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Abstract— This paper considers the design of control laws for
multiple mechanical systems with parameter uncertainty such
that the state of each system converges to a point which moves
along a desired trajectory. Adaptive cooperative control laws
are proposed with the aid of the passivity property of system
dynamics and the results for graph theory. As an application,
the proposed results are used to solve the cooperative control
problem of multiple mobile robots with parameter uncertainty
such that multiple mobile robots converge to a desired pattern
which moves along a desired trajectory. To show effectiveness
of the proposed results, simulation results are presented.

I. INTRODUCTION

Cooperative control of multiple agents has received con-

siderable attention recently due to its challenging features

and many applications, e.g., rescue mission, large object

moving, troop hunting, formation control, and satellite clus-

tering. Various control strategies have been proposed and are

summarized as follows.

Virtual structure for cooperative control of multiple agents

is considered in e.g. [1, 2]. Virtual structure methods imple-

ment decentralized trajectory-following controllers on each

vehicle, but the per-vehicle trajectories are generated in a

centralized fashion based on the state of all vehicles. To make

the formation robust to internal or external disturbances, [2]

introduces feedback of formation errors within the virtual

structure. Behavior-based control method is considered in

[3, 4]. The cooperative control laws were defined to achieve

specific objectives and an arbitration scheme to switch or

interpolate between alternative behaviors to implement a mis-

sion. In the leader-follower approach [5], one mobile robot is

designated as a leader while others are designated as follow-

ers. The leader implements a trajectory-following controller

to track the desired trajectory. Each follower implements a

controller that forces its orientation and offset vector relative

to its leader to commanded values, using only its own state

and that of its lead vehicle. In [6], the authors discussed

the error propagation and stability properties within leader-

following based formations. Artificial potentials have been

applied to flocking of multi-agents with the aid of other

techniques, such as graph theory, virtual bodies/leaders, etc.

A framework using artificial potentials and virtual leaders is

proposed in [7]. Articles [8] and [9] discuss flocking with

the aid of the artificial potentials and virtual agents. Graph

theoretical approaches for cooperative control of multiple

linear systems have been studied by various authors [10, 11].

In these papers, the structure of the communication network

between vehicles was described by Laplacian matrices. Each

vehicle was treated as a vertex and the communication links

among vehicles were treated as edges. The stability of the

whole system was guaranteed by the stability of each mod-

ified individual linear system, where the modification to the

linear system accounts for the structure of the communication

network. However, in these papers, the methods are limited

to linear vehicle models. Article [12] considered the stability

of multiple agents with nonlinear models in discrete time

and time-dependent communication links. Necessary and/or

sufficient conditions for the convergence of the state of each

individual agent to a consensus vector were presented with

the aid of graph theory and convexity.

The consensus problem is closely related to cooperative

control and has been widely discussed recently. In [13],

cooperative laws were proposed using nearest neighbor rules.

In [14], it was shown how to make a group of mobile robots

converge to a line or general geometric form by solving

the consensus problem. In [15], the consensus problem

for networks of dynamic agents with fixed and switch-

ing topologies was discussed. Two consensus protocols for

networks with and without time-delays were proposed for

convergence analysis in different communication cases. In

[16], the authors considered the problem of information con-

sensus among multiple agents in the presence of limited and

unreliable information exchange with dynamically changing

interaction topologies. Updated algorithms were proposed for

information consensus in both discrete and continuous cases.

In this paper, we consider the consensus of multiple

uncertain nonlinear systems with parameter uncertainty such

that they come into a point which moves along a desired

trajectory. Since there is parameter uncertainty in the dy-

namics of each system, the consensus control problem is

challenging. To solve this problem, adaptive cooperative

controllers are proposed with the aid of results of graph

theory and the passivity property of each system. It is shown

that our proposed results can make the group of nonlinear

systems converge to a desired point which moves along a

desired trajectory. As an application of the proposed results,

formation control of multiple mobile robots with parameter

uncertainty is considered. It is shown that the proposed

results can be successfully used to solve the formation

control problem. To verify effectiveness of the proposed

cooperative control laws, simulation results are included.

This paper extends the results for kinematic systems in [17]

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1954



to dynamic systems.

The rest of the paper is organized as follows. In Section

II, we formally state the control problem considered in this

paper. In Section III, decentralized control laws are proposed

for the defined control problem. In Section IV, applications

of the proposed results are included. Section V includes

simulation results to show effectiveness of the proposed

results. Section VI concludes this paper.

II. PROBLEM STATEMENT

Consider a group of m mechanical systems subjected to

nonholonomic constraints. For system j, its motion is defined

in the following form [18]

Mj(q∗j)q̈∗j + Cj(q∗j , q̇∗j)q̇∗j + Gj(q∗j) =

Bj(q∗j)τj + J⊤(q∗j)λj , (1)

J(q∗j)q̇∗j = 0 (2)

where q∗j = [q1j , . . . , qnj]
⊤ is the state of system j,

Mj(q∗j) is an n × n bounded positive-definite symmet-

ric matrix, Cj(q∗j , q̇∗j)q̇∗j presents centripetal and Coriolis

force, Gj(q∗j) is gravitational force, Bj(q∗j) is an n × r
input transformation matrix, τj is a r-vector of control

input, J(q∗j) is a (n − s − 1) × n full rank matrix with

s = n−1−Rank(J(q∗j)), 2 ≤ s+1 < n, r ≥ s+1. λj is an

(n−s−1)-vector of Lagrange multiplier which expresses the

constraint force on system j, and the superscript ⊤ denotes

the transpose. In system (1)-(2), the constraint (2) is assumed

to be completely nonholonomic for each system [19].

Eqn. (1) has the following two properties for 1 ≤ j ≤ m
[20].

Property 1: Matrix Ṁj − 2Cj is skew-symmetric for a

proper definition of Cj .

Property 2: For any differentiable vector ξ ∈ Rn,

Mj(q∗j)ξ̇ + Cj(q∗j , q̇∗j)ξ + Gj(q∗j) = Yj(q∗j , q̇∗j , ξ, ξ̇)aj

where aj is an inertia parameter vector, the regressor matrix

Yj(q∗j , q̇∗j, ξ, ξ̇) is a function of q∗j , q̇∗j , ξ, and ξ̇.

Property 1 is the so-called passivity property of mechan-

ical systems. This property will be applied in the controller

design. For each system, we assume that the regressor matrix

Yj(q∗j , q̇∗j, ξ, ξ̇) is a known function of q∗j , q̇∗j , ξ, and ξ̇.

But, aj is assumed to be a unknown constant vector.

The communication between the robots can be described

by the edges E of the digraph G = {V , E} where the m
mobile robots are represented by the m nodes in V [21]. The

existence of an edge (l, j) ∈ E means that the state q∗l of

robot l is available to robot j for control (i.e., unidirectional

communication). Bidirectional communication, if it exists,

would be represented by the edge (j, l) also being in the

digraph G. The symbol Nj denotes the neighbors of node j
and is the set of indices of agents whose state is available

to robot j. The information available to robot j for the

controller design is the j−th robot’s own state and the state

of each robot l such that l ∈ Nj . Due to sensor range

limitations and bounded communication bandwidth between

robots, Nj may change with time, which means that the edge

set E may be time-varying and consequently the Laplacian

matrix L corresponding to G may be time-varying. In this

paper, we make the following assumption.

Assumption 1: The communication between robots are

bidirectional and the communication graph G is strongly

connected.

Given a differentiable desired trajectory qd(t) =
[qd

1(t), . . . , qd
n(t)]⊤ which satisfies

J(qd)q̇d = 0. (3)

The consensus control problem discussed in this article is

defined as follows.

Consensus Control Problem: Design a control law τj for

system j with unknown inertia parameter vector aj using its

own state q∗j , the relative state information between system

j and system i for i ∈ Nj , and qd(t) such that

lim
t→∞

(q∗j − q∗i) = 0, 1 ≤ i 6= j ≤ m (4)

lim
t→∞

(

qd −
1

m

m
∑

l=1

q∗l

)

= 0. (5)

Remark 1: In the consensus control problem, the control

law for system j is designed based on the desired trajectory

qd, the state of system j, and its neighbor’s states. Since the

inertia parameter vector aj is unknown, adaptive cooperative

control laws will be proposed in this paper.

To solve the consensus control problem, we convert (1)-

(2) into a suitable form. Let the vector fields g1(q∗j), . . . ,

gs+1(q∗j) form a basis of the null space of J(q∗j). Then, by

(2), there exists an (s + 1)-vector u∗j = [u1j , . . . , us+1,j ]
⊤

such that

q̇∗j = g(q∗j)u∗j = g1(q∗j)u1j + · · ·+ gs+1(q∗j)us+1,j (6)

where g(q∗j) = [g1(q∗j), . . . , gs+1(q∗j)]
⊤ ∈ Rn×(s+1).

Differentiating both sides of (6) and substituting it into (1)

and multiplying both sides by g⊤(q∗j), we have

M j(q∗j)u̇∗j + Cj(q∗j , q̇∗j)u∗j + Gj(q∗j) = Bj(q∗j)τj (7)

where we use the fact that g⊤(q∗j)J
⊤(q∗j) = 0, and

M j(q∗j) = g⊤(q∗j)Mj(q∗j)g(q∗j),

Cj(q∗j , q̇∗j) = g⊤(q∗j)Mj(q∗j)ġ(q∗j) +

g⊤(q∗j)Cj(q∗j , q̇∗j)g(q∗j),

Gj(q∗j) = g⊤(q∗j)Gj(q∗j),

Bj(q∗j) = g⊤(q∗j)Bj(q∗j).

Based on Property 1 and Property 2, the following two

properties can be easily proved for 1 ≤ j ≤ m.

Property 3: Matrix Ṁ j − 2Cj is skew-symmetric.

Property 4: For any differentiable vector ξ ∈
R(s+1)×(s+1)

M j(q∗j)ξ̇ + Cj(q∗j , q̇∗j)ξ + Gj(q∗j) = Y j(q∗j , q̇∗j , ξ, ξ̇)aj

where Y j(q∗j , q̇∗j , ξ, ξ̇) =

g⊤(q∗j)Yj

(

q∗j , q̇∗j , g(q∗j)ξ,
d

dt
(g(q∗j)ξ)

)

.
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The reduced system (6)-(7) describes the motion of the

original system (1)-(2). Therefore, the consensus control

problem can be considered based on the reduced system (6)-

(7) instead of system (1)-(2). In order to completely actuate

each nonholonomic system, Bj(q) is assumed to be a full

rank matrix.

System (6)-(7) represents a general nonholonomic dy-

namic system. For this general system, it is hard to design

an effective controller. To simplify the consensus control

problem, we assume that n = 3 and that eqn. (6) has two

inputs and is in the following chained form [19] after suitable

state and input transformations.







q̇1j = u1j,
q̇2j = u2j, (1 ≤ j ≤ m)
q̇3j = u1jq2j .

(8)

Remark 2: The necessary and sufficient conditions for the

existence of the transformations such that (6) is converted

into the chained form (8) have been studied by several

authors [19]. If eqn. (6) has three or more inputs and can

be converted into one-generator multi-chain form [19], the

method developed in this paper also works. Here, we assume

n = 3 for simplicity.

Since the desired trajectory qd(t) satisfies the constraint

(3), noting the assumptions made above, trajectory qd satis-

fies






q̇d
1 = w1,

q̇d
2 = w2,

q̇d
3 = w1q

d
2

(9)

where w1 and w2 are known time-varying functions.

With the above assumption and transformations, the de-

fined consensus control problem with uncertainty is equiv-

alent to finding a control law τj for system (7)-(8) with

unknown inertia parameter vector aj using qd, q∗j , and the

relative state information between its neighbors such that (4)-

(5) are satisfied.

III. DECENTRALIZED CONTROLLER DESIGN

To facilitate the controller design, the following assump-

tions are made on the desired trajectory qd.

Assumption 2: Variable qd
2 is bounded.

Assumption 3: Variable w1 is bounded and satisfies the

following condition:

∫ t+T

t

w2
1(s)ds ≥ ǫ

for some T > 0 and ǫ > 0 and for all t ≥ 0.

Assumptions 2-3 are not stringent. Many w1(t) satisfy As-

sumption 3. For example, w1 may be a nonzero constant, a

sine function, etc.

We introduce the following change of states for 1 ≤ j ≤
m







z1j = q1j − qd
1

z2j = q2j − qd
2 + k3z3jw1

z3j = q3j − qd
3

(10)

where constant k3 > 0. Then, we have














ż1j = u1j − w1

ż2j = u2j − w2 + k3z3jẇ1 − k2
3w

3
1z3j

+k3w
2
1z2j + (u1j − w1)k3w1q2j

ż3j = −k3w
2
1z3j + w1z2j + (u1j − w1)q2j .

(11)

Lemma 1: Under Assumption 3, if limt→∞(z∗j−z∗i) = 0
for 1 ≤ i 6= j ≤ m, then (4) holds. Furthermore, if

limt→∞ z∗j = 0 for 1 ≤ j ≤ m, then (4)-(5) hold.

Lemma 1 can be proved by the definition of the variables

and some algebra computation. We omit it here.

Next, we design the control laws in two steps. In the first

step, we consider u∗j as virtual control inputs and design

cooperative control laws such that eqns. (4)-(5) are satisfied.

In the second step, we design control laws τj such that eqns.

(4)-(5) are satisfied with the aid of the results in the first step.

Lemma 2: For system (11), under Assumptions 1-3, the

control laws u1j = η1j and u2j = η2j for 1 ≤ j ≤ m make

(4)-(5) hold, where

η1j = −
∑

l∈Nj

bjl[z1j + k3w1z2jq2j + z3jq2j − z1l

−k3w1z2lq2l − z3lq2l] − µj [z1j + k3w1z2jq2j

+z3jq2j ] + w1 (12)

η2j = −
∑

l∈Nj

bjl(z2j − z2l) − µjz2j + w2 − k3z3jẇ1

−k3w
2
1z2j + k2

3w
3
1z3j (13)

the control parameters bjl(= blj) and k3 are each positive

constants, constants µj ≥ 0 and
∑m

j=1 µj > 0.

Proof: Let the positive definite Lyapunov function

V =
1

2

m
∑

j=1

3
∑

i=1

z2
ij . (14)

Differentiating V along the solutions of the closed-loop

systems, we have

V̇ = −
m
∑

j=1

k3w
2
1z

2
3j − z⊤2∗Lz2∗ − (z1∗ + ∆)⊤L(z1∗ + ∆)

−
m
∑

j=1

µjz
2
2j −

m
∑

j=1

µj(z1j + ∆j)
2 ≤ 0

where z1∗ = [z11, . . . , z1m]⊤, z2∗ = [z21, . . . , z2m]⊤, ∆ =
[∆1, . . . ,∆m]⊤ = [k3w1z21q21+q21z31, . . . , k3w1z2mq2m+
q2mz3m]⊤. Therefore, V is bounded. Hence, zij are bounded.

By Barlalat’s Lemma, limt→∞ V̇ = 0. So

lim
t→∞

w2
1z

2
3j = 0, 1 ≤ j ≤ m

lim
t→∞

z⊤2∗Lz2∗ = 0, lim
t→∞

(z1∗ + ∆)⊤L(z1∗ + ∆) = 0.

m
∑

j=1

µjz
2
2j = 0,

m
∑

j=1

µj(z1j + ∆j)
2 = 0.

By Lemma 2 in [22], we have limt→∞(z2∗(t)− c2(t)1) = 0
and limt→∞(z1∗(t) + ∆(t) − c1(t)1) = 0 where c1 and c2

1956



are bounded and are defined as

c2 =
1

m

m
∑

l=1

z2l, c1 =
1

m

m
∑

l=1

(z1l + ∆l).

Since at least there is one integer p such that µp 6= 0,

limt→∞ z2p = 0 and limt→∞(z1p + ∆p) = 0. Therefore,

limt→∞ z2j = 0 and limt→∞(z1j + ∆j) = 0 for 1 ≤ j ≤
m. Furthermore, we can prove that limt→∞ z3j = 0 and

limt→∞ z1j = 0 for 1 ≤ j ≤ n. By the definitions of the

variables, eqns. (4)-(5) hold.

With the aid of Lemma 2 and Property 3, we can design

the cooperative control laws τj such that eqns. (4)-(5) are

satisfied.

Theorem 1: For system (1)-(2), under Assumptions 1-3,

the control laws

τj = B̃−1
j

(

−Kũ∗j + Ỹj(q∗j , q̇∗j , η∗j , η̇∗j)âj − Λ∗j

)

(15)

and update laws

˙̂aj = −ΓjỸ
⊤
j (q∗j , q̇∗j , η∗j , η̇∗j)ũ∗j (16)

for 1 ≤ j ≤ m make (4)-(5) hold and âj bounded, where

symmetric constant matrices K > 0 and Γj > 0, ũ∗j =
u∗j − η∗j , η∗j = [η1j , η2j ]

⊤, η1j and η2j are defined in

(12)-(13), and

Λ∗j =

[

z1j + k3w1z2jq2j + z3jq2j

z2j

]

.

Proof: Let the nonnegative function

V =
1

2

m
∑

j=1

(z2
1j + z2

2j + z2
3j + ũ⊤

∗jM̃jũ∗j + ã⊤
j Γ−1

j ãj),

differentiating V along the solutions of the closed-loop

systems, we have

V̇ = −(z1∗ + ∆)⊤L(z1∗ + ∆) − z⊤2∗Lz2∗

−
m
∑

j=1

µjz
2
2j − k3w

2
1z

⊤
3∗z3∗ −

m
∑

j=1

µj(z1j + ∆j)
2

−ũ⊤
∗jKũ∗j

where we use the fact that ( ˙̃M j − 2C̃j) is skew symmet-

ric. Therefore, V is non-increasing. Following the proof

of Lemma 2, we can prove that limt→∞ ũ∗j = 0 and

limt→∞ zij = 0 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m. By the

definitions of the variables, it can be verified that (4)-(5)

hold.

Remark 3: Cooperative controllers (15)-(16) are decen-

tralized and make the group of systems converge to a point

which moves along the desired trajectory. The control law

τj consists of the relative information between neighbors.

The motion of the system is driven by the relative positions

and relative velocities among neighbors. The performance of

the closed-loop system depends on the connectivity of the

communication graph G [23]. The value λ2(L) (λ2 is the

smallest nonzero eigenvalue of L) affects the convergence

rate of z1∗ and z2∗. It depends on the topology of the graph

G and the weights bjl. The estimated parameters âj generally

do not converge to their actual values [24]. However, they are

bounded. To make the adaptive laws robust to disturbances,

robust adaptive techniques may be applied.

IV. FORMATION CONTROL OF MOBILE ROBOTS

The proposed results have many applications in the co-

operative control of multiple mobile robots. This section

presents one application.

Consider a group of m identical wheeled mobile robots

which move on a plane. Let Ξ∗j = [xj , yj , θj ]
⊤ be the state

of robot j, where (xj , yj) is the coordinate of the middle

point of the front wheels of robot j in the fixed coordinate

frame O-XY, θj is the orientation of robot j with respect

to the X-axis of the coordinate frame O-XY, the dynamics

of each robot can be described as (1)-(2) with the state

Ξ∗j instead of q∗j , where Cj , Gj , Mj , and Bj are suitable

matrices, and

J(Ξ∗j) = [sin θj ,− cos θj , 0].

Given a desired formation P described by constant cen-

troid offset vectors (pjx, pjy) (1 ≤ j ≤ m) satisfying
∑m

j=1 pjx = 0 and
∑m

j=1 pjy = 0 and a desired trajectory

Ξd = (xd, yd, θd) which satisfies

ẋd sin θd − ẏd cos θd = 0. (17)

Assume the communication between m robots is described

by a graph G, we consider the following problem.

Formation Control with A Desired Trajectory: Design a

control law for robot j using Ξd, Ξ∗j , and the relative

information between Ξ∗j and Ξ∗i for i ∈ Nj such that the

group of robots come into formation P and the centroid of

the group of robots moves along the desired trajectory, i.e.,

design control laws for system (1)-(2) such that

lim
t→∞

([

xl − xj

yl − yj

]

−

[

plx − pjx

ply − pjy

])

= 0, (18)

lim
t→∞

(θl − θj) = 0, 1 ≤ l 6= j ≤ m (19)

lim
t→∞

(

1

m

m
∑

i=1

xi − xd

)

= 0, (20)

lim
t→∞

(

1

m

m
∑

i=1

yi − yd

)

= 0. (21)

To solve this problem, let

g(Ξ∗j) =





cos θj 0
sin θj 0

0 1



 ,

the kinematics of each robot are as follows:

ẋj = v1j cos θj , ẏj = v1j sin θj , θ̇j = v2j , (22)

where v1j and v2j are the velocity and angular rate of robot

j, respectively. Similarly, noting (17) we have

ẋd = vd
1 cos θd, ẏd = vd

1 sin θd, θ̇d = vd
2 . (23)

where vd
1 = ẋd cos θd + ẏd sin θd.

1957



Next, we introduce the state transformation such that (22)

is converted into the chained form. Let






q1j = −θj ,
q2j = (xj − pjx) cos θj + (yj − pjy) sin θj

q3j = − (xj − pjx) sin θj + (yj − pjy) cos θj

(24)

and

u1j = −v2j , u2j = v1j + q3jv2j , (25)

we have eqn. (8). The reduced dynamics of each robot is (7).

Let






















qd
1 = −θd,

qd
2 = xd cos θd + yd sin θd,

qd
3 = −xd sin θd + yd cos θd

w1 = −vd
2 ,

w2 = vd
1 + (−xd sin θd + yd cos θd)vd

2

(26)

we have eqn. (9).

Simple calculation derives the following result.

Lemma 3: By the transformations in eqns. (24)-(26), if

(4)-(5) hold, then eqns. (18)-(21) are satisfied.

By Lemma 3, the formation control problem with a desired

trajectory can be solved by the results obtained in Theorem

1.

V. SIMULATIONS

To verify the effectiveness of the proposed results,

we present some simulation results. Let m = 3 and

the initial conditions of the robots be (−0.2,−20,−0.2),
(−3.3,−29.6, 0.3), and (−0.8,−18, 0.2). Assume the de-

sired formation P is a triangular which is defined by

(p1x, p1y) = (−6.6, 0), (p2x, p2y) = (3.3,−5), and

(p3x, p3y) = (3.3, 5) (Fig. 1). The desired trajectory

(xd, yd, θd) is generated by (23) with vd
1 = 10m/s, vd

2 =
0.5rad/s. The desired trajectory satisfies Assumptions 2-3.

Assume the communication graph G is shown in Fig. 2. The

cooperative controllers can be obtained by Theorem 1. In the

simulation, we assume the real inertia parameters M = 1 and

I = 1. We choose the control parameters bji = 2, k3 = 10,

K = 10, and Γ = 0.1. Fig. 3 shows the path of the centroid

of the three robots and the geometric patterns of the three

robots at several times. It is shown that the three robots come

into the desired formation and the centroid of the group of

robots converges to the desired trajectory. Figs. 4 and 5 show

the responses of M̂j and Îj . It can be seen that they are

bounded.

VI. CONCLUSION

This paper discusses the consensus control problem of

multiple uncertain mechanical systems. Adaptive cooperative

control laws are proposed with the aid of Lyapunov stability

theory and results from graph theory. The proposed results

are successfully applied to solve the formation control of

multiple mobile robots. Simulation results show effective-

ness of the proposed control laws. The obtained results in

this paper can be extended to more general nonholonomic

systems.
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line, Î3: dahsdot line)

REFERENCES

[1] M. A. Lewis and K.-H. Tan, “High precision formation control of
mobile robots using virtual structures,” Autonomous Robots, vol. 4,
pp. 387–403, 1997.

[2] W. Ren and R. W. Beard, “Formation feedback control for multiple
spacecraft via virtual structures,” IEE Proceedings - Control Theory

and Applications, vol. 151, no. 3, pp. 357–368, 2004.

[3] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,” IEEE Trans. on Robotics and Automation, vol. 14,
no. 6, pp. 926–939, 1998.

[4] J. Lawton, R. W. Beard, and B. Young, “A decentralized approach
to formation maneuvers,” IEEE Trans. on Robotics and Automation,
vol. 19, no. 6, pp. 933–941, 2003.

[5] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,” IEEE Trans. Robot.

Automat., vol. 17, pp. 905–908, 2001.

[6] H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation
stability,” IEEE Trans. on Robotics and Automation, vol. 20, pp. 443–
455, 2004.

[7] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and
coordinated control of groups,” Proc. of the IEEE Conf. on Decision

and Control, pp. 2968–2973, 2001.

[8] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algo-
rithms and theory,” IEEE Trans. on Auto. Contr., vol. 51, no. 3, pp.
401–420, 2006.

[9] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. on Automatic Control, vol. 52, no. 5,
pp. 863–868, 2007.

[10] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. on Auto. Contr., vol. 49, pp. 1465–
1476, 2004.

[11] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veermany,
“Decentralized control of vehicle formations,” Systems and Control

Letters, vol. 53, pp. 899–910, 2005.
[12] L. Moreau, “Stability of multiagent systems with time-dependent

communication links,” IEEE Trans. on Auto. Contr., vol. 50, no. 2,
pp. 169–182, 2005.

[13] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.

on Automatic Control, vol. 48, pp. 988–1001, 2003.
[14] Z. Lin, B. Francis, and M. Maggiore, “Necessary and sufficient

graphical conditions for formation control of unicycles,” IEEE Trans.

on Auto. Contr., vol. 50, no. 1, pp. 121–127, 2005.
[15] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks

of agents with switching topology and time-delays,” IEEE Trans. on

Auto. Contr., vol. 49, pp. 101–115, 2004.
[16] W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems

under dynamically changing interaction topologies,” IEEE Trans. on

Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.
[17] W. Dong and J. A. Farrell, “Decentralized cooperative control of

multiple nonholonomic systems,” Proc. of Conference of Decision and

Control, 2007.
[18] A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch, “Control

and stabilization of nonholonomic dynamic systems,” IEEE Trans. on

Automatic Control, vol. 37, pp. 1746–1757, 1992.
[19] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning:

Steering using sinusoids,” IEEE Trans. on Auto. Contr., vol. 38, no. 5,
pp. 700–716, 1993.

[20] W. Dong and W. L. Xu, “Adaptive tracking control of uncertain
nonholonomic dynamic system,” IEEE Trans. on Auto. Contr., vol. 43,
no. 3, pp. 450–454, 2001.

[21] R. Merris, “Laplacian graph eigenvectors,” Linear Algebra Appl, vol.
278, pp. 221–236, 1998.

[22] W. Dong and J. A. Farrell, “Decentralized cooperative control of
multiple nonholonomic dynamic systems with uncertainty,” submitted

to Automatica, 2007.
[23] M. C. DeGennaro and A. Jadbabaie, “Decentralized control of connec-

tivity for multi-agent systems,” Proc. of IEEE Conference on Decision

and Control, 2006.
[24] W. Dong, W. Huo, S. K. Tso, and W. L. Xu, “Tracking control of

dynamic nonholonomic systems and its application to mobile robots
with uncertainty,” IEEE Trans. on Robotics and Automation, vol. 16,
no. 6, pp. 870–874, 2000.

1959


