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Abstract—In this paper, we present a distributed market-
based algorithm called S+T, which solves the multi-robot task
allocation (MRTA) problem in applications that require the
cooperation among the robots to accomplish all the tasks. If
a robot cannot execute a task by itself, it asks for help and,
if possible, another robot will provide the required service.
In the paper, tasks consisting in transmitting data in real-time
that could require communication relay services are considered.
On the other hand, the parameters of the algorithm can be
adapted to give priority to either the execution time or the
energy consumption in the mission. The potential generation of
deadlocks associated to the relation between tasks and services
is studied, and as an original result, a distributed algorithm
that prevent them is proposed. The algorithm has been tested
in simulations that illustrate the main features of the S+T
algorithm.

I. INTRODUCTION

An important issue in distributed multirobot coordination

is the multi-robot task allocation (MRTA) problem that has

recently become a key research topic. It deals with the way

to distribute tasks among the robots and requires to define

some metrics to assess the relevance of assigning given tasks

to the robots. In the last decade, different approaches has

been used to solve this problem: centralized ([1], [2]), hybrid

([3], [6]) and distributed ([5] and [13]). Within the distributed

approaches, the market-based approach [4] has been the most

successful one which is based on the Contract Net Protocol

([10], [11]).

Usually these market-based approaches assume that each

task can be executed completely by a single robot. But this

could not be the case for example in a surveillance or ex-

ploration scenario, in which a task consisting in transmitting

images in real-time could require another robot to act as a

communication relay. Our approach to solve this problem is

based on the concept of service. If a robot cannot execute

a task by itself, it asks for help and, if possible, another

robot will provide the required service. Required services

are generated dynamically and are necessary to successfully

complete their associated task. Other possible scenarios,

where this approach is useful, could be the box-pushing

problem and the cooperation among various robotic arms.

In the first one, assuming that we know the weight of the

box and how much weight a robot can push, one or more

services could be required until the pushing capacity of the

team of robots is equal or greater that the weight of the box.

In the second scenario, it is supposed that we have several

robotic arms with a limited set of tools and some overlapping

of their workspaces. When a robot has to perform a task, it

will need a group of tools. If these tools are not within its

workspace, the robot will ask for a service to get the desired

tool from another robot.

It is widely accepted that one of the main advantages of

multi-robot systems w.r.t. a stand-alone robot is their capabil-

ity to perform tasks that can be impossible for a single robot.

In this paper a new task allocation protocol (called S+T),

designed to exploit this characteristic, is described. This

protocol is based on a distributed market-based approach and

could be considered an extension of the SIT algorithm [12].

The basic idea is that a robot can ask for services when it

cannot execute a task by itself. The cost of the task will be

the sum of the costs of the task and the service or services

required.

A similar idea is presented in [7], where soft temporal

constraints were considered using master/slave relations, and

also in [14], where the efficiency of the solution is increased

considering at the same time the decomposition and alloca-

tion of complex tasks in a distributed manner. However, the

potential execution loops associated to the relation between

tasks and services that could lead to deadlock situations, is

addressed in our paper. To the best of our knowledge, there

is no other paper dealing with this problem in a distributed

manner within the MRTA area. Moreover, the parameters of

our algorithm can be adapted to give priority to either the

execution time or the energy consumption (i.e., the sum of

the distances traveled by each of the robots) in the mission.

The paper is organized as follows. In the next section

the S+T algorithm is described and illustrated with a simple

example. In the same section, the changes on the costs that

allows the algorithm to prioritize between the execution time

and the energy spent on the mission is also explained. In

Section III, the deadlock problem is stated, and a distributed

algorithm to solve it is explained. Simulation results that

illustrate the main characteristics of the S+T algorithm are

shown in Section IV. Finally, conclusions and future work

are discussed in Section V.
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II. SERVICES AND TASKS: S+T ALGORITHM

As any other market-based algorithm, there are two roles

(bidders and auctioneer) that are played dynamically by the

robots. The auctioneer is the agent in charge of announcing

the tasks and selecting the best bid from all the received

bids. The algorithms associated to each role are detailed in

Algorithms 1 and 2. In the bidding process, when a robot

needs a service to execute a given task, it will bid initially

with just the cost of the task (because it still does not know

the cost of the required services) labelling the message to the

auctioneer as “provisional”. The auctioneer will evaluate all

the bids, and if the best bid requiring a service is better than

the best bid without the need of a service, the robot requiring

the service will start another auction in order to find which

robots can perform that service. When this second auction is

finished, the robot will send to the auctioneer the complete

cost of the task, including the cost of the associated services.

Afterwards, the auctioneer will decide which robot executes

the task based on the updated costs. If a task is allocated

to a robot requiring a service, that service will be allocated

also at the same time.

Algorithm 1 S+T auctioneer algorithm

if there is any task to announce then

announce task

while timer is running do

receive bids

end while

calculate best bid (lowest cost)

if best bid is lower than the auctioneer bid then

if best bid requires a service then

allow robot to start a new auction in order to find

a robot who can execute that service

end if

wait until the second auction is finished and the total

cost of the task (including the service cost) is sent

send task to best bidder taking into account the

updated bids

end if

delete task from announcement list

if task has an associated service then

send a message to the robot that will execute the

service in order to delete it from its local plan

end if

end if

It should be pointed out that both the protocol used to

allocate the services and the algorithm to allocate the tasks

are based on the SIT algorithm presented in [12]. The only

differences are:

• Services cannot be reallocated dynamically.

• When a robot that will execute a service changes its

local plan, it has to report the new cost of the service

to the robot which required it (that can start another

auction to check if a different robot has a lower cost

now for that task).

Algorithm 2 S+T bidder algorithm

a new message is received

if new message is a task announcement then

compute the optimal insertion point for the task in the

local plan

calculate bid (marginal cost)

if the task requires a service then

send initial bid to the auctioneer and indicate that a

service is needed

else

send bid to the auctioneer

end if

else if new message allows to ask for a service then

start a new auction in order to find a robot that can

execute the service

receive all the bids for the service

calculate the complete cost for the task including the

cost for the service

send the new cost to the auctioneer

else if new message is a task award then

insert task in the local plan in the position calculated

before

add task in the announcement list

if the task needs a service, allocate the service to the

robot that won the auction

if the cost of any allocated service (in case it exists) has

changed because of the insertion of the new task in the

local plan then

send the new cost of the service to the robot with the

task

end if

end if

A relevant feature of the protocol is that services can be al-

located recursively, i.e., a robot that executes a service could

also require another service to accomplish the first one and

in this way to any number of recursive services. Therefore,

the algorithm takes full advantage of the possibilities that

a team of robots can offer (it is even possible to execute

missions with a task involving the whole team).

In order to illustrate this characteristic, a surveillance

mission will be considered. The mission consists in trans-

mitting information from a certain area to a base station in

real-time. The robot has to be within the communication

range of the base or in the range of another robot acting

as a communication relay. As it can be seen in Figure 1,

the transmission to the base requires two robots acting as

communication relays. The most relevant messages involved

in the negotiation process are represented in the diagram

depicted in Figure 2.

It should be pointed out that when a robot announces a

service required for a certain task, the robot that will execute

that task cannot take part in the auction process for the

service.

The use of services increments the cooperation among

robots and allows to achieve missions that could be impos-
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Fig. 1. Example of multiple recursive services required to accomplish
one task. Figure a) shows the initial positions of the robots and the base
station and b) shows the final assignment of tasks and services that allows
robot A to transmit images to the base station using robots B and C as
communication relays.

Fig. 2. Messages interchanged in the negotiation process using the S+T
algorithm for the example illustrated in Figure 1 (one task requiring two
services to be executed).

sible using a regular task allocation algorithm, for example,

transmitting images in a surveillance mission from a position

that does not have direct coverage with the base of opera-

tions. However, services can also increment the total time

of the mission since more than one robot could be used to

execute one task and, therefore, less tasks can be executed “in

parallel”. In this context, if a robot can execute a task by itself

with a bigger cost than another robot using services, it should

be decided which option is better. From our point of view, the

answer to this question depends on the specific application

and two different approaches have been developed to tackle

with different scenarios:

• In our first approach, tasks have a higher priority than

services, and therefore, it should be applied to scenarios

where the goal is to minimize the total execution time of

the mission. Basically, when an auctioneer receives bids

from robots and, at least one of them does not require

a service, the task will be directly allocated to it. This

approach also needs less communication messages since

services will be only considered when they are totally

necessary for the success of the mission.

• In the second approach, the priority between the total

time of the mission and the energy consumed by the

team can be adjusted with a parameter α defined as

follows:

α =
P

1 − P
(1)

where P ∈ [0, 1] is the priority to minimize the total
time of the mission. This parameter is used in the

computation of the cost for the service:

Cs = Co · (1 + α · L) (2)

where Co is the original cost of the service, Cs is the

new cost of the service and L is the level of the service,

i.e., if it is the first service that depends on a task, L

is equal to 1. If it is a service that depends on the first

service, then L is equal to 2 and so on. This second

parameter is used to penalize the use of more than one

robot to execute one task. Moreover, when the use of

services is unavoidable, L allows to increase the priority

of services that need less robots.

The value of the parameter P should be selected de-

pending on the type of mission. If it is more important

to minimize the energy spent on the mission and the

total time is not important for us, we should select

P = 0, which means α = 0. On the other hand, if we
want to minimize the total time of the mission without

considering a complete execution of all the tasks, we

should select P = 1 which means α → ∞. In this case,

services will not be considered and the algorithm will

behave as the SIT market-based algorithm with local

plans and reallocations [12].

III. DEADLOCK SITUATIONS

Until now, the allocation process of tasks and services has

been presented, but not the synchronization issues related
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Fig. 3. Example where a deadlock is generated since the execution of
the tasks depends on the execution of services. Figure A shows the initial
position of the robots and the tasks to be allocated. Assuming a radius of
communication of 50 units, Figure B shows the services needed to execute
the tasks. Figure C shows the relation of execution between the tasks and
the services and Figure D presents the relation in terms of execution in
the final allocation using the S+T algorithm and the order of execution of
the tasks in each robot. TI represents the task number I and SJL means a
service associated to task J and level L.

with the relation between tasks and services during the

execution. From a general point of view, when the execution

of tasks depends on others, the generation of deadlocks must

be considered, and even more when the process is distributed.

It has been noticed in simulation that this problem appeared

frequently since each robot only has local information and

there is no direct way to know if its particular local plan

will generate a deadlock in the execution of all the tasks and

services by the team of robots. For example, in Figure 3, it is

shown how an execution loop can be generated using the S+T

algorithm for a particular example with data transmission

tasks and communication relay services.

This problem has not an easy solution since robots only

have knowledge of their own plans. It is also important to

find an algorithm to solve this problem in a distributed way

since the key idea is to have a whole functional robotic

system that works without the presence of a centralized

entity. Our solution is based on the use of “check loop”

messages, i.e., every time a robot wins a task, it will

broadcast a message indicating the service associated to the

new task (if it exists). The robot which has won that service

will process the message and will send a message for every

task or service that appears in its local plan before the

mentioned service and has also a service associated to it. As

it is shown in Figure 4, when a robot receives back a “check

loop” message with its id, it will sell the task that provokes

the loop and it will introduce it in a black list in order to

avoid biding again for it. The use of a black list has the

purpose to prevent the generation of allocation loops when

the best two robots for a task are involved in an execution

loop when they integrate the task in their local plans (i.e.,

they start to reallocate the task to each other and in both

cases an execution loop is formed). Finally, the complete

algorithm is shown in Algorithm 3.

Fig. 4. Considering the initial configuration presented in Figure 3, Figure
A shows the allocation after the announcement of the first task and the path
followed by the “check loop” messages. Figure B presents the allocation of
the second task and the path of the “check loop” messages that detects the
execution loop. Figure C shows the allocation after the reallocation of the
task and how the execution loop has been removed. Figure D presents the
execution of the different tasks and services.

Algorithm 3 Distributed loop detection algorithm

wait until receive a “check loop” message with a task or

service that the robot has in the local plan

if id message == robot id then

if task has an associated service then

send a cancel service message

end if

delete task from won-tasks list (loop detected)

insert task in black-tasks list

insert task in announcement-tasks list

else

move to the initial position of the local plan

repeat

if task or service has a service associated to it then

send “check loop” message

end if

next task or service in the local plan

until task or service != task received in the “check loop”

message

end if

IV. SIMULATION RESULTS

A multi-robot simulator has been used to test decentralized

algorithms. This simulator is based on an architecture de-

signed for heterogeneous robots and divided into three layers

[8]. The highest layer is independent from the type of robot

and is the one aware of the existence of other robots. Thus,

the task allocation algorithm is implemented in this layer.

Moreover, the communication among robots is based on IP

using BBCS [9], so it can be also used as an interprocess

communication method for simulations. The other two layers

are used to execute the different tasks allocated to the robot

and to make easier the simulation of new algorithms by using

a modular and component-based architecture.

In the simulations, surveillance tasks where robots have

to send back images in real-time to a base station from a
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certain point were considered. Therefore, a robot transmitting

images have to be within the communication range of the

base station using its own communication device or using

one or more robots as communication relays (services).

For this particular scenario, the execution synchronization

between tasks and services has been implemented using

preconditions, i.e. a task cannot start until all the services

associated to it have been executed. Moreover, the robot or

robots that execute a service cannot start the next task or

service in their local plan until the associated services have

been completed.

Numerous simulations with different number of robots

were performed for the surveillance missions mentioned

above with several communication range values in a scenario

of 1000x1000 meters. In Figure 5, it can be observed that

the total distance traveled by all the robots decreases when

the communication range increases as far as the probability

to require a service decreases. The total distance traveled by

all the robots is considered as a good measurement of the

energy spent during the mission. Moreover, the mean of the

total distance traveled decreases when the number of robots

increases due to the fact that a constant number of tasks is

used in all the missions.

Table I shows the resulting mean values of some pa-

rameters in missions with five tasks, different number of

robots and values for the communication range. The number

of services executed increases when the communication

range of the robots decreases and, as a logical consequence,

the number of messages received by one robot and the

total distance traveled by all of them also increases, as it

was mentioned above. This means that the communication

requirements and the energy needed to execute the mission

will be higher when the number of services increases.

On the other hand, simulations have been run with dif-

ferent values of the α parameter that depends on P ∈ [0, 1]
(see Section II). As it can be seen in Figure 6, one hundred

random simulations have been executed for different values

of P . P = 0 is an extreme value applied when the user

Robots Comm. range (m) Total
distance

(m)

Messages
received

Services

3

600 2145.15 47.96 0.56

400 2786.52 80.32 2.44

300 3125.23 150.45 4.36

5

1100 1075.23 48.06 0.0

600 1099.43 52.3 0.30

400 1307.97 85.66 1.36

300 1742.34 164.87 3.45

7

1100 609.14 45.06 0.0

600 638.42 45.8 0.24

400 810.23 79.76 1.24

300 1318.31 142.96 2.76

TABLE I

RESULTS WITH FIVE TASKS, DIFFERENT NUMBER OF ROBOTS AND

VALUES FOR THE COMMUNICATION RANGE. THE MEAN OF THE VALUES

FROM ONE HUNDRED RANDOM MISSIONS ARE SHOWN WHERE TOTAL

DISTANCE MEANS THE DISTANCE TRAVELED BY ALL THE ROBOTS,

MESSAGES RECEIVED IS THE NUMBER OF MESSAGES RECEIVED BY ONE

ROBOT IN THE S+T ALGORITHM AND NUMBER OF SERVICES IS RELATED

TO THE ONES EXECUTED BY ONE ROBOT.

wants to minimize the total distance traveled by all the

robots in the mission in terms of energy, and therefore, the

cost of the services is not modified. Also in Figure 6, it

can be observed how the maximum distance traveled by

one robot decreases when P increases, and therefore, the

time of the mission will be smaller (assuming that all the

robots move at the same speed) because of the penalization

of the costs associated to the services. However, if the

execution time is critical, with P = 1.0 the S+T algorithm
services are not considered and some tasks could be undone

(mission partially accomplished). In Figure 7, it is shown

the mean of the number of tasks executed over 100 missions

with different values for the communication range and with

P = 1.0. Up to six hundreds meters, it can be seen that
a significant number of tasks cannot be accomplished for

the group of robots if the use of services is not considered.

Therefore, we have to be careful when the parameter P is

equal to 1.0 and a given mission needs services to execute
most of the tasks. In that case, the time of the mission will

be minimized but many tasks will not be executed. Then, it

is advisable to only use P = 1.0 when most of the tasks can
be executed without services and the execution time of the

mission is very critical.

V. CONCLUSIONS AND FUTURE WORK

A distributed task allocation algorithm called S+T and

based on a market-based approach has been presented. In

order to execute tasks that need more than one robot, the

concept of service has been introduced. The basic idea is that

a robot can ask to others for services when it cannot execute

a task by itself. Two approaches for the algorithm has been

developed. In the first one, services are only considered on

the allocation process when none of the robots can execute a

particular task by itself. The second approach can be adapted

to the type of application with a parameter α prioritizing
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between the execution time and the energy consumption in

the mission. Regarding the execution of tasks and services,

the creation of deadlocks has been studied and a distributed

algorithm that avoids them has been introduced.

Finally, the use of an algorithm such as S+T could increase

the probability of completing a mission when tasks need

more than one robot to be executed. But, this advantage

entails an overhead in the allocation process. Moreover,

not all the missions might need services to be completed

successfully. Therefore, we plan to study how to create an

algorithm that can be adapted dynamically to the needs of

the specific situation switching between the two approaches

presented in Section II or modifying the parameter α using

learning techniques.
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