
Programming Modular Robots with Locally Distributed Predicates

Michael De Rosa
Seth Goldstein

Peter Lee
School of Computer Science
Carnegie Mellon University

[mderosa,seth,petel]@cs.cmu.edu

Padmanabhan Pillai
Jason Campbell

Intel Research Pittsburgh
[padmanabhan.s.pillai,jason.campbell]@intel.com

Abstract— We present a high-level language for programming
modular robotic systems, based on locally distributed predicates
(LDP), which are distributed conditions that hold for a con-
nected subensemble of the robotic system. An LDP program is
a collection of LDPs with associated actions which are triggered
on any subensemble that matches the predicate. The result is a
reactive programming language which efficiently and concisely
supports ensemble-level programming. We demonstrate the
utility of LDP by implementing three common, but diverse,
modular robotic tasks.

I. INTRODUCTION

There are a significant number of challenges to program-
ming modular robots. These challenges can broadly be di-
vided into two areas: managing the ensemble and controlling
the individual modules. In this paper we present an approach
to programming the ensemble based on locally distributed
predicates (LDP). LDP lets a programmer specify how the
entire ensemble should behave by breaking the problem
down into how small groups of robots should interact. In this
manner LDP significantly reduces the disparate problems of
inter-robot timing and concurrency, resource management,
and the lack of global knowledge at any individual robot.

Traditional imperative programming languages, such as
C/C++, Java, do little to address the ensemble-level issues
involved in programming modular robots. These languages
are inherently oriented towards a single processing node,
and require significant additional effort when used in a
distributed setting. In addition to creating a representation
of the data needed for an algorithm, the programmer must
determine what information is available locally and what
must be obtained from remote nodes, the messages and
protocol used to transfer this data, mechanisms to route or
propagate information through multiple hops as needed, and
a means to ensure the consistency of this data. Furthermore,
in algorithms to control ensembles, it is often necessary
to express and test conditions that span multiple modules.
Languages that constrain the programmer to the perspective
of a single node make such algorithms difficult to implement.

Related work in modular robot programming can be
roughly divided into three categories: logical declarative
languages for programming distributed systems, reactive pro-
gramming techniques for robots, and functional approaches
with roots in sensor network research. In the first category

Fig. 1. Visualizations of distributed programs written in LDP. Top-left:
Data aggregation (400 modules). Top-right: Metamodule shape planner (450
metamodules). Bottom: Metamodule shape planner (22,000 metamodules),
red area is slated for deletion.

we have such tools as P2 [1] and Meld [2], which provide
a logic programming facility for distributed systems (and
modular robots in particular, in the case of Meld). These tools
are powerful, in that programs written in them have certain
provable properties, but this provability limits the expressive
range of the languages. Subsumption architectures [3] and
reactive programming languages [4] provide other expressive
formats for programming single robots, but are not special-
ized for ensemble-level multi-robot programming. Functional
approaches include such languages as Regiment [5] and
Proto [6]. These approaches also raise the abstraction level,
but are less concerned with geometry (i.e., the neighbor
relationships) and actuation.

We extend prior work on distributed watchpoints [7] to
arrive at a reactive programming approach aimed at modular

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3156

TABLE I
LDP OPERATORS AND PRIMITIVES

Boolean & | !
Mathematical + - * / %
Comparison > < >= <= == ! =

Temporal prev() next()
Topological neighbors()

Set union size any · · ·

robots. The resulting language, LDP, is used to specify lists
of actions that are predicated on local distributed conditions.
LDP can express conditions that span multiple modules, can
incorporate both temporal and spatial relations, and use var-
ious computational and logical operations. This mechanism
breaks free from the node-centric paradigm enforced by C-
like languages, and moves towards implementing algorithms
from an ensemble perspective. Furthermore, LDP relieves
the programmer from having to coordinate data distribution,
as the system automates the distribution and coordination of
all data needed to evaluate the conditions and carry out any
triggered actions.

In the next section we give an overview of LDP. We
follow this description with detailed examples of how LDP
can be used to efficiently implement problems from three
different domains. In Section III we demonstrate how LDP
can implement a snake-gait in a chain-style modular robot.
Section IV describes a typical data aggregation example by
creating a spanning tree and then combining values from
each robot’s sensors. Finally, in Section V we demonstrate
how LDP can be used in a metamodule system, implementing
a complete planner in 9 lines of LDP. Overall, we show that
LDP is effective for concisely expressing some real-world
modular robotic programs, can greatly reduce programmer
effort in implementing a complex distributed algorithm, and
can do so efficiently.

II. LOCALLY DISTRIBUTED PREDICATES

Locally distributed predicates are useful for describing
and detecting distributed state configurations in subsets of
an ensemble. In contrast to classical global predicate eval-
uation [8], [9], which attempts to detect conditions over
entire distributed systems, LDP operates on fixed-size, con-
nected subgroups of modules. The advantages of such an
approach are twofold. First, searching in fixed-sized, con-
nected subgroups is a significantly less expensive operation
than searching the entire ensemble, allowing us to execute
more searches more frequently. Second, the notion of small,
connected groups of modules reflects the natural structure of
distributed programs written for large modular robots, where
global decisions are expensive and rare.

A. LDP Syntax

An LDP program consists of data declarations and a series
of statements, each of which has a predicate clause and a
collection of action clauses. When a predicate matches on a
particular sub-ensemble, the actions are carried out on that

a b

slots

expression tree

and

=
a.state 0

and

=
b.inside 0

!=
b.state 1

Fig. 2. Schematic representation of a PatternMatcher object, the fundamen-
tal LDP data structure used for both data sharing and condition detection.
To continually find all possible instances of a condition, PatternMatchers
are generated at every timestep on every module, and are passed between
modules. At each module that the PatternMatcher visits, the next available
slot is filled with the module’s id, and corresponding data is used to populate
the expression tree. Partially filled PatternMatchers are propagated to all
neighbors, until the expression tree is decidable.

sub-ensemble. LDP has no explicit control structures, such
as looping or function calls, though these can be emulated
with the use of flag and counter variables.

Each predicate begins with a declaration for each
module involved in the statement. These modules are
searched for in the order listed and, most importantly,
there must be a path between all modules in a matching
subensemble. The condition itself is composed of numeric
state variables (expressed as module.variableName,
temporal offsets (the operators prev() and next()),
and topology restrictions (via the neighbor relation
neighbors(moduleA,moduleB)). These primitives
can be linked together with the mathematical, boolean, and
comparison operators summarized in Table I.

The core language of LDP extends the condition grammar
for distributed watchpoints with the addition of set vari-
ables (variables prefixed with a $ are set variables, as in
moduleName.$setVar) and the requisite operators for
manipulating these variables. Specifically, we have imple-
mented intersection(), union(), size(), any(),
add(), and remove().

B. Distributed Predicate Detection

The core of the LDP execution model is the Pattern-
Matcher (Figure 2). A PatternMatcher is a mobile data
structure that encapsulates one distributed search attempt
for a particular statement. This object migrates around the
sub-ensemble until either it fails to match or it matches.
In addition to the active PatternMatchers, each robot has
a collection of continually running threads (one for each
statement in the program) which creates new PatternMatchers
at every event of importance, e.g., a clock tick, a new sensor

3157

Time
Fig. 3. Snake gait in chain-style modules. Black modules are actuating negative joint angle, white modules are actuating a positive joint angle.

+a -a

0.5 T

0.5 T
φ

jo
in

t a
ng

le

time + offset

Fig. 4. a) Snake gait phase automaton, b) Joint angle vs. time graph

reading, etc. In its simplest form, a new PatternMatcher is
created for each statement on each robot at every time tick.

The PatternMatcher is an object which encapsulates a
search attempt for a particular predicate. Every Pattern-
Matcher contains an expression tree, which encodes the
boolean condition that the LDP is attempting to match. This
expression tree contains storage for state variable values, to
allow for comparison of state between multiple modules.

When a PatternMatcher is created, the current module id
is bound to the first slot and the values of its state variables
populate the expression tree. The expression tree is then
examined for success or failure of the boolean predicate.
If the expression tree is successful, then the action clauses
of the statement are executed. If the tree is unsuccessful,
the PatternMatcher is discarded. If no determination can be
made, the PatternMatcher is forwarded to all of the module’s
neighbors, where the above process is repeated.

PatternMatchers provide numerous opportunities for op-
timization, allowing for boolean short-circuiting, as well as
more intelligent search strategies than spreading to all neigh-
bors. Additionally, PatternMatchers allow for backtracking
in search paths, allowing for the detection of nonlinear
configurations of matching modules. These extensions, as
well as a full description of the distributed predicate detection
algorithm, are presented in detail in [10].

C. Triggering Actions

By themselves, distributed watchpoints [7] were insuffi-
cient to serve as a programming language, as they could not
trigger arbitrary actions on predicate matches. For LDP, we
add a final clause to the predicate—the trigger. We define
three types of triggers: (1) setting a state variable to a value,
(2) changing the topology of the system, and (3) calling an
arbitrary function implemented by the robot’s runtime. Any
predicate may have more than one trigger action, however

we require that all the actions must be executed on the same
module. This eliminates the need for locking or synchro-
nization across multiple actions and/or modules. Notice that
an LDP predicate can specify trigger actions to execute on
any one module in the matching subensemble, and because
that module lies within the matching subensemble we can
use the route information gathered during the corresponding
PatternMatcher’s journey to notify the acting module of the
predicate’s match. This avoids the need for a standalone
multihop communications infrastructure.

D. Implementing LDP

Using LDP in any given modular robotic system is
straightforward. The system must call an LDP initialization
function to set up various data structures. The runtime
requires the implementation of three basic routines which
(1) enumerate a module’s current neighbors, (2) transmit
PatternMatchers between neighboring robots, and (3) invoke
the statement threads at appropriate intervals, e.g., tick()
function. Finally, the system must ensure that incoming LDP
messages trigger the appropriate callback.

Each application that uses LDP must additionally imple-
ment variable initialization, access, and modification for any
state variables used in the program. The programmer must
also implement any custom library functions that will be
called from LDP actions.

III. EXAMPLE PROGRAM: PHASE AUTOMATA FOR
SNAKE-STYLE GAIT

Phase automata [11] are a technique for scalably de-
scribing cyclic gaits in chain-style modular robots, such
as Polypod [12] and Superbot [13]. A phase automaton
consists of a set of multiple states with associated actions,
whose transitions are governed either by external events or
an internal globally-synchronized clock. A phase automaton
additionally possesses an initial time offset φ, which can vary
from module to module.

A simple phase automaton for a snake-like robot is shown
in Figure 4a. In this automaton, the joint angle of a particular
module is set to either +α or −α in a cyclic manner, with
period T . The initial phase offset φ is determined by a
module’s position in the chain, and increases by a constant
4φ at each module. The resulting gait is shown in Fig.3.

To implement this automaton in a modular robotic system,
there are two fundamental tasks: distributing the correct
phase offset to each module, and setting the joint angle to

3158

// per-module state variables
int id; // the id number of module. Read-only.
int parent = -1; // the id number of the previous module in the chain
float time; // the current time at the module. Updated by runtime.
float offset = 0; // the module’s phase offset
float angle = 0; // the joint angle of the module’s central joint. Changing this value actuates the module’s motor.

// this predicate causes module 1 to recognize itself as the leader
1 forall (a) where (a.id == 1) do a.parent = a.id;

// link successive neighboring modules, forming a chain from head to tail and setting phase offsets
2 forall (a,b) where (a.prev(1).parent != a.parent) & (a.id < b.id)

do b.parent = a.id, b.phase = a.phase + 0.1;
// set joints to bend positively or negatively at the indicated phase offsets

3 forall (a) where ((a.time + a.phase) % 1.0 == 0.5) & (a.parent != -1) do a.angle = 15.0;
4 forall (a) where ((a.time + a.phase) % 1.0 == 0.0) & (a.parent != -1) do a.angle = -15.0;

Fig. 5. Complete Source Code for Snake Gait Example, 4φ = 0.1, α = 15.0, T = 1.0

the correct value based on the current time and offset. Figure
5 shows the complete code for these two steps. This example
program assumes that the modules have unique id numbers
that are ordered in increasing fashion from the “head” of the
chain, which has id 1.

The first statement sets the parent of the head module
to be its own id. The second statement triggers only when
a module has changed its parent variable, and traverses one
link of the chain at a time, setting the parent and phase
variables of successive modules.

The next two lines implement the actual snake gait of the
phase automaton. For each module, these statements check to
see if the current time, modified by the phase φ and period T ,
corresponds to one of the transition points of the automaton.
If so, the joint angle of the module is set appropriately. It is
interesting to note that the first two statements are broadly
applicable to any chain-style robot, and that they may be
reused for different gaits.

There are several interesting features of the phase au-
tomaton code which bear closer examination. As all of the
statements in the program run simultaneously and concur-
rently, it is necessary to enable and disable the various steps
of the algorithm by the use of gating subpredicates. These
are predicates which match only once, or only for a certain
period of time. There are two such subpredicates in Figure 5.
The first, a.prev(1).parent != a.parent in line 2,
ensures that the predicate matches only on the tick after the
parent variable has changed. This prevents the continual
(and unnecessary) reassignment of parents to the modules
in the chain. The second subpredicate a.parent != -1,
in lines 3 and 4, prevents the predicate from matching (and
motion from occurring) until a parent and phase offset have
been assigned to the module.

We evaluated the snake gait program on chains of 5 to 20
modules, and found that the resulting gait appeared visually
similar to that presented in the original paper . The additional
gaits (rolling and centipede) described in [11] could also be
implemented using similar LDP programs.

R R

R R R

a)

d)

b)

e)

c)

f)

Fig. 6. Data Aggregation Algorithm: a) Available communications links
b) Shaded links show establishment of spanning tree rooted at R c)
Leaves propagate data upwards (shaded circles) d-e) Additional levels of
propagation f)Data aggregation complete

IV. EXAMPLE PROGRAM: DATA AGGREGATION

A common task in modular robots, and distributed systems
in general, is the aggregation of a distributed set of values
at a central point. In this example program, we implement
distributed averaging of a scalar variable over the entire
ensemble. This is useful for such tasks as distributed sensing,
localization, and center of mass estimation.

To obtain the average of a variable over all modules, we
use a technique popular in sensor networks. We begin by
designating one module as the root of a spanning tree, and
having all modules transmit their value up the hierarchy of
the tree to the root, where it is accumulated (Fig.6). The
naı̈ve implementation of such an algorithm would be for each
module to transmit its variable’s value, and for that value to
be propagated all the way to the root of the tree, where the
root module would add it to a running total.

Propagating each value independently is clearly inefficient,
and so instead we implement summing and averaging at each
level of the tree, so that only one data value must be passed
up to a module’s parent. The difficulty with this technique
lies in knowing when all of a module’s children have sent
it information, so that the module can propagate the sum
to a higher level of the tree. To solve this, we have each
module maintain two set variables. One tracks immediate
neighbors that are known not to be its children. The other

3159

int isSeed; // set to 1 on the spanning tree’s root, 0 otherwise. Read-only.
int id; // the id number of module. Read-only.
int parent = -1; // the id number of the parent module in the tree
set<int> $notChildren = {}; // the set of module ids of neighbors who are not children
set<int> $children = {}; // the set of module ids of neighbors who are children, and have provided data
set<int> $neighbors; // the set of a module’s neighbors’ ids. Updated by runtime.
int isComplete = 0; // set to 1 is a module has completed aggregation
int sensor; // the variable to average over. Read-only.
int sum = 0; // sum of all sensor values received
int count = 0; // number of modules that have transmitted data
int average = 0; // average of the sensor value over all modules

// build spanning tree from seed outwards. Note each module’s parent field is initialized to -1 above.
1 forall (a) where (a.isSeed == 1) do a.parent = a.id;
2 forall (a,b) where (a.parent != -1) & (a.parent != a.prev(1).parent) & (b.parent == -1)

do b.parent = a.id;
// build notChildren sets (all of the neighboring modules that are not b’s children)

3 forall (a,b) where (a.parent != -1) & (a.parent != a.prev(1).parent) & (a.parent != b.id)
do b.$notChildren.add(a.id);

// start propagation at leaves
4 forall (a) where (size(a.$neighbors) == size(a.$children) + size(a.$notChildren))

do a. isComplete = 1;
// propagate data up parent links

5 forall (a,b) where (a. isComplete != a.prev(1). isComplete) & (b.id == a.parent)
do b.sum = b.sum + a.sum + a.sensor,
b.count = a.count + b.count + 1,
b.$children.add(a.id);

// compute average
6 forall (a) where (a.count > 0) do a.average = a.sum / a.count;

Fig. 7. Complete Source Code for Data Aggregation Example

tracks immediate neighbors that are its children and have
already provided it with data. When the size of these two sets
sums to the total number of neighbors that a module has, it
can transmit its own information up the tree. This algorithm
is not the most efficient or robust choice [14], [15], but it
serves to illustrate how one might implement such a task.

The code in Figure 7 is an implementation of this averag-
ing algorithm. It has 6 statements, spread over 5 different
phases. Note that these phases are sequenced by explicit
conditions in the predicates — the order in which they are
listed is unimportant. The first two statements establish a
spanning tree rooted at the designated module. The next
statement adds all of module a’s neighbors who are in the
tree but not children of a to the set a.$notChildren. The
next statement begins propagation at each level by setting the
isComplete variable to 1 once all children have provided
data. If a module becomes a leaf, the fifth statement adds its
running count and total to that of its parent, and adds it
to the parent’s $children set. Finally, the sixth statement
continually sets the known average to be the total of all
reported values divided by the count of reporting modules.
The code as presented computes the average only once, but
the addition of a “reset” mechanism based on epochs or
changing sensor values is a simple change.

We evaluated the performance of the data aggregation
algorithm on a simulated robot ensemble. The modules were
arranged in a square lattice, in flat planes with sizes ranging
from 5 by 5 (25 modules) to 20 by 20 (400 modules). In all

cases, the number of messages required was exactly three
times the number of discrete communications links between
the modules. Each phase of the algorithm (spanning tree con-
struction, not-child set construction, and data aggregation)
required that each adjacent pair of modules exchange one
message. In terms of time complexity, the algorithm required
time linear in the depth of the spanning tree to complete.

V. EXAMPLE PROGRAM: METAMODULE PLANNER

As our final example, we explore the problem of dis-
tributed shape planning for an ensemble of lattice-style mod-
ular robots. We use an extension of the shape change algo-
rithm described in [16]. The algorithm produces a distributed
asynchronous plan for a group of modules to transform
from a feasible start state to a feasible goal state, while
maintaining global connectivity. Furthermore, the algorithm
provides provable guarantees of completeness: if there exists
a globally connected path, it will be found. A film strip of
the planner in action is shown in Fig.8.

A. The planning algorithm

The basic planner in [16] finds a sequence of rearrange-
ments to go from a starting configuration to reach a target
shape while maintaining global connectivity. The algorithm
operates on metamodules, i.e., particular structures of mod-
ules, which are assumed to provide an abstraction where one
metamodule can spawn a new metamodule in an adjoining
empty spot, or absorb an adjacent metamodule to create an

3160

Step 0 Step 15 Step 30 Step 45 Step 60 Step 75 Step 90 Step 105

Fig. 8. Metamodule-based Shape Planner. Grey metamodules at top of structure are being created, while those at the bottom are generating deletion trees
(red arrows) and being destroyed.

int isSeed; // set to 1 on the metamodule which initiates the motion planner, 0 otherwise. Read-only.
int id; // the id number of metamodule. Read-only.
int parent = -1; // the id number of the parent metamodule in the deletion tree
int state = NEUTRAL; // the role of the metamodule: NEUTRAL,PATH, or FINAL.
int inside; // set to 1 if the metamodule is inside the target shape, 0 otherwise. Read-only.
set<int> $notChildren = {}; // the set of metamodule ids of neighbors who are not children
set<int> $spaces; // the set of adjacent free locations where an additional metamodule should be created,

// updated by runtime
set<int> $neighbors; // the set of a metamodule’s neighbors’ ids. Updated by runtime.
function create(int); // creates a new metamodule adjacent to the calling one at a given space
function destroy(); // destroys the current metamodule by dispersing it into adjoining metamodules

// propagate FINAL state from seed outward to all modules already in target shape
1 forall (a) where (a.isSeed == 1) do a.state = FINAL;
2 forall (a,b) where (a.state == FINAL) & (b.inside == 1) do b.state = FINAL;

// create new metamodules at edges of start shape
3 forall (a) where (a.state == FINAL) & (size(a.$spaces) > 0) do a.create(a.$spaces.any());

// propagate PATH state to all metamodules outside start shape
4 forall (a,b) where (a.state == FINAL) & (b.inside == 0) &

(b.state == NEUTRAL) do b.state = PATH;
5 forall (a,b) where (a.state == PATH) & (b.state == NEUTRAL) do b.state = PATH;

// build deletion trees from FINAL out through PATH metamodules
6 forall (a,b) where (b.state == PATH) & (b.parent == -1) &

((a.parent != -1) | (a.state == FINAL)) do b.parent = a.id;
// build notChildren sets (all of the neighboring modules which do not have b as a parent)

7 forall (a,b) where (a.parent != -1) & (a.parent != b.id); b.$notChildren.add(a.id);
8 forall (a,b) where (a.state == FINAL) do b.$notChildren.add(a.id);

// delete PATH metamodules with no children
9 forall (a) where (a.state == PATH) &

(size(a.$neighbors) == size(intersect(a.$notChildren,a.$neighbors))) do a.destroy();

Fig. 9. Complete Source Code for the Basic Metamodule Planner Example

empty spot. Initially, the ensemble of metamodules is in the
start shape. During execution, metamodules are created and
destroyed to reach the target shape.

The planing algorithm starts with a seed metamodule,
which must lie in the intersection of the start and goal shapes.
Each metamodule is in one of three states at any given time,
NEUTRAL (the initial state for all modules), PATH, and
FINAL. The seed metamodule marks itself as being in the
FINAL state, then recruits every neighboring metamodule in
the goal shape (and every neighbor’s neighbor, recursing as
long as possible) to also enter the FINAL state. It recruits
a similar marking of every NEUTRAL neighbor not in the
goal shape as being a candidate for removal. To do it marks
these metamodules as being in the PATH state.

Preserving global connectivity when removing metamod-
ules is one of the primary objectives of the planner. By
successively expanding this initial set of PATH-state meta-

modules, the planner creates PATH-state tree structures that
will sequence deletion operations later on. Every metamodule
in these PATH state trees has a link to its parent, and as long
as the link remains, the module will remain connected to the
goal shape. Eventually, the trees have no further space to
expand, at which point, the leaves can be safely trimmed
without risking loss of connectivity. In Fig.8, the start shape
is indicated by the lighter colored metamodules, the goal
shape by the darker colored ones, and PATH-state trees are
indicated by (red) arrows.

B. Implementation

The implementation of the motion planner runs at the
metamodule level, on structured subgroups of modules. This
allows for the creation and destruction of metamodules, as
their constituent modules can be absorbed or provided by
other nearby metamodules. To implement this application,

3161

we “ported” the LDP runtime to the metamodule level, which
required implementing communication and state variable
storage across multiple modules. The (complete) code for
the planning algorithm is shown in Fig.9. The state variables
isSeed, inside, and $spaces are dependent on the start
and goal shapes of the specific plan, and are initialized and
managed by the low-level support code.

The first two lines spread the FINAL state to the seed,
and then to every contiguous metamodule which is inside
the target shape. The third line causes new metamodules to
be created at empty locations in the goal region which adjoin
metamodules already in the FINAL state. The fourth and fifth
lines propagate the PATH state outwards from the edges of
the FINAL region to all metamodules that are outside the
goal shape. The sixth line creates a forest of trees rooted at
the edges of the FINAL region, and spreading throughout any
metamodules outside the target region. Statements seven and
eight create notChildren sets, in a similar fashion to the
data aggregation of Section IV. Finally, the ninth statement
deletes PATH-state metamodules with no remaining children.
(i.e., the leaves of each PATH tree)

VI. DISCUSSION & CONCLUSIONS

We have demonstrated the utility of LDP by implementing
three common classes of modular robotic algorithm. LDP
provides a concise abstraction of distributed state, and helps
to separate the actions of the algorithm from the support code
necessary in traditional imperative languages.

As with any language, there are certain tasks which are
more or less difficult to express in LDP. In particular, dis-
tributed state comparison and simple temporal relationships
are quite naturally written in LDP. The lack of any explicit
control structures or ordering makes certain other tasks more
difficult. In particular, imposing an execution sequence (e.g.,
different “phases”) on an LDP program, requires gating
subpredicates to bound the times when certain statements can
be active. This is especially important for statements which
we want executed exactly once on each module. Also, the use
of snapshot consistency complicates multiple read and writes
to the same variable during a single tick, as the read value
will be taken from the snapshot (and not the current value
of the variable). Further, the issue of race conditions and
concurrent operation is thus still an area of active research,
with new language constructs currently under development.

Finally, we note that the design of the LDP language
and runtime is deliberately amenable to extension with new
primitives and operators. The addition of new primitives
(such as per-edge variables or subexpression quantification)
allow LDP to address more specialized application domains.
As LDP is derived from the distributed watchpoint language,
it is also possible to debug LDP programs in a distributed
fashion within the language itself.

ACKNOWLEDGMENT

This research was sponsored by the National Science
Foundation (NSF) under grant no. CNS-0428738. The views
and conclusions contained in this document are those of

the author and should not be interpreted as representing the
official policies, either expressed or implied, of any spon-
soring institution, the U.S. government or any other entity.
Additional funding provided by Intel Research Pittsburgh.
The authors would like to thank Siddhartha Srinivasa and
Daniel Dewey for their assistance with the metamodule plan-
ning algorithm, and Michael Ashley-Rollman for invaluable
insights into distributed declarative programming.

REFERENCES

[1] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica,
“Implementing declarative overlays,” in Proceedings of ACM Sympo-
sium on Operating System Principles (SOSP), 2005.

[2] M. Ashley-Rollman, S. Goldstein, P. Lee, T. Mowry, and P. Pillai,
“Meld: A declarative approach to programming ensembles,” in Pro-
ceedings of the IEEE International Conference on Robots and Systems
IROS ’07, 2007.

[3] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal Of Robotics And Automation, RA-2, pp. 14–23, April 1986.

[4] G. Berry, “The esterel v5 language primer,” Centre de Mathematiques
Appliquees, Ecole des Mines and INRIA, Tech. Rep., 1999. [Online].
Available: http://www-sop.inria.fr/meije/esterel/esterel-eng.html

[5] R. Newton, G. Morrisett, and M. Welsh, “The regiment macropro-
gramming system,” in IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks. New York,
NY, USA: ACM Press, 2007, pp. 489–498.

[6] J. Beal and J. Bachrach, “Infrastructure for engineered emergence on
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, no. 2, pp.
10–19, 2006.

[7] M. DeRosa, S. Goldstein, P.Lee, J. Campbell, and P. Pillai, “Dis-
tributed watchpoints: Debugging large multi-robot systems,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation ICRA ’07, 2007.

[8] C. M. Chase and V. K. Garg, “Detection of global predicates: Tech-
niques and their limitations,” Distributed Computing, vol. 11, no. 4,
pp. 191–201, 1998.

[9] R. Cooper and K. Marzullo, “Consistent detection of global predi-
cates,” in Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, published in ACM SIGPLAN Notices, vol. 26,
1991, pp. 167–174.

[10] M. DeRosa, S. C. Goldstein, P. Lee, J. Campbell, and P. Pillai,
“Distributed watchpoints: Debugging large modular robotic systems,”
International Journal of Robotics Research (special issue, to appear),
2007.

[11] Z. Ying, M. Yim, C. Eldershaw, D. Duff, and K. Roufas, “Phase au-
tomata: a programming model of locomotion gaits for scalable chain-
type modular robots,” in Proceedings of 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, (IROS 2003), 2003.

[12] D. Duff, M. Yim, and K. Roufas, “Evolution of polybot: A modular
reconfigurable robot,” in Proc. of COE/Super-Mechano-Systems Work-
shop, 2001.

[13] B. Salemi, M. Moll, and W.-M. Shen, “SUPERBOT: A deployable,
multi-functional, and modular self-reconfigurable robotic system,”
in Proceedings of the IEEE International Conference on Intelligent
Robots and Systems IROS ’06, 2006.

[14] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and deltas: efficient
and robust aggregation in sensor network streams,” in SIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press, 2005, pp.
287–298.

[15] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” in SenSys ’04:
Proceedings of the 2nd international conference on Embedded net-
worked sensor systems. New York, NY, USA: ACM Press, 2004, pp.
250–262.

[16] M. Ashley-Rollman, M. DeRosa, S. Srinivasa, P. Pillai, S. Goldstein,
and J. Campbell, “Declarative programming for modular robots,” in
IROS 2007 Workshop on Modular Robots, 2007.

3162

