
Ubiquitous Robotics in Physical Human Action Recognition: A

Comparison Between Dynamic ANNs and GP

Theodoros Theodoridis, Alexandros Agapitos, Huosheng Hu, and Simon M. Lucas

Department of Computer Science, University of Essex

Wivenhoe Park, Colchester CO4 3SQ, U.K.

{ttheod, aagapi, hhu, sml}@essex.ac.uk

Abstract— Two different classifier representations based on
dynamic Artificial Neural Networks (ANNs) and Genetic Pro-
gramming (GP) are being compared on a human action recog-
nition task by an ubiquitous mobile robot. The classification
methodologies used, process time series generated by an indoor
ubiquitous 3D tracker which generates spatial points based
on 23 reflectable markers attached on a human body. This
investigation focuses mainly on class discrimination of normal
and aggressive action recognition performed by an architecture
which implements an interconnection between an ubiquitous
3D sensory tracker system and a mobile robot to perceive,
process, and classify physical human actions. The 3D tracker
and the robot are used as a perception-to-action architecture to
process physical activities generated by human subjects. Both
classifiers process the activity time series to eventually gener-
ate surveillance assessment reports by generating evaluation
statistics indicating the classification accuracy of the actions
recognized.

I. INTRODUCTION

The investigation of human action recognition has been

addressed by a number of researchers introducing various

approaches to classify different physical activity patterns.

The extremely flexible and expressive nature of programming

languages to represent solutions to problems offers GP

[1] the capacity to represent classification problems with

means unavailable to other techniques such as decision trees,

statistical classifiers, and ANNs [2].

In [3], a 3D gesture recognition scheme has been used

to analyse the dynamics of a hand motion so that to

classify manipulative and controlling gestures through an

object-centred approach which computes 3D appearances

using a region-based coarse stereo matching algorithm. The

perceived gestures are modeled by a forward HMM and a

neural network. A gesture modelling algorithm used by [4],

implements an event-driven HMM which exploits sequences

of events that take place within the body segments and

joints to represent gestures. The advantage of this event-

driven HMM is that it is independed from sequences of

poses thus more complex gestures can be recognized. [5]

presents an efficient Fourier transformation performed on

the vertical axis of a cylindrical coordinate system used to

robustly extract visual motion descriptors which are classified

by distance-based methods.

Emphasis has been given to the issue of representation

leading to the evolution of (a) decision tree classifiers [1],

(b) classification rule-sets [1], and (c) numeric expression

classifiers [2][6]. Similar to our work, [7] has used a dynamic

programming algorithms to process 3D joint features so that

to segment and recognize actions by improving the overall

accuracy with a Multi-Class AdaBoost algorithm.

In our work, a dynamic ANN from the Matlab’s NN

toolbox [8] and a GP system have been used to compare

the performance of these methods regarding the classifica-

tion accuracy as well as the discrimination capability to

distinguish between normal and aggressive actions through

an off line processing. A robot has been used to act in the

same environment as the subject-actor performer, so that to

process, classify, and evaluate the physical actions perceived.

The robot has a passive role by just processing global activity

information and not taking any action as it is going to

happen in future projects. Fig. 1 illustrates the hardware

configuration setting of the system architecture used. More

analytically, a person is shown to act in a 3D environment

performing some physical activity. At the same time, two

external devices, the 3D tracker (Vicon system) and a mobile

robot (SCITOS G5), cooperate as a perception to action

unit to produce surveillance assessment reports indicating

analytical action classification.

The rest of the paper is organized as follows: In section

II, the classification methodologies introduce the architecture

used by a number of modules. Section III presents the

experimental work showing the classification performances

in terms of accuracies achieved. Finally, section IV points

out some conclusions and future work derived from the

comparison of the methodologies been analyzed.

Fig. 1. Configuration setting showing an actor’s action performance in a
3D environment, captured by VICON and processed by a mobile to robot
to generate assessment reports.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3064

II. METHODOLOGIES

The perception-to-action architecture used (see Fig. 2),

consists of a number of modules [9] which carry out the

action recognition task, from the data acquisition to the

evaluation assessment reports. The first two main modules

of the architecture are the Vicon System and a Mobile

Robot which belong to the hardware part of the architecture,

whereas sub modules implement the software part.

1) The Vicon System: The Vicon system encloses three

modules. The Image Acquisition module which is a low

level unit used for capturing and fusing data, the Kinematic

Model Extraction module which is a commercial software

where 3D models are designed according to the alignment

of the markers on an object/body, and the Data Sampling

module which configures the sampling frequency of the

image capturing per second to finally generate time series.

2) The Mobile Robot: The second main module, consists

of three grouped modules. The first group deals with data

management including the Data Filtering module which has

an embedded frequency adjuster used to resample the input

time series, a zero-crossing filter for data ambiguities, and a

normalizer which rescales the magnitude of the data. The

second module, G/L Transformation, is a global-to-local

transformation method used to provide independency of body

sizes and gender by isolating ambiguous variations of actions

performed by human subjects acting in different locations

and under different orientations. For the G/L transformation,

a cylindrical coordinate system has been used as in [5]

where a rotation matrix isolates the orientation whereas

Euclidean unit vectors isolate the translation variations. The

third module, Fold Decomposition, divides all the time series

data into five bit-folds to be used for cross validation. Each

fold represents a 20% of a time series. Through this module,

cross validation is performed by taking four of the folds for

training (= 80%) and one fold for testing. Five experiments

are taken in a single run. In the first experiment the testing

fold takes the first bit of 20% and the remaining folds are kept

for training. In the second experiment the testing fold takes

the second bit and so on. The second group consists of two

modules denoting the classifiers used (a dynamic ANN and

a GP) whereas the third group produces statistical evaluation

performances.

Fig. 2. Module-based architecture showing the collaboration of Vicon
system and a mobile robot to produce evaluation statistics by both classifiers.

3) 3D Kinematic Models: The design of the kinematic

models is essential for the data acquisition. 23 markers

have been used to create six kinematic models, 2×lower

legs, 2×lower arms, 1×head, and 1×shoulders. From these

models only four of the end effector markers of the limbs

(wrists and ankles) have been used to provide activity data

while from the shoulder model the central marker was used

as a local point of reference. Eventually, the classifiers’

input is denoted by a 13th-dimensional feature action vector:

~p(t) = [rwrsT
xyz lwrsT

xyz rankT
xyz lankT

xyz Θ
T
l]T , where the ankle

and the wrist vectors (ank, wrs) have three dimensions plus

the body’s orientation θ vector. Similar to [7], each feature

action vector generates a combination of motions related to

multiple concatenated 3D points or trajectories. The dynam-

ics of the overall feature action vector performance is learnt

by both the dynamic ANN and the GP classifier to produce

matching class equivalences.

4) The Comparison Analysis: Both classifiers have been

compared and tested using similar experimental processes,

since the representation domain differs from classifier to

classifier, whereas the analysis of the classification accuracy

remained the same for both classifiers. Hence, the method to

calculate the classification accuracy (CA) as well as to com-

pare and discuss the derived results from the experimental

procedure is given by equation 1. Similar equation has been

used by [10] to show the percentage of the classes recognized

under certain classification methodologies.

CA =
1

N

N

∑
i=1

classi ×100% (1)

classi =

{

1 if class i has been recognized

0 otherwise
where N denotes the overall number of classes, and class

the recognized class.

A. Dynamic ANN Classifier

As mentioned in [11], Time Delay networks (TDNN)

have great performance advantages regarding the time series

handling to pattern recognition. Based on the TDNN archi-

tecture, the Distributed TDNN networks used in this inves-

tigation, have the ability to relate and compare current input

to the past history of events, hence, when the network learns

its internal representation it performs recognition by passing

the input time series over the delay memory vector which

has the ability to encode temporal relationships. The delay

memory, also called tapped delay line (TDL), is a delayed

buffer which discretely shifts and accumulates the input data

as time passes [12]; a fact which is the most noteworthy

Fig. 3. DTDNN network architecture indicating topological details used
for the action recognition task.

3065

characteristic of this dynamic network. The number of taped

delay lines allocated at the inputs of every layer, constitutes

the network’s distribution of delays denoting the network’s

dynamics to handle time continuities.

The distributed input delays give to the network speeding

ability since it does not have to perform dynamic backprop-

agation for the gradient computation. Actually, the network

has two back-propagation passings to compute the gradient

descent of the mean squared error (MSE). At the forward

pass an input pattern is applied and the network configures

the randomly initialized weights to some value, from the

first to the last layer, and the error is finally estimated. At

the backward pass the derivative of this error is propagated

back to adjust all the weights so that to decrease the error

achieving thus a desired classification behaviour [11]. Similar

to [13], the response of a DTDNN in time t is based on

the inputs in times (t − 1), (t − 2), ..., (t − n). A mapping

performed by the DTDNN produces a y(k) output at time

k as: y(k) = f [p(k), p(k−1), ..., p(k−D)] where p(k) is the

input at time k, and D is the maximum adopted time-delay

which is allocated in every layer. This network is also very

fast as the standard TDNN and it is recommended by [8] for

pattern recognition and classification applications.

For the action classification task a special neuron/layer

configuration topology of a DTDNN network has been

selected which has shown to perform very efficiently. The

selected topology consists of two layers where the first layer

n1(t) includes six neuron and the second layer n2(t) has

three as depicted by Fig. 3. The network’s weight space is

multidimensional consisting of 234 weights IW (from the

first to the second layer) in overall, which are needed to be

adjusted to achieve pattern recognition. This is calculated by

multiplying the number of inputs p with the number of delay

lines d plus the undelayed lines R. The activation functions

selected were the hyperbolic tangent sigmoid for the hidden

layers and the linear for the output layer whereas the training

method used was the Levenberg-Marquardt (LM) algorithm.

Lastly, we have adopted a single output by transforming the

derived action time series from continuous form to discrete

symbol representations such as class numbers as in [4].

B. GP Classifier

1) Probabilistic Model of Program Output: A novel

approach for translating the numerical output of the GP

classifier into a class label was introduced in [14]. They

used the Gaussian distribution to model the behaviour of

each program based on the training examples for each class.

This methodology assumes that because normal distributions

are possibly the most common distributions found in natural

data, it seems reasonable that many clusters of program

output could fit well. Based on this assumption, a program

output distribution can be modeled as a mixture of normal

distributions, with one per class in the classification prob-

lem. Clearly, a good program will produce distant output

distributions for examples of different classes. A model of

each program output distribution for a particular class can be

acquired by evaluating the program on the example training

set by taking the mean and the standard deviation (SDV) of

the program outputs for those training examples [14].

2) Fitness Function Using Gaussian Models: Assuming

a binary problem case, the following equation is used to

determine the distribution distance between classes i and j,

as in [14].

d = 2×|µi−µj|/(σi + σj) (2)

where µi, σi and µ j, σ j are the mean and standard deviation

of the program outputs for classes i and j in the training set

respectively. Under this measure, for programs that distin-

guish between two classes well, the distance d will be large,

whereas the worst case is 0 where µi and µ j are the same.

In multiclass pattern classification the fitness function is

determined by considering the distribution distance between

every two classes. For N-class problem there are C2
N = N!/

2!(N −2)! class combinations and the fitness function takes

the following form:

fitness =

1

T

T

∑
i=1

C2

N

∑
j=1

1

1 + dj

−w
S

∑
i=1

Series(i) (3)

Series(x) =

{

1 if time series x is used as parameter

0 otherwise
where T is the number of training examples, N is the number

of classes, and d j is the distribution distance for the class

combination j.

While a fitness function based on the average distribution

distance between C2
N class combinations may suffice, it

has not proven to be robust for expression trees that are

presented with a large number of parameter values (here,

13 time series) in the authors’ experience. Without some

form of pressure towards utilising all the inputs provided

during fitness evaluation the evolutionary process entails

the risk of stagnating in local optima. Intuitively, this is a

serious concern in the domain of action recognition where we

wish to use all the parameters extracted from the kinematic

models in order to enhance the discrimination capacity of

the classifier. We add a form of selection pressure towards

individuals that utilise as many input parameters as possible

by rewarding such programs. The second term of the fitness

function subtracts a weighted sum (w is the weight and S is

the number of time series representing the parameters of the

evolved program) from the average standardised distribution

distance which is normalised within the interval [0, 1] (0

best, 1 worst). Series(x) is a function that returns 1 if the

expression tree structure contains parameter x as a leaf node

and 0 otherwise. The weight w is set to 0.001.

3) Probabilistic Pattern Classification: To measure which

class belongs to a given pattern, we used multiple best pro-

grams similarly to [14]. M best programs in the population

have used the probability Probc of a given pattern being of

class c is calculated by:

Probc =
M

∏
i=1

P(µi,c,σi,c,oi) (4)

3066

TABLE I

PRIMITIVE ELEMENTS FOR EVOLVING CLASSIFIER PROGRAMS

Method Argument(s) type Return type

+, −, ∗, / double, double double
mean List double
std.dev List double
skewness List double
kurtosis List double
>, ≥, =, <, ≤ double, double boolean
and, or boolean, boolean boolean
not boolean boolean

Conditional

IF-Then-Else boolean, double, double double

Terminal Value Type

Constant
π, −π, π/2, −π/2, π/6, −π/6, double
π/12, −π/12, −1.0, 0.0, 1.0

Parameter time series List

where P is the normal probability density function [14], oi is

the output of program i with the pattern to be classified, µi,c

and σi,c are the mean and standard deviation of the outputs of

program i for class c. The class with the highest probability

is designated as the class of the pattern.

P(µ ,σ ,o) =
exp

(

−(o−µ)2

2σ 2

)

σ
√

2π
(5)

4) Representation Language, Evolutionary Algorithm

and Run Parameters: Evolvable individuals employ an

expression-tree representation. The primitive language is

depicted in Table I. During fitness assignment each pro-

gram is being evaluated with 13 parameters representing

the time series. The evolutionary algorithm used, was a

panmictic generational Genetic Algorithm (GA) combined

with elitism (1%). The algorithm uses tournament selection

with a tournament size of 4. The evolutionary run proceeds

for 100 generations and the population size is set to 1000

individuals. Evolution halts when all of 100 generations

have elapsed. Ramped-half-and-half tree creation [1] with a

maximum depth of 7 is used to perform a random sampling

of program space during the initial generation. During the

run, expression trees are allowed to grow up to depth of

15. Our search employs two variation operators. Subtree

Macromutation (MM – substituting a node in the tree with

an entire randomly generated subtree with the same return

type) and Point Mutation (PM – substituting a non-terminal

node with another non-terminal node of the same return

and parameter types, or substituting a terminal node with

another terminal node of the same return type). Each operator

is applied with a probability of 50%. For the case of

PM, the whole expression tree is being traversed and each

node is being perturbed with a probability of 15%. Neither

reproduction nor crossover have been used.

III. EXPERIMENTAL RESULTS

The experimental work has been carried out using the

system’s architecture Fold Decomposition module (Fig. 2), to

test the classification performances using five-fold cross val-

idation by decomposing each time series in five bits. Twenty

experimental runs have been taken where each run includes

five trials. Each trial tests the classifiers’ performance by

engaging certain training and testing percentage of data. In

overall, 100 experiments have been taken to evaluate the

classification accuracy.

The types of actions have been taken from the every day

life; such actions are: standing, waving, punching, kicking,

etc [5][7]. Fig. 4 depicts an instance of each of the nine

actions used in this analysis represented by a human kine-

matic model which is decomposed in six segmented sub-

models (head, left and right limbs). To make the expression

performance of the actions more realistic, a human partner

has been used to help the actor’s performance for the

handshaking, pushing, and pulling actions, whilst for the

slapping, kicking, and punching actions relevant equipment

has been used such as punching pads and standing bags.

A. DTDNN Analysis

The DTDNN network has been trained for 1000 epochs

with a given neuron/layer topology as described in Fig. 3. As

it is being observed by Fig. 5(a), sufficient training shown by

the average MSE error which converges after ≈400 epochs.

The simulation performance of the network (see Fig. 6)

shows an expected behaviour where the network’s responce

in 20% of newly presented testing data was quite stable

for normal actions, whilst for aggressive action the responce

was unstable. To see this clearly, two evaluation techniques

have been tried to illustrate the action performances. Fig.

6(a) depicts a linear regression output performance (LROP)

in a correlation evaluation between the input targets with

the output responces over 20 experiments. When perfect

fit between the input target and the derived output data

occurs then the linear regression methodology outputs 1;

for 1 �LROP� 1 the output data show an unstable target

matching. The behaviour of the normal actions (1, 2, 3,

4) shown in Fig. 6(a), is observed very stable whereas the

aggressive actions (5, 6, 7, 8, 9) seem to have unstable

behaviour. Similar results have been taken by the second

evaluation methodology using the standard deviations (SDV)

of the simulated classes. Fig. 6(b) presents the SDV of the

classes over 20 experiments. Here, the rational result is to

achieve SDVs close to 0, denoting again perfect match.

0 5 10 15 20
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Epochs(x 50)

S
q
u
a
re

d
 E

rr
o
r

DTDNN

(a)

0 20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generations

F
it
n
e
s
s

GP

(b)

Fig. 5. Training performances of the classifiers over 20 runs and the average
(in bold) performance. (a) Error of the Distributed Time Delay NN, and (b)
Fitness of the GP. We acknowledge that the graphs are not comparable and
in the analysis they are being treated separately to show the classification
performance in terms of learning time, and error minimization.

3067

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4. Instant action representation of the nine physical actions expressed by 3D kinematic human models. Normal actions: (a) Standing, (b) Handshaking,
(c) Waving, (d) Clapping. Aggressive actions: (e) Pushing, (f) Pulling, (g) Slapping, (h) Kicking, (i) Punching.

0

5

10

15

20

1 2 3 4 5 6 7 8 9

0.8

0.85

0.9

0.95

1

1.05

ExperimentsActions

L
in

e
a
r

R
e
g
re

s
s
io

n

(a)

0
5

10
15

20

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

Experiments

Actions

S
D

V

(b)

Fig. 6. DTDNN simulation performance. (a) Linear regression, and (b)
Standard deviation.

In both evaluation methods the results presented by the two

action groups (normal and aggressive) where not identical.

The evaluation differences from the normal to the aggressive

action group was caused because of spatial variances. The

spatial clusters used by the normal actions engage an area

close to the human body where the distance among all

the normal clusters is sufficiently big. On the other hand,

the aggressive clusters engage an environment far from

the human body whereas the area used by each of the

aggressive actions is common. This means that the aggressive

clusters mixing and overlapping each other by producing a

very complex non linear 3D input space for the network.

Eventually, in both evaluation methods the simulation results

were good with minor fluctuations from which the network

can still achieve good classification accuracy.

B. GP Analysis

The performance of GP can be mainly attributed to the

programming space that has been crafted from the prim-

itive elements that perform statistical feature extraction.

We performed a genotypic analysis of individuals during

the course of the evolutionary runs to determine which

statistical features are actually used within the expression

tree structures. Fig. 7(a) presents the evolution of the use

of statistical primitives, averaged over 20 independent runs

with five-fold cross validation. The axis labeled “Statistical

Features” has been decomposed in 13 parts each representing

one input time series. Each such part is further decomposed

in 4 points each representing the mean, SDV, skewness,

and kurtosis of the respective time series. Labeling these

on the axis has been omitted for clarity. The graph shows

that the average number of statistical features of all input

time series is being increased as evolution proceeds, a result

that is expected as trees are allowed to grow in depth.

However, there are certain features of particular time series

whose appearance within individuals is valuable and the

selection pressure favors them as evidenced by the average

increase of those features while the population is evolving.

Fig. 7(b) presents the mean and the SDV (error bars) of the

features’ existence within a part of the population at the end

of the evolutionary run, averaged over 20 trials. The first

observation concerns generally the use of statistical features

generated by the evolved individuals. Skewness and kurtosis

appear to be utilized less than mean and SDV. Features that

have been used the most are: stdDevy, meanz for right wrist

and stdDevy, meanx for the right ankle. For the left part most

frequently used features include meanz, stdDevy for wrist

and stdDevx, meany, stdDevy for ankle. Generally, features

of the right side markers are being utilized more than the

respective ones on the left. This result is inline with the

action performace session since the right arm and leg have

been used the most by the subject-performer.

IV. CONCLUSIONS AND FUTURE WORK

From the learning curves depicted in Fig. 5(b) it can

be seen that the DTDNN learns faster than GP as this is

evidenced by the significant difference in individual evalu-

ations required to reach maximum training performance in

the two different methods. While DTDNN has converged

in ≈400 evaluations by not yielding any significant further

improvement, GP resulted a smoother and longer learning

fitness curve by typically being minimizing the error until

the last generation over 100,000 evaluations. However, the

fact that GP training did not experience any severe form of

stagnation is very encouraging and deserves more investiga-

tion to induce whether additional processing time will result

in a more accurate classifier.

From Table II, which is what constitutes the evaluation

assessment reports of this project, it can be seen that the

configurations of both DTDNN and GP classifier representa-

tions managed to perform well in terms of recognizing action

patterns without having though identical performances. More

analytically, the table shows the simulation performance of

both the DTDNN and the GP over 20 experiments. The

performance of the DTDNN tested under three thresholds,

has shown increasing classification accuracy even if the

thresholds selected were kept very small. The type of the

these thresholds is a small amount of tolerance around the

mean of the output/classified time series. On the other hand,

3068

lank.xlank.ylank.zrank.xrank.yrank.zlrws.xlwrs.ylwrs.zrwrs.xrwrs.yrwrs.z th

0
10

20
30

40
50

60
70

80
90

100

0

0.2

0.4

0.6

0.8

1

1.2

Statistical Features

Generation

A
v

e
r
a

g
e

 F
e

a
tu

r
e

s

(a)

mean_lank_x

stDev_lank_x

skew_lank_x

kurt_lank_x

mean_lank_y

stDev_lank_y

skew_lank_y

kurt_lank_y

mean_lank_z

stDev_lank_z

skew_lank_z_

kurt_lank_z

mean_rank_x

stDev_rank_x

skew_rank_x

kurt_rank_x

mean_rank_y

stDev_ran_y

skew_rank_y

kurt_rank_y

mean_rank_z

stDev_rank_z

skew_rank_z

kurt_rank_z

mean_lwrs_x

stDev_lwrs_x

skew_lwrs_x

kurt_lwrs_x

mean_lwrs_y

stDev_lwrs_y

skew_lwrs_y

kurt_lwrs_y

mean_lwrs_z

stDev_lwrs_z

skew_lwrs_z

kurt_lwrs_z

mean_rwrs_x

stDev_rwrs_x

skew_rwrs_x

kurt_lwrs_x

mean_rwrs_y

stDev_rwrs_y

skew_rwrs_y

skew_rwrs_y

mean_rwrs_z

stDev_rwrs_z

skew_rwrs_z

kurt_rwrs_z

mean_th

stDev_th

skew_th

kurt_th

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

S
ta

ti
s
ti

c
a
l
F

e
a
tu

r
e
s

Average Features Used

Average of 10 best programs

Average of 100 best programs

(b)

Fig. 7. (a) Evolution of statistical features usage in population (avg. of 20
runs), (b) Average number and SDV of features in evolved individuals.

the GP instead of thresholds uses numbers of programs to

test the classification accuracy.

Ultimately, GP reaches higher classification accuracy than

DTDNN. Our hypothesis as to why this is so is that the inclu-

sion of time series statistical primitives in the representation

language of evolvable individuals creates a programming

space that offers the capability of feature extraction from the

input time series. Searching such a space is natural to result

in obtaining programs that are composed of both linear and

non-linear combinations of such statistical features. On the

other hand, dynamic ANNs are in effect forced to consider

each sample of the time series separately and due to their

representation and learning mechanism they lack of any form

of feature extraction and utilization. We strongly believe

that this does not imply that we are being unfair to one

methodology because both dynamic ANNs and GP are being

presented with the same 13th-dimentional input vector.

For future work we are planning to study stateful program

representations by allowing the time series to be fed sample-

by-sample to the evolvable individual as well as to develop

security-like scenarios so that the robot to perform relevant

actions according to the recognized human behaviours.

TABLE II

COMPARISON OF CLASSIFICATION ACCURACY

DTDNN

Threshold % Mean Accuracy % SDV

±0.4 69.0 9.3
±0.8 79.7 3.6
±1.2 86.6 3.5

GP

No. of Programs Mean Accuracy % SDV

1 92.5 4.5
3 93.2 3.9
5 92.9 3.6
10 91.3 5.2
20 88.9 7.6
50 87.2 8.9

100 79.4 5.7
150 75.2 6.4

REFERENCES

[1] Koza J.R. Genetic Programming: on the programming of computers

by means of natural selection. MIT Press, Cambridge, MA, 1992.
[2] Loveard T. and V. Ciesielski. Representing classification problems in

genetic programming. In Proceedings of the Congress on Evolutionary

Computation, pages 1070–1077. IEEE NNC, EPS, IEE, IEEE Press,
2001.

[3] Ye G., Corso J.J., and Hager G.D. Real-Time Vision for Human-

Computer Interaction, chapter 7: Visual Modeling of Dynamic Ges-
tures Using 3D Appearance and Motion Features, pages 103, 111, 113.
Springer-Verlag, 2005.

[4] Tripathi S. Panchanathan K., Kahol P. Recognizing human move-
ments through human anatomy based coupled hidden markov models.
International Journal on Systemics, Cybernetics and Informatics,
Pentagram Publications, India:25–31, 2006.

[5] Weinland D.l., Ronfard R., and Boyer E. Motion history volumes for
free viewpoint action recognition. In IEEE International Workshop

on modeling People and Human Interaction (PHI’05), pages 1, 3, 5,
2005.

[6] Muni D.P., Pal N.R., and Das J. Genetic programming for simulta-
neous feature selection and classifier design. IEEE Transactions on

Systems, Man and Cybernetics, Part B, 36(1):106–117, Feb 2006.
[7] Lv F. and Nevatia R. Recognition and segmentation of 3-d human

action using hmm and multi-class adaboost. In 9th European Conf.

on Computer Vision (ECCV’06), volume 4, pages 359–361, 2006.
[8] Demuth H., Beale M., and Hagan M. Neural network toolbox users

guide. Technical report, The MathWorks, 2006.
[9] Simpson J.J. and McIntire T.J. A recurrent neural network classifier

for improved retrievals of areal extent of snow cover. In IEEE

Transactions on Geoscience and Remote Sensing, volume 39, pages
2135, 2136, 2138, October 2001.

[10] Song A., Loveard T., and Ciesielski V. Towards genetic programming
for texture classification. In Proceedings of the 14th International Joint

Conference on AI, volume 2256, pages 461–472, Adelaide, Australia,
Dec, 10-14 2001. Springer-Verlag.

[11] Waibel A., Hanazawa T., Hinton G., Shikano K., and Lang K.
Phoneme recognition using time-delay neural networks. In IEEE

Acoustics Speech and Signal Processing, pages 329–331, 1989.
[12] Boden M. A guide to recurrent neural networks and backpropagation.

Technical report, In The DALLAS project, Report from the NUTEK-
Supported Project AIS-8: Application of Data Analysis with Learning
Systems, Sweden, 2002.

[13] Souza L.F.R., Rebolho D.C., Caporali A.S., Belo E.M., Marques F.D.,
and Ortolan R.L. Application of time-delay neural networks for
the identification of a hingeless helicopter blade flapping and torsion
motions. the Brazilian Society of Mechanical Sciences, 27, n. 2:100,
2005.

[14] Smart W. and Zhang M. Probability based genetic programming
for multiclass object classification. In PRICAI 2004: 8th Pacific

Rim International Conference on AI, volume 3157, pages 251–261.
Springer, Aug, 9-13 2004.

3069

