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Abstract— This paper presents Collaborative Smoothing and
Mapping (C-SAM) as a viable approach to the multi-robot map-
alignment problem. This method enables a team of robots to
build joint maps with or without initial knowledge of their
relative poses. To accomplish the Simultaneous Localization
and Mapping this method uses Square Root Information
Smoothing (SRIS). In contrast to traditional Extended Kalman
Filter (EKF) methods the smoothing does not exclude any
information and is therefore also better equipped to deal
with non-linear process and measurement models. The method
proposed does not require the collaborative robots to have
initial correspondence. The key contribution of this work is an
optimal smoothing algorithm for merging maps that are created
by different robots independently or in groups. The method
not only joins maps from different robots, it also recovers
the complete robot trajectory for each robot involved in the
map joining. It is also shown how data association between
duplicate features is done and how this reduces uncertainty
in the complete map. Two simulated scenarios are presented
where the C-SAM algorithm is applied on two individually
created maps. One basically joins two maps resulting in a large
map while the other shows a scenario where sensor extension
is carried out.

I. INTRODUCTION

By solving the Collaborative Simultaneous Localization

and Mapping (C-SLAM) problem it is possible to collect

information about an environment faster and more accurately.

The basic idea is to use multiple robots each making individ-

ual maps of an area. Map information is then exchanged as

the robots communicate. The approach will work for two or

more robots although the two-robot case is discussed in this

work. The proposed method for C-SLAM uses Simultaneous

Smoothing and Mapping (SAM) based on matrix square

roots. This method was initially introduced in [1] and is later

referred to as
√

SAM .

For two robots to have use of each other´s map information

it is necessary for them to be highly correlated. This is done

by having the robots make relative pose observations. These

are later referred to as rendezvous-measurements. These

measurements together with the trajectory for each robot

during the measurements are then used to find a connector to

align the individual maps. Since the connector represents the

relation between two maps, the map joining itself does not

spoil the sparsity of each submap. In the case of many robots

working together there will be a number of connectors.

The presented approach does not require the rendezvous-
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Fig. 1. Two robots rendezvous after exploration. The individually created
maps are shared and joined into one single map. The new map information
is then used as a priori information as exploration continues.

measurements to be done in both ways. It is enough to have

one robot measuring the other.

The approach presented here has similarities to the idea

of Tectonic SAM (T-SAM) for a single robot [2]. However,

there are some major differences in the usage. T-SAM is

a divide-and-conquer approach used to partition a single

robot´s map into sub-maps that are already aligned. In

Collaborative SAM (C-SAM) the opposite is carried out,

where each local map can be seen as a sub-map in the joint

environment of two or more robots.

Since SRIS optimizes and recoverers the entire robot tra-

jectory, this is used together with rendezvous-measurements

to initiate a map alignment. This is especially important for

the robustness of the map joining for robots with unknown

initial correspondence since the success of the map joining

is heavily dependent on how well the initiation is made. It

is also helpful for eliminating spurious sensor information

in noisy environments to increase the robustness of the

result. Since the smoothing of the trajectory is part of

the system there is no additional effort required for robots

to share their past trajectories with each other, assuming

bandwidth is an infinite resource. This can be very useful for

trajectory planning in environments where not all obstacles

are represented as map features, typically outdoors where a

feature-free path is not necessarily free for travel.

The approach to information sharing presented in this

work is also well suited for situations where bandwidth is

a limited resource. For doing a map alignment the robots

do not necessary have to share all the map information but

only the poses and measurements related to the rendezvous.

Since the map alignment is a basic requirement for joining

two maps one can at an early stage decide not to share any

more information if this first step does not succeed.
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Two simulated scenarios show the effect and usefulness of

the C-SAM. In the first scenario two robots explore an area

individually. The maps from the two robots are joined using

C-SAM, resulting in a large map with significantly lower

uncertainty of the mapped features. The second scenario

shows the effect of sensor extension. The idea is to have

two robots explore an unknown environment while one of

the robots is observing the other at all time. By doing this

the range of the sensors can be extended to almost the double

while drastically reducing the uncertainty of the features

mapped furthest away.

It is important to note that this work is not about how well

the
√

SAM performs in general or how the computational

cost can be affected by algebraic rework. We investigate

how this framework can be used for fusing information

between different members of a robot team and show how the

smoothing can be effective in recovering errors accumulated

over time.

II. RELATED WORK

In recent years SLAM has come to be a well-studied

problem. It was originally introduced in [3] and early results

can be found in [4]. There are many different approaches

used when it comes to performing SLAM. Some use tra-

ditional Bayesian estimation methods while others use non-

Bayesian, such as Maximum Likelihood (ML), [5]. However,

the most commonly used methods are Marcov localization

using Particle Filter or various Kalman Filtering techniques.

There have been several applications of this technology in

a number of different environments, such as indoors, [6]

underwater [7] and outdoors [4].

There are also some approaches for how to perform SLAM

with multiple robots. Some use online collaboration [8]

[9] [10] while others work with off-line data. An outdoor

approach for distributed localization of a robot team is

presented in [11]. This work also includes the use of the robot

team for outdoor terrain mapping. An analytical expression

for upper bounds of uncertainty for Cooperative Simultane-

ous Localization and Mapping (C-SLAM) has recently been

derived [12].

A similar problem to what is discussed in this paper

is presented in [13]. In contrast to the
√

SAM approach

an EKF based solution is presented. Another difference is

that in our solution the rendezvous-measurement is handled

separately from each robot, not requiring the measurements

to be time synchronized or done in both ways. One problem

with the EKF solution may be issues with the consistency of

the map. Therefore, the EKF approach may not be suitable

in all situations. This problem is brought up in [14], where

it is shown that when dealing with large maps the EKF

based SLAM algorithm has a tendency to diverge. It is

stated that approximations and linearizations of system and

measurement models cause the EKF to diverge [15]. It is

shown that linearizaton errors lead to inconsistent estimates

well before computational problems arise. However, a new

robocentric method is proposed to reduce this effect.

In [1] a different approach for performing SLAM is

proposed. This work investigates whether SRIS is a viable

alternative to the EKF for solving the SLAM problem. It

is stated that the SRIS approach is fundamentally better for

these types of problems than the commonly used EKF. In

contrast to traditional EKF methods, the smoothing does not

exclude any information and is therefore also better equipped

to deal with non-linear process and measurement models.

Recently, much effort has been put into making the√
SAM algorithm more efficient. In [16] a fast incremental

version is presented. It is shown how an environment can be

mapped in linear time and also how to obtain uncertainties

needed for data association. An Out-of-Core, Submap-based

approach is presented in [2]. This presents a method for large

environment mapping in realtime by dividing the map into

smaller maps, each linearized at a local reference. The local

linearization can later be reused for back substitution in the

entire map.

III. SMOOTHING AND MAPPING

Instead of looking at a filter approach we investigate the

use of smoothing. The approach is to represent the SLAM

problem as a belief net, initially introduced in [1]. The

problem is described as finding the maximum a posteriori

(MAP) estimate for an entire trajectory X = {xi} and

the map L = {lj}, given the observations Z = {zk} and

the control inputs U = {ui}. This is done by solving the

following non-linear least-squares problem:

{X,L}∗ = argmin
{X,L}

{

M

Σ
i=1

‖fi(xi−1,ui ) − xi‖2

Λi

+
K

Σ
k=1

‖hk(xik
, ljk

) − zk‖2

Σk

}
(1)

where ‖e‖2

Σ
= eT Σ−1e is defined as the Mahalanobis

distance, given a covariance matrix Σ. By combining the

Jacobians of the goal function into a matrix A and the

prediction errors ai
∆
= x

0
i − fi(x

0
i−1,ui) and ck

∆
= zk −

hk(x0
ik

, l0jk
) into the right hand side (RHS) vector b, we

obtain the following least squares problem:

δ∗ = argmin ‖Aδ − b‖2

2
(2)

For more information about the background and calculation

cost of
√

SAM we refer the reader to [1].

As this work is presented in 2D/3DOF, the robot states xi

observations zk and features lj are represented as:

xi =





xi

yi

φi



 , lj =

[

xj

yj

]

, zk =

[

xk

yk

]

(3)

The features are seen as 2D point objects and are therefore

only represented by two parameters. The robot observes

a relative position between the robot and a feature. The

observation is therefore also represented by a 2D vector.
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xi−1

xi

Ui

{G}

φi−1

Fig. 2. A robot moving between two poses over a period of time T . From
this an exact discrete kinematic model is derived.

A. Motion Model

A discrete constant turn model with lateral slip is used for

describing the motion of each robot. The system is driven

by the translational vi, vlati
and rotational ωi speeds:

ui =





vi

vlati

ωi



 ,wi =





ṽi

ṽlati

ω̃i



 (4)

where ui is the driving vector. It is assumed that the error

vector for the driving parameters, wi, is normally distributed

and zero-mean with standard deviation σvi
, σvlati

and σωi

respectively.

The non-linear transition function fi(.) from (1) is the

process model used to describe the change between two

consecutive poses, xi−1 → xi, in the coordinate reference

frame {G}, see Figure 2. The pose change is a function of

the driving parameter ui and the corresponding noise wi.

xi = f(xi−1,ui + wi)

f(xi−1,ui) = xi−1 + R(φi−1)Ui

(5)

where

R(φi) =





cos(φi) − sin(φi) 0
sin(φi) cos(φi) 0

0 0 1



 (6)

In (5) the change of pose from robot local coordinates at

xi−1 is represented by a vector Ui. Instead of approximating

the discrete model from a continuum, this pose change is

extracted using geometric reasoning from Figure 2. The pose

change Ui of the platform during a sample T then becomes:

Ui =





vi

ωi
sin(ωiT ) − vlati

ωi
(1 − cos(ωiT ))

vi

ωi
(1 − cos(ωiT )) +

vlati

ωi
sin(ωiT )

ωiT



 (7)

xi

lj zk

σr

rσβ

{G}

βk

Fig. 3. A single measurement between a robot and a feature. The
parameters are the same for measurement between two robots.

For prediction of the robot motion the nonlinear transition

function is used. It should be noted that this function is

exact, and not approximative, for all sample times T , as long

as ui is constant over the sample. The error transformation

is done using a first order Taylor expansion. Due to robot

kinematics, the lateral velocity is not controllable in this case

and is therefore set to zero (vlati
= 0); however, the lateral

slip error is still present and therefore this term can not be

eliminated before the Jacobians are calculated. The linearized

transition function (5) then becomes:

xi = x̂i + x̃i

x̂i = f(x̂i−1,ui)
(8)

The first order Taylor series of the prediction error can be

described as:

x̃i = F
i−1
i x̃i−1 + G

i−1
i wi (9)

where F
i
i+1 and G

i
i+1 are the Jacobians of f(.) evaluated

at x̂i and ui respectively. The covariance for the motion

between two consecutive poses then becomes:

Λi = G
i−1
i





σ2
v 0 0
0 σ2

vlat
0

0 0 σ2
ω



G
T i−1

i (10)

B. Sensor Model

The sensor used in this work makes measurements in polar

coordinates. Typical sensors with these characteristics are

laser range scanners and cameras. The work also applies

to other sensor types. In such cases the sensor model will

be different. Since the robot map uses cartesian coordinates

the actual measurement is transformed into an observation.

This scale better in cases when multiple sensors are mounted

on the robot since the framework only needs to handle the

observation model and not all different sensor models.

The measured variables are range, rk, and bearing, βk,

from the robot origin to the observed feature.

rk = r̂k + r̃k

βk = β̂k + β̃k

(11)
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{Gp}

{Gq} bpq

x
q
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x
p
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z
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m

Fig. 4. The two robots each have a local coordinate system G. The base
node bpq represents the link between the two maps.

We assume the measurement errors, r̃k and β̃k, to be

normally distributed and zero-mean with standard deviation

σrk
and σβk

respectively. In Figure 3 all of the variables

involved in a polar measurement are presented. From the

measured variables in (11) an observation zk is generated.

zk =

[

rk cos(βk)
rk sin(βk)

]

(12)

The observation is modelled as a function hk(.) of the robot

pose when the measurement is done and the estimated feature

position is

zk = hk(xik
, ljk

) + vk (13)

where the prediction error vk is approximated as normally

distributed zero-mean measurement noise with corresponding

covariance Σk:

Σk = R(βk)

[

σrk

2 0
0 r2

kσβk

2

]

R(βk) (14)

where

R(βk) =

[

cos(βk) − sin(βk)
sin(βk) cos(βk)

]

(15)

From Figure 3 it is possible to obtain the observation

model in a way similar to how the measurement model (12)

is constructed:

hk(xik
, ljk

) = R(φik
)−1(ljk

−
[

xik
yik

]T
) (16)

where R(φik
) is the same type of rotational matrix as (15).

The linearized observation model then becomes

hk(xik
, ljk

) ≈ hk(x̂ik
, l̂jk

) + H
ik

k x̃ik
+ J

jk

k l̃jk
(17)

where H
ik

k and J
jk

k are the Jacobians of hk(.) evaluated at

xik
and ljk

respectively.

IV. COLLABORATIVE SAM

As stated earlier, this work is about presenting a method

for sharing map information between members of a robot

team. Without loss of generality we will from this point

on discuss the map alignment and joining between two

robots. Each robot p, q has its own map represented in

the local coordinate frames {Gp} and {Gq} respectively,

see Figure 4. Before any map information is shared it

needs to be locally optimized by solving (2) for all nodes

related to the respective robot. This enables us to distribute

the optimization needed for map alignment and eliminate

duplicate features. The map alignment is solved by creating

a base node that connects the local coordinate frames of the

maps to be joined. For this to work properly it is assumed

that each of the two maps is adequately linearized. One

way of ensuring good linearization is to work with smaller

maps. Since we are working with rather small maps it is

possible to recover the complete covariance for the entire

map when doing the data association. However, this is not

necessary if computer resources become a problem. In [16]

it is shown how the information necessary for performing

data association is extracted in realtime. Our approach is also

well suited for later incorporation of the T-SAM algorithm

[2], since the T-SAM has the possibility to work with small

submaps linearized locally.

A. Map Alignment

Algorithm 1: Solving basenode

Optimize local robot maps separately

Add rendezvous-measurements to RHS vector b and A’

with (22) and (23) respectively

while norm(b) > limit do
Solve (2) for A’

Re-linearize nodes in b and A’ added by (22) and

(23)
end

The map alignment is based on a rendezvous between the

two robots. The rendezvous is basically a set of poses for

two robots together with a set of observations between the

robots over the same poses. These observations will later be

referred to as the rendezvous-measurements. It is important

to note that these measurements do not necessary have to be

in both directions. The association of the rendezvous-poses

with the rendezvous-measurements is solved by assuming the

two robots are time-synchronized and it is thereby possible

to associate the observation to the pose of each robot using a

time stamp. Rendezvous-measurements are range and bearing

modelled in the same way as described in (12). Since the

information in the rendezvous-measurements spans over both

robot maps, a new set of constraints is added, referred to as

the connector.

For the alignment a common reference between the two

maps is needed. A new state, or base node, is therefore intro-

duced in the system. This node, bpq , is used for describing

the mapped nodes in {Gq} in the frame of {Gp}. The base

node can easily be transformed to the inverse relationship by

using compounding from [3]:

bqp = ⊖bpq (18)

The initiation of bpq is done by using the first observation

between the robots, transformed over the poses for the
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observation:

b
0
pq = x

p
im

⊕ (zpq
m ⊕ (⊖x

q
jm

)) (19)

where z
pq
m , are the rendezvous measurements used for align-

ing the two maps, while x
p
im

and x
q
jm

are the rendezvous

poses. An additional optimization constraint is added to the

goal function (1) for handling these new observations:

N

Σ
m=1

∥

∥cm(xp
im

,bpq,x
q
jm

) − z
pq
m

∥

∥

2

Σm

(20)

The final goal function for the complete system when align-

ing the maps then becomes:

{X,L}∗ = argmin
{X,L}

{

M

Σ
i=1

‖fi(xi−1,ui ) − xi‖2

Λi

+
K

Σ
k=1

‖hk(xik
, ljk

) − zk‖2

Σk

+
N

Σ
m=1

∥

∥cm(xp
im

,bpq,x
q
jm

) − z
pq
m

∥

∥

2

Σm

}

(21)

where cm(.) is the observation model used for prediction of

the base node:

cm(xp
im

,bpq,x
q
jm

) = (⊖x
p
im

⊕ bpq) ⊕ x
q
jm

(22)

The prediction error for the observation, nm, then becomes:

nm
∆
= z

pq
m − cm(xp

i ,bpq,x
q
j) (23)

The connector, C, holds the information gained from each

rendezvous-measurement and how this is related to the base

node. Each row in the connector is typically:

Cm =
[

C
p
im

. . . C
q
jm

. . . B
pq
m

]

(24)

where C
p
im

, C
q
jm

and B
pq
m are the corresponding Jacobians

of (22) pre-multiplied with the observation covariance Σm.

The connector is evaluated for the robot poses when the

rendezvous-measurement is done.

Since (20) spans over multiple robot maps it is neces-

sary to create a Jacobian matrix to include all rendezvous-

measurements and rendezvous poses from each robot into a

complete system. The system also needs to include the base

node as well. The new matrix of Jacobians then becomes:

A
′ =





A
p
m 0 0
0 Am

q 0
C

p
m C

q
m B

pq
m



 (25)

where A
p
m and A

q
m are the rendezvous subset of square

root information matrices of each locally optimized map

from the respective robot. It is worth mentioning that the

robot submaps do not need to be transformed into the same

reference frame for alignment. All states are kept in in the

original linearization point when solving the base node. As

the least squares equation (1) is solved for A
′ and the

RHS [aim
ckm

nm]
T

using Algorithm 1, the base node

converges and the two maps are aligned. It should be noted

that the initial value of bpq will influence the number of

iterations needed for convergence.

Algorithm 2: Feature association

Calculate the covariance as: P = (A′T
A

′)−1

for l
p
j ∈ Lp do

for l
q
j ∈ Lq do

Compute the Mahalanobis distance Dij

with (26)

if Dij < ξ then
Add a constraint for the match in A

′ using

(22) and (23)
end

end

end

Solve (2) a final time with the recently added

association constraints.

B. Map Joining

When the initial estimate of bpq is retrieved, the maps are

aligned but may still be improved by associating features

present in both maps. This is done by matching features

from both maps to one another. Initially, one can consider

only features that are observed during the rendezvous for

association. These features are the ones most correlated to

the poses where the map alignment is done and will therefore

have the greatest impact on the result. Since a faulty match

would have a considerable impact on the result it is important

that the matching is done correctly. Therefore, all of these

features are matched to one another by formulating a test

based on the Mahalanobis distance. The hypothesis is that if

two features are the same, the poses of the two features are

the same; consequently, a relative observation, zij , between

them should be zero if the hypothesis is true.

zij = l
p
i − l

q
j = 0

ẑij = cm(lpi ,bpq, l
q
j)

r = zij − ẑij = −cm(lpi ,bpq, l
q
j)

H =
[

. . . C
p
mi

. . . C
q
mj

. . . B
pq
m

]

P = (A′T
A

′)−1

S = HPH
T

Dpq = r
T
S
−1

r

(26)

where Dpq is the Mahalanobis distance. If this is below the

threshold ξ and the features are uniquely matched to each

other then we assume the two features l
p
j and l

q
j to be the

same feature. To incorporate this into the optimization this is

added as a new row in the connector by evaluating (22) and

(24) for the feature states l
p
i and l

q
j instead of robot poses.

Algorithm 2 shows how the matching is done. Assuming

the linearization point for the base node is adequate this

is a single pass algorithm. Otherwise, it may require a few

iterations. If computer resources permit, it one can also try

to match other features in the maps. If the robots have had

a rendezvous earlier and meet again after some time, it is

possible to handle loop closing with the same approach as

explained above.
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V. EXPERIMENTAL RESULTS

This section describes two simulated experiments con-

ducted in a synthetic environment. These are meant to show

some of the benefits of C-SAM. Both experiments are based

on two robots exploring an unknown environment. No a

priori information is available and the two robots do not have

any initial correspondence. Each robot is equipped with a

simulated URG-04LX Scanning Laser Rangefinder mounted

at the robot center. This scanner has a range of 4 meters and

a 240 degree field of view. The angular resolution is 0.36o

while the range measurements are +/- 10mm. Based on this,

our sensor noise characteristics are set to: σrk
= 0.01 and

σβk
= 0.012. The two robots each make one laser scan for

every pose.

A. Map Joining

The first experiment shows the benefits of map joining as

a tool to increase the accuracy of one’s own map as well as

gain extended information about features outside the already

explored area. Both robots have the scanning laser mounted

viewing in the forward direction of the robot motion. The

field of view for the laser scanner is 240 degrees. In Figure 5

one can see that the angular uncertainty increases in steps

over the samples. This effect can be explained by the fact

that our sensor only observes a feature position and not a

complete pose. This causes the robot to rely heavily on the

motion prediction in the case of not observing any features or

only observing one feature and therefore continuously losing

information for each new sample.

In figure 5 one can see the direct benefit from joining

the maps of two robots making a rendezvous when meeting

each other. Both of the robots clearly benefit from increased

certainty about the estimates of both features and trajectory

at the time of rendezvous and beyond. From the rendezvous

point the uncertainty will stay below what can be achieved

with only a single robot SAM since the minimal information

gain from the rendezvous is the robots´ trajectories, which

is used for reducing the angular uncertainty during the

rendezvous. It should be noted that in the experiment the C-

SAM manages to decrease the angular uncertainty for both

robots in samples prior to the rendezvous as well. This effect

can be explained by the fact that a number of features were

associated correctly from both maps and the smoothing will

to some extent recover this error backwards. However, the

effect is heavily dependent on the environment and how well

the robots manage to associate duplicate features in the two

initial robot maps.

B. Sensor Extension

This experiment points out the benefits of using C-SAM

as a tool for extending sensors and reducing process noise

in a head-to-tail relationship. This is an example of two

robots with different terrain capabilities working together. A

typical example would be to have an observing robot moving

on a tarmacked road surface, Robot-P, while the exploring

robot, Robot-Q, is working in the terrain next to the road.

In this experiment, Robot-P has relatively low process noise

and observes Robot-Q and close features with the mounted

URG range scanner. Robot-Q, with higher process noise,

five times higher to be more exact, is exploring a rather

feature-dense area and manages to observe features further

away. The laser scanners are mounted centered in the robots´

forward direction with a 180-degree field of view for both

laser scanners.

We can show that the resulting map for both robots is

drastically enhanced. The exploring Robot-Q almost com-

pletely inherits the noise characteristics of the observing

Robot-P, resulting in drastically better map information. In

Figure 6 it is clear that both robots have great benefit of the

C-SAM. Since robot-P observes robot-Q over the complete

trajectory, both robots decrease their uncertainty in every

sample, resulting in a more accurate map than if the two

robots had operated individually.

VI. CONCLUSIONS

In this paper we have contributed an efficient and straight-

forward algorithm to align and join maps and trajectories in

a multi-robot system. Since the algorithm not only joins the

maps but also recovers the trajectory of the robots it is well

suited for mission control, where the trajectory information

can be reused by robots to verify a possible path in the newly

discovered region. It is also shown how association between

duplicate features is accomplished with the calculation of

Mahalanobis distance. If a duplicate feature is successfully

identified in the aligned map, the information is used by the

smoother to tighten up the map and recover some uncertainty

for both robots prior to the rendezvous.

We have found that the initiation of the base node is

important for the convergence speed of the optimization. We

believe that it may also effect the result of the final map.

In future work we plan to investigate how the choice of

base node affects system behavior. Since the effect of two

robots exchanging map information is likely to cause the

robots to enter recently explored areas, see section V-A, a

natural extension of this work is to investigate how the same

framework can be used to deal with loop closing for a single

and multi-robot system.

In the future we will also investigate how the extracted

trajectories can be used for more efficient path planning. It

is reasonable to believe that a robot with information on how

other robots have traveled can operate faster and will be more

efficient.
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