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Abstract— This paper presents the Updateable Probabilistic
Evacuation Modeling (UPEM) technique, which allows sensor
observation data to be included in the problem of estimating
the state of an evacuating crowd, as the data are obtained. Each
individual is modeled as a Newtonian particle which interacts
with obstacles, such as walls and other individuals. The UPEM
technique estimates not only the general trend of the crowd as a
whole, but also the specific states of each of the evacuees in the
crowd. Furthermore, an approach to cooperative autonomous
searching in crowded urban emergencies is developed using
UPEM. A number of simulated searches in emergency evacu-
ations highlight the efficacy of the technique in reducing the
time required to detect targets and in increasing the level of
safety for human evacuees.

I. INTRODUCTION

A team of robots with the ability to operate in crowded

urban emergencies may be useful in minimizing the risk to

humans in tasks such as urban search and rescue, detecting

hazardous materials, or evacuation guidance and assistance.

If the robots in the team have the ability to not only avoid

observable obstacles in their vicinity, but also to avoid

moving into heavy traffic areas or congestion points, then

the objectives of both safe and efficient evacuation and the

robot mission may be better achieved.

Recursive Bayesian Estimation (RBE) has been success-

fully applied in the area of mobile robotics, for collision

avoidance, involving moving pedestrians, in both indoor

office environments [1] and outdoor urban environments [2].

However, these approaches reduced the computational com-

plexity by considering only observable, or recently observ-

able, obstacles. Whilst this may be sufficient in low traffic

density scenarios, where pedestrians move independently,

during evacuations large volumes of pedestrian traffic move

with common purpose, and therefore consideration should

be given to unobservable evacuees, so that the robots can

avoid moving into areas with high volumes of traffic flow or

congestion.

Within the field of pedestrian dynamics, a large body of

work exists concerning evacuation modeling. A comprehen-

sive survey [3] divides the field into macroscopic techniques,

which attempt to model the aggregate behavior of crowds,

and microscopic techniques, which focus on individual ac-

tions and interpersonal behavior. Macroscopic techniques,

such as the space syntax technique used in [4], make no
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attempt to model or track individual evacuees. As a result,

the robots in [4] did not include sensor observation data in

their estimates and made no attempt to avoid moving into

congested areas. The virtual forces model presented in [5] is

a widely known microscopic technique. However, the virtual

forces model is deterministic, and microscopic techniques are

in general highly dependent on initial conditions. Further-

more, a means of determining the true evacuation scenario

requires the inclusion of sensor observation data, which is

not considered by the microscopic techniques.

RBE techniques such as the Kalman Filter and its vari-

ants [6], and Sequential Monte-Carlo (SMC) methods, or

particle filters [7], [8], have been applied to the problem

of tracking multiple targets based on sensor observation

data. Estimation of the state of targets undergoing con-

strained motion using the grid-based method was presented

in [9]. The unified searching-and-tracking (SAT) framework

presented in [10] extended that work to provide a means

for continuously updating the estimated state of multiple

targets, using sensor observation data corresponding to both

detection and non-detection events. However, to be effective

these approaches depend upon the availability of accurate,

probabilistic models of the targets’ motions, which are not

provided by existing evacuation modeling techniques.

This paper presents the Updateable Probabilistic Evacu-

ation Modeling (UPEM) technique. The proposed UPEM

technique allows sensor observation data to be included in the

state estimation problem as they are obtained, by estimating

the state of each individual evacuee with its own probabilistic

filter, maintained under the SAT framework. Each individual

is modeled as a Newtonian particle which interacts with

obstacles such as walls and other individuals to give its

probabilistic motion model. The advantage of the technique

is that it estimates not only the general trend of the crowd

state, including unobservable evacuees, but also the specific

states of each of the evacuees in the crowd. Additionally, an

approach to cooperative autonomous searching in crowded

urban emergencies is developed, in order to demonstrate a

robotics application of the UPEM technique.

This paper is organized as follows. Section II describes the

foundations of pedestrian dynamics and RBE. The UPEM

technique is formulated in Section III, along with the ap-

proach developed for cooperative autonomous searching in

crowded urban emergecies. Numerical examples are shown

in Section IV and conclusions and future work are discussed

in Section V.
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II. PEDESTRIAN DYNAMICS AND RECURSIVE

BAYESIAN ESTIMATION

A. Evacuation Modeling using Virtual Forces

The virtual forces model represents a human crowd as a

set of Newtonian particles which simultaneously attempt to

reach a desired destination and avoid collisions with other

individuals and the environment. Each individual i in a crowd

of ne evacuees is represented by a single particle with radius

ri and mass mi and desires to move with velocity v
d
i (t). It

therefore tends to adapt its actual velocity vi(t) to meet this

desire, with a characteristic time τi, whilst trying to avoid

the other evacuees, j, and walls, w, in the vicinity. These

influences are modeled by the ‘interaction forces’ fij and

fiw, respectively. The virtual force applied to the ith particle

at each iteration is therefore given by the equation

mi

dvi

dt
= mi

v
d
i − vi

τi

+
∑

j( 6=i)

fij +
∑

w

fiw . (1)

The interaction force between individuals is given by

fij = {A exp[(rij − dij)/B] + κng(rij − dij)}nij

+ κtg(rij − dij)∆v
t
ijtij . (2)

Here A exp[(rij − dij)/B]nij represents the socio-

psychological urge to distance oneself from other pedestrians

and κng(rij − dij)nij and κtg(rij − dij)∆v
t
ijtij are the

physical forces which occur when two individuals come into

contact. They represent the resistance to body compression

and resistance to relative tangential motion respectively. A,

B, κn and κt are constants, rij = (ri + rj), dij is the

distance between the evacuees’ centers of mass, nij is the

normalized vector from j to i (i.e. the unit normal), tij is its

corresponding tangent and ∆v
t
ij is the tangential velocity

difference. The function g(x) serves to indicate contact

between evacuees:

g(x) = 〈x〉 (3)

where 〈.〉 is the Macaulay bracket. Similarly, the interaction

force between individuals and walls is given by

fiw = {A exp[(ri − diw)/B] + κng(ri − diw)}niw

− κtg(ri − diw)(vi · tiw)tiw . (4)

The dynamic system equation (1) may be easily inte-

grated, for example using Euler or Vertlet integration tech-

niques [11], to determine the velocity and position vectors

of each of the evacuees at each time step.

B. Recursive Bayesian Estimation

In general, RBE for SAT estimates p(xt
k|

s
z̃1:k, x̃s

1:k),
the posterior probability distribution over x

t
k. Here x

t
k ∈

X t is the state of a target, t, at time step k, x̃
s
1:k =

{x̃s
1, . . . , x̃

s
k} is the sequence of search vehicle states and

s
z̃1:k = {s

z̃1, . . . ,
s
z̃k} is the sequence of observations. Note

that the tilde is used here to represent an instance (̃·) of a

variable (·). Furthermore, it will be assumed in this paper

that the search vehicles have the ability to accurately local-

ize themselves, since a variety of sophisticated localization

techniques already exist and the discussion of such is beyond

the scope of this paper.

The posterior distribution at any time step may be calcu-

lated recursively, given an initial density function p(xt
0) and

the sequences, x̃
s
1:k and s

z̃1:k. The posterior distribution is

given by the Bayesian update equation

p(xt
k|

s
z̃1:k, x̃s

1:k)

=
p(s

z̃k|x
t
k, x̃s

k)p(xt
k|

s
z̃1:k−1, x̃

s
1:k−1)

∫

X t p(sz̃k|xt
k, x̃s

k)p(xt
k|

sz̃1:k−1, x̃s
1:k−1)dx

t
k

. (5)

The SAT approach hinges on the observation likeli-

hood p(s
z̃k|x

t
k, x̃s

k), which will be discussed in greater

detail in Section II-C. Note that if k = 1 then

p(xt
k|

s
z̃1:k−1, x̃

s
1:k−1) = p(xt

0), otherwise it is determined

using the target’s Markov motion model, p(xt
k|x

t
k−1) and

the Chapman-Kolmogorov prediction equation

p(xt
k|

s
z̃1:k−1, x̃

s
1:k−1)

=

∫

X t

p(xt
k|x

t
k−1)p(xt

k−1|
s
z̃1:k−1, x̃

s
1:k−1)dx

t
k−1. (6)

C. Searching and Tracking

1) Observation Model for Searching and Tracking:

Successful SAT requires the search vehicle to distinguish

between detection events, where a target is observed, and

non-detection events. This may be determined based on the

probability of detection, 0 ≤ Pd(x
t
k|x

s
k) ≤ 1. The vehicle’s

‘detection space’, sX t
k may be defined as,

sX t
k = {xt

k|ǫ < Pd(x
t
k|x̃

s
k) ≤ 1} (7)

where ǫ is a positive threshold value which determines

a detection event. If the target falls within the search

vehicle’s detection space the vehicle uses the detection

likelihood, ld(
s
z̃k|x̃

t
k, x̃s

k), otherwise the vehicle assumes

the non-detection likelihood, lnd(x
t
k|x̃

s
k). The unified SAT

observation likelihood is therefore given by

p(s
z̃k|x

t
k, x̃s

k) =

{

ld(
s
z̃k|x̃

t
k, x̃s

k) ∃x̃t
k ∈ sX t

k

lnd(x
t
k|x̃

s
k) ∄x̃

t
k ∈ sX t

k.
(8)

2) Cooperative SAT: Multiple search vehicles may co-

operatively perform SAT using sensor data fusion. For ns

search vehicles the multiple-vehicle observation likelihood

is

p(s
z̃k|x

tj

k , x̃s
k) =

ns
∏

i=1

p(si z̃
tj

k |x
tj

k , x̃si

k ) (9)

where x̃
s
k = {x̃si

k |∀i ∈ {1, . . . , ns}} and s
z̃

tj

k = {si z̃
tj

k |∀i ∈
{1, . . . , ns}} represent the states of the ns platforms at

time k and their corresponding observations of target tj
respectively, and p(si z̃

tj

k |x
tj

k , x̃si

k ) is the observation like-

lihood for search vehicle si. For fully connected, lossless

and delay free communication, each search vehicle i can

receive p(sq z̃k|x
tj

k , x̃
sq

k ), ∀q 6= i and decentrally construct

(9). Substitution of (9) in the place of p(s
z̃k|x

t
k, x̃s

k) in (5)

gives the update equation for multiple vehicles.
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III. CROWD ESTIMATION AND COOPERATIVE

CONTROL FOR URBAN SEARCHING MISSIONS

A. The Updateable Probabilistic Evacuation Modeling

Technique

The UPEM technique estimates the state of each evacuee

using a unique probabilistic filter, which is maintained under

the SAT framework described in Section II-C. The complete

state of a crowd is given by

x
e
k = {xe1

k ,xe2

k , . . . ,x
ene

k } (10)

where an evacuee n ∈ {1, . . . , ne} is represented by its two-

dimensional position and velocity

x
en

k = [xen

k , ẋen

k , yen

k , ẏen

k ]T . (11)

Therefore it is assumed that the actual change in the crowd

state is given by

x̃
e
k = f

e(x̃e
k−1, M, w̃e

k−1) (12)

where f
e calculates the the positions and velocities of the

evacuees using the virtual forces model (1) and w̃
e
k−1, a

noise vector representing the inherent uncertainty in human

movement. Note that an individual’s desired velocity, vd
i may

be determined on the basis of a map, M .

Attempting to stochastically model this complete system

is generally intractable for large crowds since the computa-

tional complexity of such a system grows exponentially with

increasing numbers of modeled individuals. However, the

assumption of conditional independence allows the posterior

to be written in the following factored form,

p(xe1

k ,xe2

k , . . . ,x
ene

k |si z̃
e
1:k, x̃si

1:k) =

ne
∏

n=1

p(xen

k |si z̃
en

1:k, x̃si

1:k).

(13)

The computational complexity then only increases linearly

as ne increases. However, in the case of emergency evac-

uations, this assumption disregards the significant socio-

psychological and physical interactions between evacuees.

Therefore the UPEM technique models each evacuee inde-

pendently, but with a motion model based on the virtual

forces model (1), evaluated on the mean crowd state. That

is,

x
en

k = f
en(x̄e

k−1, M,wen+λ
k−1 ) (14)

where f
en is the individual evacuee equivalent of the crowd

motion function f
e, the mean crowd state is

x̄
e
k−1 = {[x̄en

k , ¯̇xen

k , ȳen

k , ¯̇yen

k ]T , ∀n ∈ {1, . . . , ne}} (15)

and

w
en+λ
k−1 = w

en

k−1 + λ (16)

is a noise vector which takes into account the uncertainty

of the individual’s motion, w
en

k−1, and compensates for the

flawed assumption of independence and the approximation of

the crowd state vector with the additive noise component λ.

Initially, the UPEM technique requires an estimate of the

number of evacuees and their initial positions in the map.

Information such as the time of day and the expected number

of employees at work, students in a lecture theater or fans at a

sporting event can serve to form the basis of both the estimate

of ne and the initial distribution of the evacuees. Note that

since the estimate is to be updated with sensor observation

data, these initial estimates need not be particularly accurate.

HOne approach to estimating ne consists of reducing the

value of ne and removing the appropriate filters if, following

the Bayesian update,

Pr(xen

k ) ∈ M = 0, n ∈ {1, . . . , ne}. (17)

This occurs whenever an evacuee is estimated to have

successfully evacuated the building, or if all an evacuee’s

nonzero probability density falls within a sensor’s detection

space, without a detection event occurring. Furthermore,

increasing the value of ne, and creating new filters, only

when an individual enters a sensor’s detection space and all

existing filters have been associated with previously observed

individuals, avoids increasing ne when unassigned filters are

available. Note that there are other approaches to the problem

of estimating ne based on sensor observation data, such

as Minimum Description Length (MDL) approaches [12].

However, because MDL approaches require large amounts of

computation time to be spent maintaining multiple instances

of the model for different possible ne values, they will not

be discussed further in this paper.

Furthermore, the data association problem must be solved

before the SAT update for multiple evacuees may be applied.

The nearest neighbor approach to data association is a

straightforward method which has the advantage of main-

taining individual beliefs even when the observed evacuees

are in close proximity to each other, which often occurs in

crowded evacuation scenarios.

B. Cooperative Search in Crowded Emergencies

One possible application of the UPEM technique is in

cooperative autonomous searching missions during mass

evacuations. An emergency situation may call on a team of

autonomous robots to search for targets such as immobile or

trapped victims, or explosive, toxic or otherwise hazardous

materials, during a large scale evacuation. For nt number

of targets, the state of a single target object tj may be

represented by the vector x
tj

k , which in general consists of

the target’s position, but may also include terms representing

the accessability or physical condition of the target. The

target’s state may then be estimated using RBE. It is rea-

sonable to assume that targets such as immobile or trapped

victims or explosive devices are stationary, in which case

the two-dimensional state vector becomes x
tj = [xtj , ytj ]T .

This assumption also eliminates the need to perform the

prediction step (6) in the RBE, since in the static target case

p(x
tj

k |si z̃
tj

1:k−1, x̃
si

1:k−1) = p(x
tj

k−1|
si z̃

tj

1:k−1, x̃
si

1:k−1).
For urban search spaces such as office buildings which

feature distinct, searchable, subspaces, the optimal search

problem becomes that of selecting the subspace to search

which maximizes the utility, that is the probability of de-

tecting a target, considering the time cost required to reach

the area and thoroughly search it. For a lone search vehicle
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it is sufficient to consider this utility-cost analysis only. For

multiple search vehicles the team must bargain in order to

achieve the team’s optimal allocation of search areas to each

vehicle.

1) Individual Utility and Cost: The utility for vehicle si

in searching subspace a is based on the probability of the

vehicle detecting a target in the subspace and is given by

ui
a =

nt
∑

j=1

wi
jPr(x

tj

k ∈ a|si z̃
tj

1:k, x̃si

1:k) (18)

where wi
j is an importance weighting giving to target j.

The total cost for vehicle si to search subspace a is the

weighted sum of the time cost associated with the search

vehicle traveling from its current position to the subspace

and the time cost associated with searching the subspace

itself. The cost of traveling increases with the distance the

vehicle has to move in order to reach the room, and with the

probable crowd congestion along the path. It is given by

tci
a = f

tc(xsi

k , P e
k , a, M) (19)

where

P e
k = {p(xe1

k |si z̃
en

1:k, x̃si

1:k), . . . , p(x
ene

k |si z̃
en

1:k, x̃si

1:k)}. (20)

The cost of searching a subspace increases with the size of

the subspace and the probable crowd congestion. If additional

information, such as the setup of the room or the presence

of steps or other obstacles is available, then these data may

also be included in determining the search cost. The search

cost is given by

sci
a = f

sc(P e
k , a, M). (21)

Therefore the individual optimal search problem reduces

to determining the best subspace to search next, traveling to

the subspace and performing the search. Once a full search

coverage of the subspace has been achieved, the next best

area is chosen, and so on until the probability of targets

remaining undetected vanishes. The best subspace to search

may be found by solving

arg max
a

[wuui
a − (wtc

tci
a + wsc

sci
a)] (22)

where wu, wtc and wsc are weights on the utility, travel cost

and search cost respectively.

2) Multi-Vehicle Task Allocation: For multiple search

vehicles, the task allocation problem arises. Each vehicle

must select a subspace to search from the total na distinct

subspaces, in order to achieve the best overall team allocation

of tasks. The optimal allocation may be found by finding the

Nash bargaining solution [13],

arg max
a,i

na,ns
∑

a,i=1

[wuui
a − (wtc

tci
a + wsc

sci
a)] (23)

subject to the constraints that each vehicle can only be

assigned to search one subspace at a time and that each

subspace can only be assigned a single search vehicle at

a time.

TABLE I

EVACUATION PARAMETERS

Parameter Units For Simulation For Estimation

vd

i
m s−1 [0.5,1.5] 1.0

ri m [0.25,0.35] 0.30
mi kg 80 80
τi s 0.5 0.5

A N 2× 103 2× 103

B m 0.08 0.08

κn kg s−2
1.2× 10

5
1.2× 10

5

κt kg m−1s−1
2.4× 10

5
2.4× 10

5

IV. NUMERICAL EXAMPLES

A number of scenarios involving large scale evacuations

were simulated in order to validate the proposed UPEM

technique and to highlight its efficacy in robotics systems for

emergency response. The deterministic virtual forces model

was used to simulate the true state of the crowds, whilst the

UPEM technique was used for estimation. Table I lists the

parameters used in the models.

Two cooperative autonomous search vehicles were also

simulated. Each search vehicle was simulated to carry two

range-and-bearing sensors, one for detecting search targets,

the other for detecting obstacles such as evacuees and walls.

Each sensor had a sweep angle of 180◦ and the effective

ranges of the target and obstacle sensors were 3m and 8m

respectively. Each search vehicle had a maximum speed of

1.5 m.s−1. The floor plan shown in Fig. 1 was used as the

map in each simulation and particle filters were used both

in the UPEM technique and for estimating the state of the

search targets. One hundred particles were used for each

evacuee modeled. Five thousand particles were used in the

estimation of search targets and were distributed with the

probability density shown in Fig. 1. Evacuees were allocated

initial rooms to occupy according to the limits displayed in

Table II. The initial positions of the occupants within each

room were uniformly distributed.

A. Evacuation Simulation

One hundred different scenarios were run for each of

the cases where 200, 250, 300, 350 and 400 evacuees

were simulated. The total evacuation times required for

each case are shown in Fig. 2. It can be seen that the

E2

E1

T1 T2

T3 T4L1

L2 E1 − Primary Exit : Stairwell
E2 − Secondary Exit : Stairwell
T1:T4 − Lecture Theatres
L1:L2 − Laboratories
Others − Bathrooms, Offices
       and Conference Rooms.

30 meters

Evacuees should not use the
elevators, located next to each
stairwell, during emergencies.

Particle positions indicate
target locations.

Fig. 1. Floor plan of a section of the Department of Engineering Science
building at Kyoto University.
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TABLE II

INITIAL DISTRIBUTION OF ROOM OCCUPANTS

Room Groups Occupants
Group Type No. of Rooms Min. Max.

Lecture Theaters 4 40 80
Laboratories 2 15 30
All Others Combined 9 10 20

Total 15 200 400

200 250 300 350 400
100

150

200

T
im

e
 [
s
e
c
]

Number of Evacuees

Fig. 2. Total Evacuation Time Required (sec) vs. Total Number of
Evacuees.

total evacuation time required increased as the number of

evacuees increased. This was caused by evacuees having to

queue for longer as crowd congestion increased. The case

involving four hundred evacuees was therefore chosen for

further investigation using the UPEM technique, as that case

exhibited both high volumes of pedestrian traffic and the

greatest levels of congestion.

B. Cooperative Autonomous Searching Missions

One evacuation scenario involving four hundred evacuees

was selected at random from the one hundred scenarios

described above. The scenario was used to compare the

conventional approach, where evacuations are completed

before searching begins, with the approach based on UPEM,

developed in this paper. The total evacuation time required

in the chosen scenario was 195.9 seconds. Each of the initial

positions of the five thousand target particles shown in Fig. 1

were used as the true position of a target, which was to be

searched for by two cooperative autonomous search vehicles,

denoted S1 (≡ s1) and S2 (≡ s2). In order to examine

the efficacy of the UPEM technique, the cooperative search

approach developed in this paper, used after the complete

evacuation and without the UPEM technique, was applied for

the conventional search approach. The approach developed

in this paper, including the UPEM technique, was then

used to control the search vehicles during the evacuation

for comparison. Searches for the five thousand targets were

carried out under both approaches, using three weighting

strategies for the utility and costs. The equal weighting

strategy (EWS) assigned both search vehicles to use equal

weights for the utility and both costs. The time weighting

strategy (TWS) assigned both search vehicles to use cost

weights that were nine times the weight given to the utility.

The combined weighting strategy (CWS) assigned search

vehicle S1 with the weights used in the EWS and vehicle

S2 with the weights used in the TWS.

The different sequences of rooms searched, resulting from

each of the different approaches and strategies, are shown in

Fig. 3. The left column of the figure shows the sequences

30 metres
8

1

2

6

5

4

3

7

9

10

11

12

13

1415

start

Legend

1

1

1

Sequence of Search
Completion

Searched by S2

Searched by S1

(a) Conventional Search: Equal
Weighting Strategy

30 metres
2

9

10

7

15

11

12

3

1

4

5

8

6

start

Legend

1

1

1

Sequence of Search
Completion

Searched by S2

Searched by S1

1413

(b) Search with UPEM: Equal
Weighting Strategy

30 metres

1

2

6

5

4

3

7

10

11

12 13

14

15

start

Legend

1

1

1

Sequence of Search
Completion

Searched by S2

Searched by S1

8 9

(c) Conventional Search: Time
Weighting Strategy

30 metres

1

2

7

6

4

3

5

8

11

12 13

14

15

start

Legend

1

1

1

Sequence of Search
Completion

Searched by S2

Searched by S1

9 10

(d) Search with UPEM: Time
Weighting Strategy

30 metres

1

2
6

5

4 3

7

10

1112

13

start

Legend

1

1

1

Sequence of Search
Completion

Searched by S2

Searched by S1

8

91415

(e) Conventional Search: Combined
Weighting Strategy

30 metres

1

3
5

11

4 2

6

8

1315

14

start

Legend

1

1

1

Sequence of Search
Completion

Searched by S2

Searched by S1

7

12109

(f) Search with UPEM: Combined
Weighting Strategy

Fig. 3. Cooperative Search Sequences. L: The conventional, evacuate-then-
search approach. R: The developed search approach, using UPEM

when the conventional approach was used. The search se-

quences, when the developed approach was used, are shown

in the right column.

The time required for the search vehicles to detect the

target in each of the five thousand cases examined was

recorded, and the cumulative percentage of targets located

is shown against the required mission times in Fig. 4(a).

The large horizontal segment which occurred under each

strategy using the developed approach is due to significant

congestion which occurred at the intersection of the two

hallways. Under the developed approach the search vehicles

completely searched all of the accessible rooms, then waited

for the congestion to clear before successfully continuing

with their search mission. It can be seen from Fig. 4(a)

that at the time searching commenced under the conventional
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approach, 35.9%, 31.6% and 31.7% of the targets had already

been detected under the developed approach, using the EWS,

TWS and CWS, respectively. The first strategy to detect 50%

of the targets under the conventional approach did so in 274.5

seconds. By that time, 90.6%, 87.4% and 88.9% of the targets

had been detected under the developed approach, using the

EWS, TWS and CWS, respectively. Furthermore, Fig. 4(b)

shows that even though the two vehicles were searching in

the presence of four hundred evacuees, the use of UPEM

meant that both search vehicles remained more than 1.4

meters from each evacuee at all times in each simulation.

Whilst Fig. 4(a) clearly shows that the UPEM is beneficial

in reducing the target detection time in evacuation scenarios,

it is difficult, using the time to detection results only, to

quantify the benefits to the human evacuees stemming from

the search vehicles’ ability to detect potential hazards while

the evacuees are still attempting to egress. Therefore a safety

rating was given to each of the five thousand detections made

under each approach and strategy. The safety rating consisted

of two components: an evacuee component and a time

component. The evacuee component was such that detections

made while evacuees were still inside the building were

given fifty times the rating of the last detection made using

the slowest approach and strategy. The evacuee component,

for detections made after the evacuation was complete, was

zero. In this way significant consideration was given to the

safety of evacuees still in the building. The time component

was such that detections made towards the beginning of

the mission were given close to ten times the rating of

the last detection made using the slowest strategy. Table III

shows the average safety rating per target detection for each

of the approaches and strategies. It can be seen that the

average safety rating when the UPEM technique was used

was approximately one order of magnitude higher than each

of the strategies under the conventional approach.

TABLE III

AVERAGE SAFETY RATING

EWS TWS CWS

Conventional Approaches 2.16 2.3 2.24
Approaches using UPEM 22.68 20.30 20.47

UPEM/Conventional 10.48 9.98 9.15

V. CONCLUSIONS AND FUTURE WORK

This paper presented the Updateable Probabilistic Evac-

uation Modeling (UPEM) technique. The UPEM technique

allows sensor observation data to be included in the problem

of estimating the state of an evacuating crowd, as the data

are collected. Each individual is modeled as a Newtonian

particle which interacts with obstacles, such as walls and

other individuals, to give its probabilistic motion model.

The advantage of the UPEM technique is that it estimates

not only the general trend of the crowd as a whole, but

also the specific states of each of the evacuees in the

crowd.Furthermore, an approach to cooperative autonomous

searching in crowded urban emergencies was developed.

A number of simulated searches in emergency evacuations

highlighted the efficacy of the technique in reducing the time

required to detect targets and in increasing the average safety

rating by approximately one order of magnitude.

Further work remains to be done in applying the UPEM

technique, incorporating actual sensor observation data and

assessing the estimates against real evacuation data. Other

applications of the technique will also be investigated, such

as autonomous crowd guidance or evacuation assistance, or

for assisting humans teleoperating robots in crowded urban

emergencies.
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