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Abstract— An imaging sensor made of multiple light-weight
non-overlapping cameras is an effective sensor for a small un-
manned aerial vehicle that has strong payload limitation. This
paper presents a method for motion estimation by assuming
that such a multi-camera system is a spherical imaging system
(that is, the cameras share a single optical center). We derive
analytically and empirically a condition for a multi-camera
system to be modeled as a spherical camera. Interestingly, not
only does the spherical assumption simplify the algorithms and
calibration procedure, but also motion estimation based on that
assumption becomes more accurate.

I. INTRODUCTION

Vision-based motion estimation without the benefit of a
global positioning system (GPS) data for small unmanned
aerial vehicles (UAVs) is an important and challenging
problem. For a payload-limited, small sized UAV, it is
not practical to carry precise, and usually heavy sensors.
Motion estimation using cameras has been widely investi-
gated, known as structure-from-motion (SFM) in computer
vision (or in robotics as visual simultaneous localization
and mapping (V-SLAM)). For SFM, one can use either
a single camera or stereo cameras. While stereo cameras
can reconstruct absolute distances of motions and the scene
structure, stereo on a small UAV cannot afford a sufficiently
large baseline for accurate reconstruction. Thus, a single
camera based SFM is generally used for an aerial vehicle,
although its motions are determined only up to scale.

The fundamental difficulty of real-time SFM is the
translation-rotation ambiguity. The apparent motion or the
optical flow between two frames is hard to distinguish
between, for example, small sideway translational motion
and small panning rotational motion. Similarly, it is very
difficult to distinguish these two motion components from
images. Baker et al. [1] showed that this difficulty of de-
coupling the two is mainly caused by an insufficient field
of views (FOV) of the imaging system. By expanding the
FOV, the ambiguity can be reduced. Between two ways
to widen FOV, using an optical system having a wider
FOV or using multiple cameras, we choose to use multiple
cameras with non-overlapping views to expand FOVs with
the minimal payload because a wider-FOV optical system
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including a high-resolution camera is generally much heavier
than several low-weight cameras.

The problem of estimating motions of multiple non-
overlapping cameras is most conveniently cast in the form
of a generalized camera model [2], and several algorithms
have been proposed. Chen and Chang, and Frahm et al.
proposed pose estimation methods for a generalized camera
[3], [4], [5]. To use these methods, some known 3D points are
required in advance. In contrast, one can use initial motions
obtained with an accurate odometry rather than known 3D
points [6]. For UAVs, all of these methods are not applicable
because there are neither known 3D points nor an accurate
odometry. Ego-motion estimation of multiple cameras with-
out prior knowledge of scene points or motion has been also
investigated. Chen et al. [7] presented an algorithm based
on non-linear optimization. Another algorithm by Baker et
al. [1] decomposed rotation and translation estimations with
their “Argus eye” system. Pless [8] showed that there is a
linear constraint of correspondences in a generalized camera,
just like in a projective camera, and motion parameters can
be extracted from the constraint. These algorithms explicitly
use the distance between camera centers, so the case of
our UAV’s multi-camera system, for which we will use a
spherical camera model, will become a degenerate one.

We assume that a set of multiple non-overlapping cameras
on a small UAV can be modeled as a spherical camera
because their camera centers are sufficiently close compared
to the distance to the scene. One of the contributions of this
paper is to find a condition for this spherical assumption
both analytically and empirically. Based on the spherical
assumption, we also present a method to estimate a rota-
tion between non-overlapping cameras without any artificial
markers. Comparing to conventional motion estimation using
a single camera, we show that the spherical assumption for
multiple cameras is effective for motion estimation for small
UAVs. Interestingly, not only does the spherical assumption
simplify the algorithms and calibration procedure, but the
motion estimation based on that assumption becomes more
accurate.

II. MULTI-CAMERA SYSTEM AS A SPHERICAL
CAMERA

Our UAV camera system, shown in Fig. 1, consists of three
low-weight cameras placed in three orthogonal directions
with non-overlapping field of views. The overall weight is
just 300 g including batteries. The distance between camera
centers is about 100 mm.
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Fig. 1. Multiple non-overlapping view camera system

We will treat this set of cameras as a single spherical cam-
era, or equivalently we will assume that the three cameras
share a common projection center. Applying a spherical as-
sumption to non-spherical cameras induces positional errors
when mapping the feature positions located in the individual
camera image to the spherical image. If the induced errors
are less than image noise, the spherical assumption can be
applied safely.

Fig. 2 depicts how the errors are induced by the spherical
assumption. There are a physical camera center O1 and a
spherical camera center Os with a distance T . Suppose that
this camera system sees a point X whose distance from the
camera Os is dr. The angle measured with the camera O1 is
θm which would be θs if O1 coincided with Os. We can say
that the error by the assumption is θε � θm −θs.

Using a triangle XO1Os,

sinθε = − T
dr

sinθm

applying the law of sine. Because the image noise |θ ′
ε | should

be very small and larger than |θε |, we can approximate the
condition as

|θ ′
ε | > |θε | = T

dr
sin |θm|

which gives

T <
|θ ′

ε |
sin |θm|dr.

To have a larger range of T given the image noise |θ ′
ε |,

max(sin |θm|) should be as small as possible. Thus, the spher-
ical assumption would be applicable when 1) the viewing
direction is parallel to the line through the camera centers,
2) the FOV is narrow, and 3) scene points are far from the
camera centers relative to the distance between centers.

For example, assume that image noise is given as one
pixel when the cameras have 80◦ FOV with 300 pixels
seeing in radial directions. In this case, the one-pixel image
error is 0.4◦ and max |θm| = 40◦. The condition for the
spherical camera assumption is T < 0.0109dr. If dr > 10
m, the distance T should be less than 109 mm to assume a
spherical camera safely.

Note that this is a very strict and sufficient condition
for images to be spherical, not for motion estimation. We
empirically determine the condition of T and dr for motion
estimation in Sec. V.

X

O1O1
TT

drdr

θmθm

θεθε
θεθε

OsOs

θsθs

Fig. 2. Error caused by the spherical assumption

III. CALIBRATION OF MULTI-CAMERA SYSTEM

To estimate motions of a multi-camera system, intrinsic
parameters and relative poses of cameras in a rig coordinate
system are required. One can achieve this calibration using
a fixed pattern in cases of a single camera and stereo cam-
eras. However, it is not good for multiple non-overlapping
cameras, because the FOV of the camera system is so large
that the fixed pattern is hardly large enough.

We develop a calibration method without any fixed large
pattern using a motion constraint of the multi-camera system.

A. A Motion Constraint of Multi-Camera System

The cameras in the multi-camera system are fixed in a
camera rig, thus motions of each camera in its local camera
coordinate system are related with the motion of the rig and
the pose of the camera in the rig coordinate system.

Without loss of generality, we can set the rig coordinate
system as the coordinate system of the first camera. Suppose
that the second camera coordinate is expressed with a rota-
tion R12 and a translation t12 in the rig coordinate system.
If the camera rig moves by a rotation R1 and a translation
t1, the rotation R2 and the translation t2 in the coordinate of
the second camera is expressed as[

R2 t2

0�3 1

]
=
[
R12 t12

0�3 1

][
R1 t1

0�3 1

][
R12 t12

0�3 1

]−1

(1)

and this equation is a form of AX = XB on the Euclidean
group.

Using plane based methods [9], the intrinsic parameters
and the camera motions of each camera can be estimated
individually. With the estimated camera motions, one can
estimate the poses R12 and t12 of the second camera in the
rig coordinate system by solving AX = XB on the Euclidean
group [10]. This problem is known as hand-eye calibration
for a robotic manipulator [11]. This method still uses a
pattern for each camera, but it is not required to know the
poses of the patterns in a common coordinate system. This
gives more flexibility to calibrate multiple non-overlapping
cameras.

B. Calibration of Rotations Using Motion Estimation

By assuming a spherical camera, only the rotations be-
tween cameras are required, not the discrepancy between
camera centers. In this case, it is possible to estimate the
rotations between cameras without any pattern, by estimating
motions of each camera directly from image sequences.
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Eq. (1) consists of two parts: rotation and translation. The
rotation part can be written as

R2R12 = R12R1

which is also a form of AX = XB on the rotation group. We
can measure the rotations R1 and R2 of the intrinsically cal-
ibrated cameras using a conventional structure from motion
algorithm. We use the five-point algorithm [12] for motion
estimation and Park and Martin’s method [11] for solving
the R2R12 = R12R1 problem in a least square manner. Note
that the absolute translation can not be estimated, because
the estimated translations of each camera are all defined up
to scale.

This proposed method does not require any pattern to
calibrate a set of cameras, although it needs intrinsic pa-
rameters of each camera. One can notice that this method is
a variant of Caspi and Irani’s image alignment algorithm[13]
for intrinsically calibrated cameras.

IV. STRUCTURE FROM MOTION OF SPHERICAL
CAMERAS

To estimate a trajectory of a set of cameras, one can apply
a series of algorithms: motion estimation between frames,
integration of the motions, and optional bundle adjustment
[14]. We apply these three steps to image sequences from
the multiple non-overlapping cameras. Assuming a spherical
camera, one can use any existing algorithm for a pin-hole
camera such as a visual odometry [15].

A. Motion Estimation Between Frames of Spherical Cameras

Among the motion estimation methods for a single focal
point camera, we use the five-point algorithm [12], which is
one of the most stable motion estimators.

To estimate a motion of a spherical camera, we follow
the three steps: mapping points on a unit sphere, estimating
motions using random sample consensus (RANSAC), and
optimizing motion parameters.

1) Mapping points on a unit sphere: At first, image
features from an image from each camera are normalized
using the intrinsic and distortion parameters. The normalized
points are mapped on a unit sphere using the rotation of the
camera in the rig coordinate system. To represent a point on
a unit sphere, we use a nonhomogeneous 3-vector which is
a directional unit vector from the sphere center. A point on
a unit sphere x′kn is calculated as

x′kn = Rk1xkn s.t. |xkn| = 1

where xkn is a normalized point observed by camera k, and
Rk1 is a rotation matrix from the local coordinate of the
camera k to the rig coordinate system.

2) Estimating an essential matrix with RANSAC: It is
not expected that all the correspondences are tracked and
matched correctly. To eliminate false matches, we apply a
RANSAC algorithm in estimating an essential matrix. Con-
siderations in implementing RANSAC include an hypothesis
generator with a small number of points and a verification
function for a hypothesis. We use the five-point algorithm

[12] to generate a hypothesis of an essential matrix, and a
geometric error function as a verification function.

The geometric error function for correspondences x1 and
x2 given a hypothesis E is defined as

d(E,x1,x2) =
|x�2 Ex1|√

a2 +b2
+

|x�1 E�x2|√
d2 + e2

where a, b, d and e are the epipolar line coefficients defined
as (a,b,c)� = Ex1 and (d,e, f )� = E�x2. One can notice
that the defined geometric error function is the same with
the geometric epipolar error for a projective camera. The
epipolar error for a projective camera can be used, because
the spherical camera also has a single focal point.

3) Optimizing motion parameters: After getting an initial
estimate of an essential matrix and a set of inliers, the
essential matrix can be optimized by minimizing

C(E;x1,x2) = ∑
{x1,x2∈P}

d(E,x1,x2)

where P is a set of inlier pairs. We use the Levenberg-
Marquardt algorithm implemented by Lourakis [16].

The motion parameters are retrieved from the estimated
essential matrix using cheirality [14].

B. Trajectory Estimation by Integrating Motions Between
Two Views

An estimated motion between frames is a velocity of
the moving camera rig, because it represents a motion in
a unit time difference. One can estimate a trajectory of
the camera rig by incrementally integrating the estimated
motions between frames as[

R j t j

0� 1

]
=
[
Ri j ti j

0� 1

][
Ri ti

0� 1

]
(2)

which describes an update from the frame i to the frame j.
Ri and ti express a pose of the camera rig at frame i and Ri j

and ti j are a rotation matrix and a translation vector between
frame i and j, respectively.

Note that it is impossible to get a traveling distance in Eu-
clidean space, because there is no absolute distance available
in this system. We can expect to estimate a trajectory defined
up to scale. Therefore, one problem is to match scales of the
translational motions, i.e. ti and ti j in Eq. (2). To match
scales of the translational motions, we utilize reconstructed
structures calculated by simple triangulation. By comparing
the scales of the reconstructed structures, one can estimate
a scale ratio between the structures, which is a ratio of the
traveling distances.

The problem of estimating scales is formulated as

argmin ∑
all n

(
Xn − s

[
Ri ti

0� 1

]−1

Xi j
n

)2

where Xn and Xi j
n are the corresponding 3D points recon-

structed previously and between frame i and j, respectively.
We use the Levenberg-Marquardt algorithm [16] to solve
this optimization problem. After scale matching, the 3D
points Xn should be updated using correspondences of all
the frames to get more precise results.
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Fig. 3. Accuracy analysis of the proposed motion estimation algorithm
under inaccurate calibration.

C. Optional Bundle Adjustment

The trajectory estimated by integration is obtained by
minimizing the cost functions defined between two views. As
time goes by, estimation errors are accumulating gradually.
To reduce the accumulated errors, a bundle adjustment (BA)
can be used [14].

Because the BA tries to optimize structures of scene
points and motions of cameras simultaneously, the problem
becomes very large. We use an efficient implementation by
Lourakis [17] using the sparsity of the problem.

The cost function used is a distance c between a measured
feature x and a predicted one from a given motion {R, t} and
a scene point X in camera i, defined as

c(x,{R, t},X) = ‖x−Ri(RX+ t)‖2
2

where Ri is a rotation matrix of the camera i in the rig
coordinate system. This cost function is defined on an
image plane of each camera, although the motion estimation
between frames is formulated on a unit sphere. We use this
because evaluating a Jacobian of this function takes less time
than those defined on a unit sphere.

V. EXPERIMENTS

To analyze the performance of the proposed algorithms,
we made a series of experiments using simulated and real
data.

In generating simulated data, we assumed a small UAV
which flies in a hallway. The width, height, and depth of the
presumed hallway are 10 m, 20 m and 20 m, respectively. We
randomly generated 300 points on each wall. The distances
from the points to the wall were selected randomly with a
Gaussian distribution whose standard deviation (s.t.d.) is 1
m.

The camera system was modeled from the real camera
setup in Fig. 1. We used real calibration data obtained using
patterns [10] for more realistic data generation.

A. Calibration of Multi-Camera System

At first, we tested the performance of the proposed cali-
bration algorithm in Sec. III-B.

1) Required accuracy of multi-camera calibration: Before
analyzing the proposed algorithm, we checked the required
accuracy of the rotation between cameras in the rig for
the proposed motion estimation. Fig. 3 shows the effects
of errors in rotations between cameras on the accuracy of
motion estimation. For this experiment, image features were
disturbed with Gaussian noise whose standard deviation is 1
pixel. We made 100 trials in each experiment.

The proposed method works robustly even under 2◦ of
rotation errors, because the optical flows between frames do
not change much when the viewing direction changes a little.
From the analysis in Fig. 3, we can conclude that less than
2◦ of errors in rotations between cameras is sufficient to get
a good result with the proposed motion estimation algorithm.

2) Simulation aspects: Because the proposed calibration
algorithm is using the estimated motions of single cameras,
the rotation measurements are more erroneous than those
of the pattern based method [10]. To find conditions un-
der which the calibration can be achieved, we tested the
algorithm in four aspects: the number of measurements, the
variation of rotations, the distance of translation, and the
variation of translation distances. In all cases, image features
were disturbed with Gaussian noise of σ = 1 pixel.

3) Number of measurements: In testing the effect of
the number of measurements, we generated motions of the
camera rig randomly. Each motion gives one measurement
for calibration. As in the first figure in Fig. 4, the estimated
rotation between cameras becomes stable using more than
40 motions. In analyzing the other aspects, we used 100
motions.

4) Variation of rotation of the rig: The second figure
in Fig. 4 shows the effect of the rotation variation of the
rig motions. For this experiment, we randomly rotated the
rig with random translations whose deviation is 50 mm. If
standard deviation of the rig rotations is larger than 10◦, the
proposed method works well.

5) Direction of translations: The third experiment ad-
dresses the effect of the amount of translation. In this case,
the rotations of the rig were randomly generated in the range
of [-10,10]◦. The standard deviation of their translation is
50 mm with the given translation in a fixed direction. We
can see that the estimation errors are increased, when the
translational directions of the measurements are biased. This
means that if a small UAV flies rotating in a fixed direction,
the estimated motions of cameras have more errors than those
from a complexly moving UAV.

6) Variation of translation of the rig: The last figure in
Fig. 4 shows the effect varying the translations of the rig
with no bias. This shows that a larger translation makes
more errors in estimating rotation between cameras. This is
because motion estimation of a single camera suffers from
the translation-rotation ambiguity. The rotation in smaller
translation appears more dominant than that in larger trans-
lation in analyzing optical flows.

Note that the estimation error is always less than the
required accuracy of calibration given in Sec. V-A.1.
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Fig. 4. Accuracy analysis of the proposed calibration algorithm
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Fig. 5. Accuracy analysis of rotation estimation using the proposed method
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Fig. 6. Comparison of translation direction estimation algorithms

B. Motion Estimation using Spherical Cameras

The next series of experiments is about motion estimation
using the spherical assumption. We generated motions of the
camera rig randomly. 500 trials were performed for each
experiment.

1) Estimation of rotation components: We compare the
performances of rotation estimation using a single camera
with the five-point algorithm [12] and a spherical model used
in this paper. The first and the second figures in Fig. 5 show
the mean and the standard deviation of the absolute errors of
the estimated rotations, respectively. We can see that using
multiple cameras with a spherical assumption improves both
the accuracy and stability in estimating rotations from image
sequences.

The third figure in Fig. 5 is an enlarged version of the
first figure. One can notice the larger error occurs in motion
estimates with the spherical assumption, when the image
noise is small. This is the error due to the spherical camera
assumption. In Sec. II, we derive a strict and sufficient
condition for multiple cameras to be a spherical camera.
The rightmost figure in Fig. 5 shows the performance on
variations of dr to T ratios defined in Sec. II when the image
noise is 1 pixel. This experiment is to find the condition
in which multiple cameras are to be a spherical camera in
estimating motions. The spherical assumption gives better
results when the distance ratio of dr and T is larger than 20,

Fig. 7. Experimental setup for data acquisition

although the theoretical ratio is about 100 as shown in Sec.
II.

2) Estimation of translation components: As a second
experiment, we compare the accuracy of the estimated trans-
lation directions. Because the translation-rotation ambiguity
is caused by difficulties in decomposing translation and rota-
tion from image flows, the more accurate rotation estimation
makes the more accurate estimation of translation directions.
Thus, we compared our algorithm to another method using
an external gyroscope sensor [18].

For this experiment, we contaminated the measurements of
the gyroscope sensor with Gaussian noise as well as image
features. Because the features are disturbed with the same
Gaussian noise in this experiment, the error in estimating
motions without a gyroscope should be consistent. Fig. 6
shows the mean and the standard deviation of the estimated
translational directions. Clearly, the spherical model works
much better than the single camera. In addition, it can
compute the translational directions more accurately than the
method using a gyroscope when the gyroscope error is larger
than 0.2◦. Even when the gyroscope works very well, the
spherical camera model works comparably. The stability of
the spherical camera assumption is also better than those of
the other methods.
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Fig. 8. Examples of input images

Fig. 9. Estimated camera motions using the spherical model.

C. Experiment in the real world

In experiments using real image sequences, we used the
camera set in Fig. 7. Because it is very hard to fly a small
UAV at a low altitude, we attached the set of cameras on
the top of a van. Fig. 8 shows examples of synchronized
input images of the three cameras. One can notice that there
is little overlap between images. We used the KLT feature
tracker [19] to find correspondences between frames.

In the first experiments, we used three cameras which see
in front, side and rear directions, respectively. The driving
distance is about 300 m in 45 seconds. The recovered
trajectory is shown in the left figure of Fig. 9, which is
overlaid on a satellite image to verify the result. In the
second experiments, a different configuration of cameras is
used; front, left and right directions. It traveled about 300
m in 60 seconds, and the right figure in Fig. 9 shows the
estimated trajectory. Without bundle adjustment, estimating
motions from tracked features runs at about 10 frames/second
although it highly depends on the number of RANSAC
iterations. Feature tracking from image sequences is still
the most time-consuming process, which can be reduced by
using a graphical processing unit [20].

VI. CONCLUSIONS

In this paper, we develop a motion estimation system using
multiple non-overlapping cameras for a small UAV. Because
of payload limitation of a small UAV, light-weight multiple
cameras are used to resolve the translation-rotation ambiguity
of motion estimation using images. We make a spherical
camera assumption that the multiple non-overlapping cam-
eras have a common projection center and identify when
this assumption holds both analytically and empirically. The
spherical assumption simplifies motion estimation of multi-
ple non-overlapping cameras to a conventional problem for a
single projective camera. Based on the spherical assumption,
we also propose a method to estimate rotations between
non-overlapping cameras using a motion constraint between
cameras.

The experiments show that the accuracy of rotations
between cameras does not greatly affect the accuracy of

motion estimation too much, and the proposed calibration
method based on the spherical camera model can fulfill the
requirements of the calibration accuracy with a sufficient
number of motions. We also show that the spherical as-
sumption makes motion estimation more accurate for our
UAV application. Interestingly, the spherical assumption for
the non-overlapping cameras make the motion estimation
algorithm both simpler and more accurate for our UAV.
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