 
include PolyBot[7], Conro[8], M-TRAN[9] and 
SuperBot[10]. Currently, only a few works were published on 
the reconfiguration of chain-type robots.  Casal, A. and Yim 
[11] presented a divide-and-conquer strategy to the 
chain-type reconfiguration problem. Nelson [12] used the 
graph theory for solving the reconfiguration problem. 
However, they are all centralized off-line planner that the 
goal configuration is predetermined and the action sequences 
are stored in the modules beforehand. During the task 
execution, features of the environment may be not known 
beforehand, or unexpected change may happen. It is 
preferable that the robot can figure out the appropriate 
configurations and do the reconfiguration actions by itself at 
run time. In 2004, Shen et. al. [13] used the hormone- inspired 
distributed control for automatic planning and execution of 
self-reconfiguration, but it is only limited from “I” shape to 
“T” shape.  

This paper proposes a reconfiguration planning algorithm 
for chain-type robots, with which the robot can autonomously 
transform from an arbitrary acyclic configuration to another 
in a distributed way. Every module is homogeneous without 
ID, and the unlabeled configuration of the robot is 
represented by a novel way called configuration string.  The 
common/different substructure between the robot’s current 
configuration and the goal configuration is detected, so that 
reconfiguration actions can be limited only to the modules 
that indicate the difference. The reconfiguration behavior is 
not monitored by a central controller, or any predefined 
action sequences, but emerges from the local behaviors of 
individual modules and communication between them. Once 
the environment is changed and a new goal configuration is 
required, every module can form its own local interpretations 
and reconfiguration actions, and coordinates asynchronously 
to achieve it. Several chains in the robot can move in parallel 
to speedup the overall process.  

The rest of this paper is organized as follows. Section II 

Distributed, Dynamic, and Autonomous Reconfiguration Planning 
for Chain-Type Self-Reconfigurable Robots 

Feili Hou, Wei-Min Shen 

S 

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3135



  

describes the reconfiguration planning problem. The 
distributed configuration comparison algorithm is proposed 
in Section III, while the distributed reconfiguration actions 
are described in Section IV. Section V discusses the features 
of our algorithms. Finally, conclusion and future work are 
made in Section VI.  

II. RECONFIGURATION PLANNING PROBLEM 
Before defining the reconfiguration planning problem, we 

explain our representation of a robot’s configuration first. A 
robot’s configuration is represented by a modular graph, 
where each node is a module and each edge is the physical 
connection between modules. Nodes do not have any unique 
global IDs, and they can have half-duplex communication 
only with their immediate neighbors through existing links. 
Fig.1 shows a SuperBot configuration and its modular graph. 
We define two configurations as equivalent if and only if 
their modular graphs are the same. The configuration space is 
the set of all configurations that a given set of modules may 
form. Two configurations are adjacent if one can be 
transformed into the other by one set of reconfigure actions, 
which is an attach action followed by a detach action, 
together with some motion of chains.  Fig. 2 shows an 
instance of two adjacent configurations and the set of 
reconfigure actions between them.  For the purpose of 
reliability, we require that the robot remains connected 
throughout the reconfiguration process. 

 

 
The reconfiguration planning problem is defined as how 

modules in one configuration rearrange into another using 
several sets of reconfiguration actions within the restrictions 
of the physical module implementation. In this paper, we only 
consider the planning of connectivity rearrangement in 
modular graphs. The real word concerns like kinematic 
constraint, gravity, collision avoidance etc are abstracted 
away and will be the subject of future work. Reconfiguration 
between cyclic graphs will also be considered in the future.  

III. DISTRIBUTED CONFIGURATION COMPARISON 
The modular graphs of the current configuration and the 

goal configuration usually have some subgraphs sharing the 
common topology, such as the white nodes in Fig. 3(a) and 
Fig.3(b). We call these as Not-To-be-Reconfigured (NTBR) 
subgraphs, while the others as To-be-Reconfigured (TBR) 
subgraphs. To be effort efficient, we have the reconfiguration 
changes limited only within the modules in the TBR 
subgraphs. Hereby, before describing the reconfiguration 
actions, we propose a distributed comparison algorithm in 
this section, by which each module can decide whether it 
belongs to the TBR subgraph by communicating with their 
immediate neighbors. 

In the following context, we will use NC to represent the 
number of connectors in a module. As an illustration to our 
algorithm, we will go through an example from Fig 3(a) to 
Fig 3(b), and assume NC = 4 in the example. Please note that 
the node IDs in the figures and our assumption of NC value 
are just for explanation. The reconfiguration planning 
algorithm is applicable to different module design with 
arbitrary NC value. 

 
A. Goal Configuration Representation 
Once the reconfiguration task is initiated, the modular 

graph of the goal configuration is informed to every module 
in the robot.  In the graph theory, there are many ways to 
represent a graph, like adjacent matrix, incidence matrix etc. 
However, they all need label each nodes, and here in our 
problem all the modules are homogeneous and thus do have 
IDs in the modular graph. So a new way to represent the 
unlabeled graph called configuration string is proposed here. 
First, we define an array called connection number (CN), with 
size NC. Each module has a CN variable, where CN[i] 
denotes the number of modules connected to its ith connector. 
For example, in Fig. 3(b), node A has 4 connectors, where the 
first three are connected to 10(module B, C, …, K), 6(module 
L, M, …, Q) , and 4 (module R, …, U) modules respectively, 
and the fourth one has no connection. So, its CN is [10, 6, 4, 
0]. 

For each module, the sum of all the elements in its CN 
equals to the number of modules it connects. Since all the 
modules in the robot keep connected, the total number of 
modules included in the robot is equal to 

Sum_Modules = ∑
=

NC

i
iCN

1
][ +1     (1) 

, namely the number of all its connected modules plus the 
module itself. It can be seen that the sum of CN is the same for 
all the modules, and is equals to Sum_Modules-1. 

  
                        (a)            (b)  

Fig. 3.  Modular graph of the current configuration and the goal 
configuration 

Fig. 2.  A set of reconfiguration actions to transform from one 
configuration to its adjacent configuration 

 
Fig. 1.  A SuperBot configuration and its modular graph
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Theorem 1[14]:  The center of an acyclic graph always 
exists. It is a unique vertex or a unique pair of adjacent 
vertices such that removing that vertex (or pair of vertices) 
from the graph leaves a collection of components each having 
less than half of the vertices 

According to theorem 1, only one node (or a pair of nodes) 
will be the center of any acyclic graph. A node is the center if 
all of its CN elements are less than half of Sum_Modules. 
Starting from the center node (or an arbitrary one from the 
center pairs), we traverse the modular graph of the goal 
configuration by Depth-First-Search (DFS). Table I shows 
the traversed order and the CN values of all the nodes of Fig. 
3(b).  

 
Now, we can represent an unlabeled modular graph by a 

configuration string, which is a sequence of all the nodes’ CN 
values in the DFS order. The goal configuration is informed 
to every module in the form of the configuration string, and 
we call it the Configuration String of Goal (CSG), where 
CSG[i] is the CN value of the ith node in the DFS order. From 
Table I, we know that CSG of Fig. 3(b) is  
CSG = [10 6 4 0][11 3 3 3][18 1 1 0][20 0 0 0][20 0 0 0] 

  [18 1 1 0][20 0 0 0][20 0 0 0][18 1 1 0][20 0 0 0] 
  [20 0 0 0][15 5 0 0][16 2 1 1][19 1 0 0][20 0 0 0] 
  [20 0 0 0][20 0 0 0][17 1 1 1][20 0 0 0][20 0 0 0] 
  [20 0 0 0]                        (2) 

B. Current Configuration Recognition 
Besides being informed the CSG, the robot needs to 

recognize its current configuration so as to compare with the 
goal. It may involve redundant communication and heavy 
computation burden if having a single module sense the 
whole robot’s configuration and do the comparison. Here we 
have the current configuration information distributed among 
all the modules in the way that every module explore their 
own CN value, and then collectively do the configuration 
comparison. CN exploration and comparison can be achieved 
by asynchronous communication with nearest neighbors.  

Due to the constraint that the robot keeps connected 
throughout the reconfiguration process, the total number of 
modules included in the current configuration is the same as 
that in the goal configuration. So, every module can 
calculates the total number of modules in the current 

configuration from the given CSG according to equation (1) 
In our example, every module can use the first CN, [10 6 4 0], 
in the given CSG and get the Sum_Modules as  

Sum_Modules = 10+6+4+0+1= 21            (3) 
After that, each module runs the same code to explore its 

CN value. A probe message is used, and the probe value 
received from a connector describes the number of modules 
connected through it. Whenever a module has received  
“probe = j” from its ith connector, it will set its CN[i]=j. If its 
ith connector has no connection, then its CN[i]=0. When a 
module has received probe messages from all of its connected 
connectors except one (we call it connector k), it will set  

    CN[k]= Sum_Modules-1-∑
≠ki

iCN ][      (4) 

, and send out a probe message through connector k with 
value  

 probe=∑
≠ki

iCN ][ +1         (5)  

Equation (4) (5) can be derived from equation (1).   
Initially, only leaf nodes have only one connected 

connector that does not get any message, so they will initiate 
the CN exploration process by sending out “probe=1”. 
Because all the links are half duplex, in the end there must 
one module that will receive messages from all its linked 
connectors. The CN exploration process ends then. 

In our example, each leaf node in of Fig. 3(a) sends out the 
“probe=1” to the neighbor, and set CN= [21-1, 0, 0, 0]=[20, 0, 
0, 0]. When module 4 has received two “probe=1” from 
module 5 and 6, it will send out “probe=1+1+1=3”to module 
3, and set its CN value to be CN=[21-3, 1, 1,0]=[18,1,1,0].  
All other modules will act in a similar way, and their explored 
CN values are shown in Table II.  

 
C. Configuration Comparison 
After knowing the CN value, the distributed configuration 

comparison is performed to find out the modules that indicate 
the different topology between current configuration and goal 
configuration. Each node will do the configuration 
comparison locally by comparing its CN value with the 
corresponding goal CN in the CSG, and decide whether it 
belongs to the TBR subgraph. 

According to theorem 1, a node can decide whether it is the 
center node by checking its CN.  If there is a pair of adjacent 
center nodes, they will negotiate to choose one as center. 
Duplex communication links avoid the case where two center 

TABLE II   CN VALUES OF THE MODULES IN FIG 3(A) 
Node 

ID 
CN Value Node 

ID 
CN Value Node 

ID 
CN Value 

1 [10 6 4 0] 8 [17 2 1 0] 15 [20 0 0 0] 
2 [11 5 4 0] 9 [19 1 0 0] 16 [15 5 0 0] 
3 [16 3 1 0] 10 [20 0 0 0] 17 [16 2 1 1] 
4 [18 1 1 0] 11 [20 0 0 0] 18 [19 1 0 0] 
5 [20 0 0 0] 12 [17 1 1 1] 19 [20 0 0 0] 
6 [20 0 0 0] 13 [20 0 0 0] 20 [20 0 0 0] 
7 [20 0 0 0] 14 [20 0 0 0] 

 

21 [20 0 0 0] 

TABLE I   DFS SEQUENCE AND CN VALUES OF THE NODES IN FIG 3(B) 
DFS 

Order 
Node 

ID 
CN Value DFS 

Order 
Node 

ID 
CN Value 

1 A [10 6 4 0] 12 L [15 5 0 0] 
2 B [11 3 3 3] 13 M [16 2 1 1] 
3 C [18 1 1 0] 14 N [19 1 0 0] 
4 D [20 0 0 0] 15 O [20 0 0 0] 
5 E [20 0 0 0] 16 P [20 0 0 0] 
6 F [18 1 1 0] 17 Q [20 0 0 0] 
7 G [20 0 0 0] 18 R [17 1 1 1] 
8 H [20 0 0 0] 19 S [20 0 0 0] 
9 I [18 1 1 0] 20 T [20 0 0 0] 

10 J [20 0 0 0] 21 U [20 0 0 0] 
11 K [20 0 0 0] 
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nodes communicate simultaneously, which in some situation 
would result in both nodes designating themselves as center. 

The local configuration comparison starts at the center 
node, and an index message is initiated by the center node and 
propagated to trigger the local configuration comparison of 
other modules. The index message sent to a node describes 
the location of its goal CN in the CSG string. The center node 
is matched with the corresponding center node in CSG, and 
herby its index equals to 1. Since the nodes in the CSG are in 
DFS order, the index message sent to a node also depends on 
its DFS traversal order rooted at the center node. So, if a node 
has its index equal to k, then the index message sent out from 
its ith connector, index[i], is  

   index[i]=k+∑
−

=

1

1
][

i

j
jCN +1       (6) 

If the goal CN , CSG[index], is the same as the module’s 
current CN value, it means that the module shares the 
common topology with the goal configuration, so it will mark 
its TBR state as false, and send out the related index messages 
to its neighbors respectively.  Otherwise, the module will be 
the root of the TBR subtree. Its TBR is set to be true, and this 
information is propagated to all its descendent modules to set 
their TBR as true. Please note that, since in our modular graph, 
module connectivity is abstracted as links without 
differentiating the connectors, the CN values are compared 
ignoring the order of their elements. 

As an illustration, we will go through the configuration 
comparison process of Fig. 3(a). First, node 1 will find that it 
is the center because all the elements in its CN, [10 6 4 0], is 
less than half of the modules in the robot, i.e. 21/2. Then, it 
will compare its CN with the 1st CN in the CSG, [10 6 4 0]. 
Since they are the same, module 1 will set TBR=false, and 
send out index messages. According to equation (6), it will 
send out “index=1+0+1=2” through its 1st connector to 
module 2, “index=1+10+1=12” to module 16, and 
“index=1+10+6+1=18” to module 12. After receiving the 
index message, module 12 and module 16 will do the same 
comparison process as module 1. With regards to module 2, 
its CN value [11 5 4 0] is different from the 2nd CN  in CSG, 
[11 3 3 3], so node 2 will be the root of the TBR subtree. It 
then set its TBR=true, and propagate this information to all 
the descendants of nodes 3~11. In the end, the TBR value is 
false for module 1, 12 ~ 21, and true for module 2 ~ 11. So the 
reconfiguration will be performed within the gray subgraph 
composed of module 2~11 in Fig. 3(a). Also, module 1 will 
ignore its connection with module 2 to exclude the NTBR part 
from the TBR subgraph in the reconfiguration process. 

IV. RECONFIGURATION ACTION 
This section describes the reconfiguration algorithm that 

rearranges the TBR subgraphs to convert the robot into the 
goal configuration. In our example, Fig 3(a) only has one 
TBR subgraph. If there are more than one TBR subgraphs, the 
modules in different TBR subgraphs can work simultaneously 

in parallel without interfering each other. 
It is hard to have a general solution to convert an arbitrary 

graph to another directly. One possible solution is to use an 
intermediate structure [11]. Here, we first transform the TBR 
subgraph into a simple configuration, a line, and then convert 
this line to the corresponding parts in the goal configuration.  

A. Reconfiguration from an acyclic graph to a line 
In a line configuration, every node is connected to at most 

two nodes. So, the main idea of the algorithm is that every 
node with more than two branches will keep attaching a 
shorter branch to a longer one until the above requirement is 
satisfied. In the ends, each node will have at most two 
branches, and thus a line configuration is formed. 

First, all the leaf nodes send out a request message to 
request the action of forming a line. When a node receives a 
request message, it will create a “parent-of” relationship 
towards the sender. A node with two neighbors will relay the 
received message, while a node with more than two 
connections will wait until it receives two request messages 
from two different connectors.  It will then do a set of 
reconfiguration actions, which includes finding its two 
children braches according to the established “parent-of” 
relationship, merging one branch into the other by attaching 
the ends of the two branches and detaching the connection 
with the shorter branch, and clearing the request messages 
and “parent-children” relationship through all the nodes on 
newly generated branch.  We do detaching after attaching to 
keep the robot connected all the time. During executing the 
set of above reconfiguration actions, all the modules on the 
two braches are locked temporary to exclude the interaction 
with other modules.  In the end, stopping time is reached 
when a module with only one or two linked connectors has 
received messages from all of its linked connectors. It will 
then propagate the stopping message to all other modules.  

The reconfiguration steps of converting the TBR subgraph 
in Fig. 3(a) into a line is shown in Fig. 4. One thing to note is 
that, as stated before, module 2 will ignore its connection with 
module 1 to exclude the modules in the NTBR subgraphs from 
reconfiguration. So, as shown in Fig. 4(e), when module 8 
send request message to module 2, module 2 will ignore its 
link with module 1, and just relay the message to module 3. 

We do not require the communication speed to be the same 
among all the modules. Every module can act asynchronously. 
The final topology is always a line, but the position of each 
module in the line is not deterministic. For example, in Fig. 
4(d), if the message from module 2 reaches module 3 before 
module 4, then module 7 will be attached to module 11 
instead of module 5, but the final configuration is still a line. 

Our algorithm is also robust to the loss of message. For 
example, suppose that the message sent from module 4 to 
module 3 is lost in Fig.4(c), it can still complete the 
transformation into a line, as shown in Fig. 5.  

B. Reconfiguration from a line to an acyclic graph 
After converting the TBR subgraph into a line, the final 
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step is to convert this line to the corresponding topology in 
the goal configuration.   

The process is initiated from the root of the TBR subtree, 
which is determined in Section III-C. In our example, it is 
node 2. Upon receiving the index message, each module will 
rearrange its children branches to be consistent with the goal 
CN described by CSG[index], and send out index messages to 
its children respectively according to equation (6). For each 
module, the rearrangement of its descendents is achieved by 
having a line of CN[i] nodes connected to connector i for all 
the connectors. All the modules receiving index message can 
do the reconfiguration in parallel. The process ends when the 
index messages reach the leaf nodes. Fig. 6 shows the 
reconfiguration steps for from Fig. 4(f) to Fig. 3(b), where the 
numbers on the links are the value of index messages. 

V. DISCUSSION OF THE ALGORITHM 

The reconfiguration algorithm proposed in this paper has 
the following properties that offer great advantages: 

It is dynamic and on-line planning. Whenever unexpected 
change happens, or confronted with to a new environment, 
the robot can self-reconfigure without any prior knowledge of 
preplanned reconfiguration steps.  

It is effort efficient. Due to the configuration comparison, 
substructures that have common topology with the goal 
configuration are extracted out, and reconfiguration changes 
are made only on the necessary parts. The configuration 
comparison is distributed without redundant communication 
and bottleneck. In the recognition of current configuration, 
probe message passes each link only once, while in the 
configuration comparison, the index message is also 
transmitted through every link only once. So, the 
communication complexity of the comparison is O(N). 

It is scalable and time efficient. All the modules 
communicate and act locally under the same rule, 
independent of the size of the robot. The modules work 
asynchronously using only local information and local 
communication with neighbors. Many chains can reconfigure 

     
    (a)                (b)                (c) 

       
   (d)                (e)                (f) 

Fig. 4 reconfiguration steps of the TBR sub-graph in Fig. 3(a) to a line 
 

        
    (a)                (b)                   (c) 

            
     (d)                (e)                (f) 

Fig. 5 Rreconfiguration steps from Fig. 4 (c) when a message is lost 
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simultaneously as long as they share no modules. The 
parallelism attribute allows for faster performance.  

It is fault tolerant. Fig. 5 has demonstrated that it is robust 
to message loss to some extent. Moreover, modules are 
homogeneous that do not have IDs, and run the same program. 
There is not any predetermined special module. Whenever a 
module dies, we can just replace it by another one.  

VI. CONCLUSION AND FUTURE WORK 

This paper has proposed a distributed and dynamic 
reconfiguration algorithm for chain-type self-reconfigurable 
robots to transform from one arbitrary acyclic configuration 
to another arbitrary one. The goal configuration is not 
generated by any pre-planned action steps, but emerges from 
the collaboration of all the modules in the robot. This allows 
the robot to reconfigure dynamically in unknown 
environments. The algorithm is not limited to the hardware 
design of any specific chain-type module, and is general for 
all chain-type reconfigurable robots. 

One of our future works is to improve our configuration 
comparison algorithm for the situation where the center 
module has shifted in the goal configuration. In this paper, the 
intermediate structure is used and it is redundant in some 
cases, so a possible shortcut and more intelligent way for 
reconfiguration action will be explored. Another future work 
is to extend our modular graph to include the connector 
information. The robot with same configuration can function 
differently if the modules are connected in a different way. 
One more thing to do is to extend our algorithm to make it 
applicable to cyclic configuration, and implement it on some 
real and physical chain-type robots. 
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   (d)                (e)                 

Fig. 6 Rreconfiguration from Fig 4(f) to Fig. 3(b) 
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