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Abstract— Motion trajectory is a compact clue for motion
characterization. However, it is normally used directly in its
raw data form in most work and effective trajectory description
is lacking. In this paper, we propose a novel hierarchical
motion trajectory signature descriptor, which can not only fully
capture motion features for detailed perception, but also can be
used for probabilistic fast recognition. The hierarchy enables
the signature to exhibit high functional adaptability meeting
different application requirements. At the first-level, differential
invariants are employed to describe trajectory features and a
nonlinear signature warping method is developed to perceive
and recognize trajectories. The second-level signature is the
condensation of the first-level signature by applying PCA based
dimension optimization. It behaves more efficiently in recogni-
tion based on the Gaussian Mixture modeling and Bayesian
classifier. The conducted experiments verified the signature’s
effectiveness.

I. INTRODUCTION

Motion trajectory is a meaningful and informative clue in
characterizing the motions of robot and human. No matter
for simple actions, median behaviors or complex activities,
the consequent motions can be characterized by identifying
the involved subjects (human body, head, hands, or feet
etc. [1]) and extracting the underlying motion trajectories.
That is, motion can be analyzed spatiotemporally by the
joint description of spatially parallel or (and) temporally
sequential motion trajectory compositions. While the parallel
trajectories entail integrated motion of multiple subjects
moving at the same time, it is the sequential trajectory that
captures the continuous motion. In this sense, describing,
recognizing and perceiving motion trajectories are important
for various motion analysis and applications. For example, in
robot Programming by Demonstration (PbD), many kinds of
human demonstrations can be well described by the extracted
motion trajectories. Therefore, it is valuable to study motion
trajectory in terms of effective description structure, fast
recognition algorithm and semantic scene perception.

In the literature, motion trajectory has been explored
intensively in diverse contexts [2], [3], [4]. However, in
most work, trajectory was just used directly in its raw data
form, which is quite inflexible and incapable of meeting the
demands of effective description, recognition and perception.
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sity of Hamburg, Vogt-Kölln-Str. 30, D-22527, Hamburg, Germany
zhang@informatik.uni-hamburg.de

On the contrary, good motion trajectory descriptor can out-
perform the raw trajectory data.

In the existing work, some shape descriptors have been
built [5], [6]. However, most of them do not perform as
well as expected in descriptive capabilities especially in
the functional adaptability. Simple contour functions such
as chain code, centroid-contour distance (CCD) and R-S
curve just admit ordinary performance. The descriptors based
on Fourier Descriptor (FD) [7], wavelet coefficient [8] and
Curvature Scale Space (CSS) images [9] can represent shape
in a coarse-to-fine or multi-resolution manner, in which just
partially salient features such as wavelet skeleton, the lower
frequency information in FD and the curvature zero-crossing
points in CSS are of concern for shape description. This
explains why they actually are unable to represent shapes
uniquely. Also, it may be undesirable to ignore much amount
of less important information when the detailed features
really matter. For example, in Fourier transform, it is difficult
to perform local motion analysis in the frequency field
because the time information is lost. The correspondence
problem has to be regulated in CSS since the curve length
shrinks in the Gaussian evolving. The algebraic curve and
moment function [10] suffer from occlusion as they make use
of global features. The mathematical curve NURBS [11] and
B-spline [12] need a fitting process that causes inaccuracy.
The B-spline method may result in recognition ambiguity
as it is hard to compare B-spline parameters directly for
recognition because a piece of trajectory is not uniquely
described by a single set of control points [12].

The quality of a descriptor should be evaluated in terms
of multiple functions. In essence, a descriptor’s performance
depends much on the kind of shape feature interested and
the descriptive structure. In this paper, we propose a novel
hierarchical trajectory signature descriptor. The signature is
with a two-level structure hence admits higher functional
adaptability. At the first level, motion trajectory is fully
modeled using local differential invariants features, which
is effective for detailed motion feature capturing and percep-
tion. At the second level, the full signature data is condensed
to pursue faster recognition by introducing probabilistic
methods.

II. THE SIGNATURE’S STRUCTURE

In this section, we brief the basic structure of the hier-
archical signature descriptor. As illustrated in Fig. 1, the
signature has two levels. While the first level is the full
description to the entire raw trajectory data, the second level
is the condensed description of the first-level signature data.
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Fig. 1. The structure of the hierarchical motion trajectory signature

At the first level, Euclidean differential invariants features
are employed to build a loose trajectory signature. As dif-
ferential invariants are typical local features, they are not
only capable of characterizing trajectory shapes, but also
can offer richer invariants in trajectory representation with
respect to rigid, metric and viewpoint change and insensi-
tivity to occlusion. Focusing on the detailed motion features
captured by the first-level signature, motion perception to
different trajectory instances can be achieved readily via the
visualization of the nonlinear inter-trajectory warping paths.
The first-level signature is particularly appropriate for small
scale application concerning both trajectory recognition and
motion perception.

The second level of the signature is motivated by reducing
the redundancy data in the first-level signature to obtain
a compact signature description towards faster trajectory
recognition. Applying PCA transform to the first-level sig-
nature, we get the second-level signature with less data but
preserving most variance of the trajectory features. Further,
based on the Gaussian Mixture modeling to the second-level
signature, a Bayesian classifier is developed to replace the
time-consuming matching algorithm. These resorts can speed
much up the recognition especially for larger scale database.

III. THE FIRST-LEVEL SIGNATURE DESCRIPTION
A. Signature Definition and Robust Implementation

Motivated by the 2-D still curve representation [13], we
have proposed a Euclidean 3-D trajectory signature definition
based on typical differential invariants [14].

Definition 1. For a 3-D motion trajectory Γ(t) parameter-
ized by Γ(t) = {X (t),Y (t),Z (t)|t ∈ [1,N ]} (t is temporal
index), its Euclidean signature S is defined in terms of
curvature (κ), torsion (τ ) and their first order derivatives
with respect to Euclidean arc-length s (κs = dκ/ds and
τs = dτ/ds), in the following form,

S = {[κ(t), τ(t), κs(t), τs(t)]|t ∈ [1,N ]} (1)

To avoid the noise-sensitive high order derivatives in
the accurate signature formula, an approximate signature
S∗ was implemented numerically by employing the joint
Euclidean invariants (inter-point Euclidean distances). See
our previous work [14] for the robust approximate signature
calculation. We define the approximate signature as the first-
level signature, which is diagrammatized by a curvature sub-
signature ( κ vs. κs ) and a torsion sub-signature ( τ vs. τs

Fig. 2. A piece of trajectory Ω in 3-D form (a) and the views in plane
x− y (b), x− z (c) and y − z (d) respectively

Fig. 3. The first-level signature of trajectory Ω. (a) Curvature sub-signature.
(b) Torsion sub-signature

). Taking the trajectory Ω shown in Fig. 2 as an example, its
first-level signature curves are illustrated in Fig. 3.

Besides the signature approximation, trajectory smoothing
is also an effective method to enhance the signature’s robust-
ness by noise reduction. There are various smoothing meth-
ods like the anisotropic Perona-Malik diffusion algorithm
[15]. However, while trajectory is smoothed, its shape may
be affected too. Therefore, trajectory smoothing and shape-
preserving have to be balanced. We design two trajectory
smoothers, a moving average filter and a wavelet smoother.
The smoothing parameters of the two smoothers can be
interactively tuned by experience with a tradeoff between
smoothing and shape-preserving. Fig. 4 demonstrates the
trajectory smoothing to noisy trajectories. It can be observed
that the smoothing effects are good and the shape deviations
are also acceptable.

B. Motion Perception from the First-level Signature

As the first-level signature is based on the features ex-
tracted from all the sampled points, the signature data relies
on the length and point distribution of a motion trajectory.
However, as shown in the next, besides being used for
trajectory recognition, the first-level signature is particularly
useful for motion perception.

1) Motion Features Captured by the First-level Signature:
The loose first-level signature provides an opportunity to

Fig. 4. Smoothing to noisy trajectories (a) using the moving filter (span
= 11) (b) and the wavelet smoother (wavelet DB4 and the coefficients at
level 2-5 respectively) (c)
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perceive motion features, which is meaningful for human
motion analysis for example in robot learning circumstance.
On one hand, for various instances of the same one motion
pattern, the perception to certain specific feature of an in-
stance will make it intuitively distinctive and discriminative.
In practice, motion inconsistency exists among multiple
instances because robot or human cannot perform a motion
exactly the same each time. On the other hand, the results
of motion perception accordingly will be useful for robot to
characterize the specific demonstrator (human), that is based
on the fact that each different human may have specifically
his (her) own motion characteristics embodied in the con-
ducted motions. Motion perception can be mostly achieved
in terms of the features attached in a motion trajectory, which
can be extracted from the first-level signature description.

(1) Motion length. Measured in terms of the number of
frames or sampling points, trajectory length can characterize
the duration and spatial range of a motion. Attributed to
the signature’s computational locality, length perception to
a signature is equivalent to the corresponding trajectory.

(2) Shape of motion. Basically, shape is one of the most
important factors for motion pattern discrimination. From the
curvature and torsion signature profiles, motion shape can be
readily perceived. Intuitively, curvature measures how far a
trajectory is from being on a straight line and the torsion
measures how far it is from being in a plane.

(3) Motion speed. Speed is a key motion feature. User
may perform the same motion with different speed profiles.
Slower speed results in denser data sampled and faster speed
with sparser data. Thus the speed feature can be perceived
based on the points’ distribution along trajectories.

(4) Sampling rate. The sampling rate of a tracking sys-
tem may be unfixed (changing proportionally or randomly).
Sometimes this is concerned and can be measured from the
points’ distribution.

(5) Occlusion. Occlusion often happens due to for example
beyond viewing field or discontinuous tracking. According
to the signature’s computational locality, occlusion will only
result in the signature shorter than the original in length.
Thus it can be perceived from signature’s length.

(6) Motion symmetry. Motion symmetry is an informative
feature in certain motion patterns. We define the motion sym-
metry as two adjacent trajectory fragments symmetrical with
respect to a central symmetrical point which connects these
two fragments. Since the first-level signature can capture
both shape and arc-length features, the central symmetry
point can be easily detected by examining if κ(t) = 0
and τ(t) = 0. Meanwhile, the symmetrical neighbor points
around a central symmetry point satisfy the following con-
ditions: κ(t − 1) = −κ(t + 1), κs(t − 1) = −κs(t + 1),
τ(t − 1) = −τ(t + 1) and τs(t − 1) = −τs(t + 1).

2) DTW Based Nonlinear Inter-signature Matching: In
the following, we present a method for the fully matching
of two first-level signatures, through which the similarity
of the two signatures can be measured, and the motion
features along trajectory can also be highlighted for intuitive
perception based on the inter-signature matching results.

According to the analysis in subsection B-1), we can
infer that two signatures cannot be matched directly due
to the possible difference in signature length, sampling
point distribution and spatiotemporal shift of corresponding
points, which may result from the variations in motion
speed, sampling rate, occlusion or user’s inconsistency in
motion repeats. For example, Fig. 5 illustrates six instances
(in solid lines) of the sampled point sequences for the
same one motion. Therefore, it is crucial to customize a
suitable inter-signature similarity metric to account for the
consequences caused by above-mentioned factors for the
signature matching.

The signatures’ matching problem is analogous with the
elastic time series/sequences comparison [16]. The key of an
appropriate similarity measurement lies in finding the best
matching of the element pairs along two signatures. Thus
we adopted the Dynamic Time Warping (DTW) method to
do nonlinear inter-signature matching [14]. For two first-
level signatures S ∗i and S ∗j with respective length P and
Q , let S ∗i = {[κ∗i, κ∗i

s , τ∗i, τ∗i
s ]p|p ∈ [1,P ]} and S ∗j =

{[κ∗j , κ∗j
s , τ∗j , τ∗j

s ]q |q ∈ [1,Q ]} represent the sequences of
signature quaternions. The cost function d(p, q) reflecting the
similarity between S ∗ip and S ∗jq is defined by

d(p, q) = ∆S ∗ip,jq =
∆κ∗ip,jq · ∆τ∗ip,jq

√

(S∗ip)2 ·
√

(S∗jq)2
(2)

where

∆κ∗ip,jq = ‖(κ∗ip, κ∗ip
s ) − (κ∗jq , κ∗jq

s )‖ (3)

∆τ∗ip,jq = ‖(τ∗ip, τ∗ip
s ) − (τ∗jq , τ∗jq

s )‖ (4)

(S∗ip)2 = (κ∗ip)2 + (κ∗ip
s )2 + (τ∗ip)2 + (τ∗ip

s )2 (5)

(S∗jq)2 = (κ∗jq)2 + (κ∗jq
s )2 + (τ∗jq)2 + (τ∗jq

s )2 (6)

The accumulative minimum cost of aligning up to S ∗ip

and S ∗jq is represented by u(p, q), which is determined by

u(p, q) = min{u(p−1, q−1), u(p, q−1), u(p−1, q)}+d(p, q)
(7)

Following the above and working from u(1, 1) to u(P ,Q),
the best alignment of the two signatures is found giving rise
to the minimum overall distance, say, the DTW distance, at
u(P ,Q), which can serve as the similarity measurement of
S∗i and S ∗j .

3) Perception via the Visualization of Inter-trajectory
Alignment: Applying the above formulated DTW algorithm
to signature matching, Fig. 5 illustrates the nonlinear paths
warping (in dotted lines) among the six trajectory instances.
It is observed that the inter-trajectory alignments are really
reasonable. Particularly, the one-to-many point correspon-
dence makes the trajectories with different point distribu-
tions being matched well. That is, via visualizing the inter-
trajectory alignments, motion can be perceived by looking
into specific motion feature, which can help human (robot)
observe how two trajectories differ in the features of interest.

Based on the DTW inter-signature matching, we can not
only get a quantity as the overall similarity between two
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Fig. 5. Trajectory sampling instances (in solid lines) and the DTW based
nonlinear paths warping (in dotted lines)

signatures, but also can visualize and perceive two trajecto-
ries intuitively referring to the inter-signature matching. In
practice, the DTW based method provides a suitable metric
for robot PbD learning to measure the quality of reproducing
a motion by robot. This can be done by measuring the
similarity between the reproduced trajectory’s signature and
the reference signature. Firstly, to examine the DTW distance
that is a quantitative measurement to the error of a reproduc-
tion. The reproduction would be acceptable if this distance is
within a predefined threshold. Secondly, human (robot) can
in detail observe and perceive certain motion feature of the
reproduction, for example, to check if the speed profile is
consistent with that of the reference. In case certain portion
is not reproduced as expected, it can be highlighted to remind
robot to improve when that specific motion is repeated.

IV. THE COMPACT SECOND-LEVEL SIGNATURE

A. PCA Based Signature Dimension Reduction

Using the first-level signature, the DTW distance can
be used for trajectory recognition. However, as observed,
since the signature’s length is equal to the length of motion
trajectory, the full signature data will be large for com-
plex and long trajectory. Also, DTW is a time-consuming
matching algorithm. These two reasons may result in lower
recognition efficiency. In fact, the first-level signature data
is interrelated so that it can be optimized for the purpose of
more compact description. This explains our motivation to
build condensed second-level signature. To do that, the linear
PCA (Principle Component Analysis) transform is used to
reduce the dimensions of the first-level signature.

PCA transform is an effective method for dimension
reduction. It projects the interrelated original data into an-
other feature space where the projected data are small in
dimension, uncorrelated, and capable of preserving most
variance of the original data. PCA transform can be described
by the corresponding PCA coefficients. A key problem in
PCA is the selection of the number of principle components,
which can be determined by an optimal threshold.

Assume the Singular Value Decomposition (SVD) is ex-
pressed by X = UΛV T , the PCA transform can be
represented by

F = U TX (8)

where X is the original data and F the projected data. Note
that only the first m columns of U (principle components)
are picked to represent the PCA coefficients. If X is p-
dimensional, F will be m-dimensional, and m � p. There-

fore, the dimension is much reduced while the data variance
is most preserved through the PCA transform.

The number of m depends on the selection of cumulative
accuracy ϕ to account for the data variance, which can be
analyzed based on the sorted eigenvalues λi of the covariance
matrix of X , as formulated below,

ϕ = (

m
∑

i=1

λi/

p
∑

i=1

λi) × 100% (9)

Hence m can be determined by a cut-off of ϕ like
ϕ = 95% selected in our work. Then the first m columns
of principle components are extracted as Um, which is
sufficient to guarantee the expected data variance (in terms
of ϕ ) being preserved in the PCA transform. In gen-
eral, via the PCA transform ( Um ), higher dimensional
Xp is converted into lower dimensional Fm. All the first-
level signatures are pre-normalized to equal length to be
projected into the PCA space to obtain compact second-
level signatures, before which each first-level signature Xp

is re-arranged as univariate data in the form of Xp =
[{κ(t)}N

t=1 {τ(t)}N
t=1 {κs(t)}N

t=1 {τs(t)}N
t=1].

B. Probabilistic Recognition from the Second-level Signature

The probabilistic method is used to do second-level signa-
ture recognition. According to the labeled signature classes,
Gaussian Mixture model (GMM) is learned at first from the
compact PCA coefficients of the training samples. Then an
input signature is recognized based on Bayesian Theorem.

1) GMM Based Signature Modeling: Assume that Xi =
[Xi,1 · · ·Xi,2 · · ·Xi,m · · ·Xi,M ] containing M signature sam-
ples, the underlying probability density function of Xi can
be estimated by a mixture of Gaussian model Θi as follows,

P(Xi|Θi) =

K
∑

k=1

wkN (Xi; µk, Σk) (10)

where K is the number of mixing Gaussian components,
wk is the mixing weights meeting

∑K

k=1 wk = 1, and
N (Xi; µk, Σk) demotes the Gaussian function,

fµ,Σ(Xi) =
1

√
2π

d√
detΣ

exp(−1

2
(Xi − µ)TΣ−1(Xi − µ))

(11)
where µ is the mean and Σ is the covariance. The dimension
d is 1 as the second-level signature is univariate data.

The corresponding GMM model parameter Θi =
{wk, µk, Σk}K

k=1 is estimated using the EM (Expectation-
Maximization) algorithm [17] following the Maximum Like-
lihood Estimation (MLE) principle. Firstly, initialize the
mixing number K and use the k-means method to estimate
the initial GMM parameter Θ

(0)
i = {w(0)

k , µ
(0)
k , Σ

(0)
k }K

k=1.
Then the EM algorithm iterates the E (Expectation) step and
the M (Maximization) step defined as follows:

E-step:

P(k|Xi,m, Θ
(0)
i ) =

w
(0)
k N (Xi,m; µ

(0)
k , Σ

(0)
k )

∑K

k=1 w
(0)
k N (Xi,m; µ

(0)
k , Σ

(0)
k )

(12)
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M-step:

µ
(1)
k =

∑M

m=1 P(k|Xi,m, Θ
(0)
i )Xi,m

∑M

m=1 P(k|Xi,m, Θ
(0)
i )

(13)

Σ
(1)
k =

∑M

m=1 P(k|Xi,m, Θ
(0)
i )(Xi,m − µ

(1)
k )(Xi,m − µ

(1)
k )T

∑M

m=1 P(k|Xi,m, Θ
(0)
i )

(14)

w
(1)
k =

1

M

M
∑

m=1

P(k|Xi,m, Θ
(0)
i ) (15)

The superscript (0) and (1) in above formula indicate the
iteration indexes. The E step and M step are iterated until
the predefined convergence condition arrived.

2) Bayesian Signature Recognition: Based on the GMM
models {Θi}C

i=1 for C motion classes, the query signature
Xq is recognized using the Bayes’ decision rule. Considering
the efficiency of likelihood calculation, the logarithm form
of the Bayes’ Theorem is adopted,

logP(Θi|Xq) = logP(Xq|Θi)+logP(Θi)−logP(Xq) (16)

Recognition is based on the posterior probability
logP(Θi|Xq) following the MAP criterion. To do that,
P(Xq|Θi) is calculated based on (10). The prior probability
P(Θi) can be derived from the initial knowledge about the
occurrence frequency of the samples. For example, it can
be set to 1/C in case all the classes are equi-probable.
The marginal probability P(Xq) is calculated by P(Xq) =
∑C

i=1 P(Xq |Θi)P(Θi).

V. EXPERIMENTS
A. Free Form Motion Trajectory Recognition and Perception

The first experiment is carried out to demonstrate free
form trajectory recognition and perception from the first-
level signature by applying the DTW signature matching.
Three-dimensional trajectory is tracked and acquired using
the method in [14]. Fig. 6 shows the stereo sensor setup and
several snaps of the stereo trajectory tracking from human
motion.

A small exemplary database is built containing ten (labeled
by from ’01’ to ’10’) motion patterns, which are character-
ized in terms of the regular trajectories whose shapes are
roughly close to the characters from ’0’ to ’9’, respectively.
Note that we are not doing handwritten character recognition
but illustrating the free forms of the trajectories. Each pattern
is represented by a canonical instance, and all the canonical
instances of the ten patterns are shown in Fig. 7. Next, as

Fig. 6. The stereo setup and snaps of the stereo trajectory tracking

Fig. 7. The canonical instances of the ten motion patterns

Fig. 8. The input series A (row 1-2), B (row 3-4) and C (row 5-6) with
increasing variance in shape

shown in Fig. 8, three series of input trajectories demon-
strated by three different users with increasing shape variance
(noise strength) are prepared to do recognition. They are
smoothed by the moving average filter using span parameter
3, 5 and 9 respectively.

A 1-NN classifier is developed by measuring the DTW
distances of the first-level signatures between canonical
instances (references) and query inputs. The classification
results of the three series of inputs are illustrated in three
corresponding tables in Fig. 9, where the DTW distances
between the inputs (Y axis) and the references (X axis) are
scaled to gray images. The lighter the cell is, the higher simi-
larity is indicated. According to the distinctive lighter cells in
the table diagonals, we get an intuitive confirmation that all
the inputs are recognized correctly, in which the increasing
variance in shape illustrates the signature’s robustness against
noise.

In addition, to illustrate the motion perception from the
DTW inter-signature matching, Fig. 10 visualizes four cases
of the inter-trajectory alignments. The warping paths reflect
the difference on motion shape, motion speed and occlusion
between two trajectories. This is helpful to analyze detailed

Fig. 9. The DTW based inter-signature distances comparison of the input
series A (a), B (b) and C (c) with the canonical instances
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Fig. 10. Motion perception by visualizing the difference in trajectory shape
(a)(b), motion speed (c) and occlusion (d)

motion features, indicate the aspects robot needs to improve
in learning, and even identify the characterized users.

B. Fast Human Sign Language Recognition

The second experiment uses a larger trajectory dataset of
UCI KDD high quality ASL [18] to test the signature’s
retrieval performance especially the improvement in effi-
ciency benefitted from the second-level signature. The ASL
trajectory dataset consists of 95 sign classes, and 27 samples
were captured for each sign. All are re-sampled to 50 points
specifically for the second-level signature calculation. To
reduce noise and vibration, the wavelet smoother is applied
using wavelet DB5 and the third level coefficients.

Half samples of a class are used to train a GMM model and
the other half are input to do Bayesian signature recognition.
We also compare the Fourier Descriptor based recognition by
extracting the first 4 coefficients as trajectory representation
and using the average Euclidean distance for classification.
The retrieval experiment is repeated more than 50 times
in a common PC (Pentium 4 CPU 3.00GHz, 512M RAM)
by picking up a number of classes and samples randomly,
which gives rise to an average recognition results. From
Table I, we can find that the signature outperforms the FD
representation in recognition accuracy. In addition, according
to the recognition efficiency in Table II, the second-level
signature is much faster than the first-level signature in
trajectory retrieval, and as the classes number increases, the
efficiency decreases much slower than that of the first-level
signature. That is because the second-level signature is with
optimized data and the Bayesian engine is used.

VI. CONCLUSIONS

Pursuing flexible human (robot) motion characterization,
motion trajectory is particularly studied in this paper by
building a hierarchical signature descriptor. The signature’s
novelty lies in its hierarchy and the resulted functional
adaptability. While the first-level signature is good at full
motion description and perception, the second-level signa-
ture is more efficient in recognition using the probabilistic
methods. It can be concluded that the signature is effective.

TABLE I
ACCURACY COMPARISON OF THE SIGN TRAJECTORY RETRIEVAL

Classes No. 2 4 8
The second-level signature 92.38% 86.17% 78.66%

Fourier Descriptor 87.98% 75.74% 63.85%

TABLE II
RECOGNITION EFFICIENCY COMPARISON (UNIT: MS/QUERY)

Classes No. 2 4 8
The first-level signature (DTW matching) 753 1287 2206

The second-level signature 139 146 158
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