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Abstract— We address the problem of pattern generation
in obstacle-filled environments by a swarm of mobile robots.
Decentralized controllers are devised by using the Smoothed
Particle Hydrodynamics (SPH) method. The swarm is modelled
as an incompressible fluid subjected to external forces. Actual
robot issues such as finite size and nonholonomic constraints are
also addressed. Collision avoidance guarantees are discussed.
Finally, in the absence of obstacles, we prove for the first time
stability and convergence of controllers based on the SPH.

I. INTRODUCTION

The focus of this work is on using analogies with fluid
dynamics models to control swarms of robots. The main
motivation stems from the fact that a great variety of charac-
teristics desirable for a large group of robots may be observed
in fluids. Some examples of such characteristics are: (i) fluids
are easily deformed, (ii) fluids can easily flow around objects,
and (iii) the flow field variables and also the fluid phase can
be easily manipulated in order to design desired behaviors.

Other works have already mimicked fluid behaviors to
control large groups of robots. The authors of [1] used
Stokesian Dynamics. By using this technique the robots
had the behavior of particles suspended in a fluid and the
group shape could be controlled without losing the group
coherence. In [2] the kinetic theory of gases was used to
sweep a group of robots through a bounded region.

In this work we are interested in the so-called pattern
generation problem, which may be stated as follows:

Given N robots and any initial spatial distribution, the
geometry of the environment with static obstacles defining a
compact domain Ω ⊂ R

2, and a curve Γ : I → Ω, where
I ⊂ R, find a controller which enables the robots, without
colliding with static obstacles and each other, to form Γ.

Possible applications of an efficient solution to this task
are surveillance and cordoning off of hazardous areas. We
are interested in a decentralized solution which scales from
tens to hundreds of robots. Some approaches as in [3]
assume that each robot knows the positions of all the others.
To achieve scalability, it is more interesting to have an
approach that relies only on local information. Approaches
that depend on labelling the robots are also hard to scale
since it may be difficult to uniquely identify agents in the
swarm. Approaches based on leader-follower controllers are
examples of this class [4], [5]. Behavior-based techniques for
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formation control are applied in [6] and [7] but in these cases
proofs of stability of the given formation are not discussed.

The use of artificial potential fields to address the pattern
generation task in the absence of obstacles is discussed in [8]
and [9]. In these works, scalable approaches are derived and
proofs of convergence and stability are given. The problem
of staying connected during the task is also considered in [9].

In contrast to the others, in this work we use the Smo-
othed Particle Hydrodynamics method to model the swarm
emulating an incompressible fluid in an obstacle-filled envi-
ronment. We deal with static obstacles by computing a global
potential function and using virtual particles. The incompres-
sible fluid model allows for a loose way of controlling the
connectivity of the swarm. We provide a decentralized and
scalable approach which relies only on local information.
Moreover, there is no need to label the agents in the swarm.

II. SMOOTHED PARTICLE HYDRODYNAMICS

The Smoothed Particle Hydrodynamics (SPH) is a mesh-
free particle numerical method. It is a particle numerical
method since it employs a set of finite number of disordered
discrete particles to represent the state of the simulated
system. It is mesh-free due to the fact that it is not necessary
to generate a mesh to provide connectivity of the particles.
Additionally, SPH is considered a Lagrangian method, which
means that the individual particles are modelled in space and
in time in contrast to Eulerian methods that model the flux
of material through a control volume fixed in space.

The continuum governing equations of fluid dynamics
capture three salient phenomena: (i) conservation of mass;
(ii) conservation of momentum; and (iii) conservation of
energy. For inviscid compressible fluids, in the absence of
heat flux, the Lagrangian description is given by:

Dρ

Dt
= −ρ∇ · v , (1)

Dv
Dt

= −∇P

ρ
, (2)

De

Dt
= −

(
P

ρ

)
∇ · v , (3)

where ρ is density, v is velocity, e is the internal energy per
unit of mass, P is the hydrostatic pressure, ∇ is the gradient
operator, ∇ · () is the divergence, and D/Dt is the total
time derivative which is physically the time rate of change
following a moving fluid element.

In the SPH method, the continuum equations of fluid
dynamics are converted to a set of ordinary differential
equations, where each one controls the evolution of an attri-
bute of a specific particle. This conversion is performed by
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Fig. 1. One-dimensional kernel function. The solid, dashed, and dashdot
lines correspond respectively to h = 1, h = 0.75, and h = 0.5.

using differentiable interpolation kernels, which approximate
a delta function. The kernel is chosen to satisfy

∫
Υ

W (q −
q′, h)dq′ = 1 and limh→0 W (q − q′, h) = δ(q − q′),
where Υ is the volume that contains q, h is a parameter
that controls the influence area of W , and δ(x − x′) is the
Dirac delta function. The error in approximating the integral
representation of a function by summations of the function
evaluated at particle locations weighted by interpolation
kernels is O(h2) [10]. In this work, we use the cubic spline:

W (q, h) =
10

7πh2




1 − 3
2κ2 + 3

4κ3 if 0 ≤ κ ≤ 1 ,
1
4 (2 − κ)3 if 1 ≤ κ ≤ 2 ,
0 otherwise ,

(4)
where κ = ‖q‖/h. It can be observed that the function
support is determined by 2h (see Fig. 1).

The SPH conservation equations for a particle i are:

ρi =
∑

j

mjW (qij , h) , (5)

dvi

dt
= −

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

+ Πij

)
∇iWij + fi , (6)

dei

dt
=

1
2

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

+ Πij

)
vij · ∇iWij , (7)

where qi is the particle vector position [xi, yi]T , qij = qi −
qj , Wij = W (qij), vij = vi −vj , fi is the sum of external
forces normalized by the mass mi, and Πij is a dissipative
term called artificial viscosity added to handle shocks.

There are several variants for the viscosity term, the most
common of which is given by [10]:

Πij =

{
1

ρij
(−ξ1cijµij + ξ2µ

2
ij) if vij · qij < 0 ,

0 if vij · qij > 0 ,
(8)

where

µij =
hvij · qij

‖qij‖2 + η2
. (9)

In (8), ρij is the average between the densities of i and j,
ξ1 and ξ2 are positive viscosity constants, cij is the average
speed of sound, and η2 is a term added to avoid singularities.

The motion of incompressible fluids can also be simulated
using the SPH method. The key idea is to make a compres-
sible fluid behave like a nearly incompressible one. This can

be done by using the equation of state [11]:

Pi = Bi

[(
ρi

ρ0

)γ

− 1
]

, (10)

where ρ0 is the reference density (1000kg/m3 in the case
of water), γ is the ratio of specific heats, and Bi is the bulk
modulus. The bulk modulus is computed to guarantee a small
Mach number, M , (typically 0.1 − 0.01 ). The following
expression may be used [11]:

Bi =
(‖v‖max

M

)2

ρi , (11)

where ‖v‖max is the maximum velocity of the flow. For
liquids, the speed of sound of a particle i, which represents
the speed at which sound travels through the fluid element
represented by the particle, is given by ci =

√
Bi/ρi.

The authors of [12] proposed decentralized controllers for
large groups of robots based on the SPH method. In [12], the
SPH equations for compressible fluids were used to mimick
the behavior of air at 20o C. In our previous work [13] the
SPH method was used to provide decentralized controllers
in a pattern generation task with static obstacles. In the next
section, we present extensions of the technique in [13].

III. CONTROL POLICY

We assume that each robot of the team is a SPH particle
subjected to an external force, and since we use kernels with
compact support, it is possible to derive decentralized control
laws based on the SPH equations. The resulting controllers
are decentralized in the sense that only local information is
necessary: the gradient of a potential function at the location
of the robot i and position and velocity of the robot i itself
and of the robots in the neighborhood of i. For a robot i
with configuration qi = [xi, yi]T we define Ni as the set of
robots in the neighborhood of robot i:

Ni = {j �= i | ‖qj − qi‖ < D}. (12)

The distance D is determined by the kernel support size,
which in the case of the kernel in (4) is given by D = 2h.

A. Global Potential Functions

Our approach relies on the computation of a global po-
tential function. In this subsection we present two examples
of such functions: harmonic functions [13] and shape func-
tions [9]. Harmonic functions can be efficiently computed in
obstacle-filled environments. To numerically compute these
functions, we use the Finite Element Method (FEM). The
efficiency of such a method is due to its ability to work
properly with unstructured meshes which are used to exactly
decompose the solution domain.

If a safety factor, ε, is defined such that the desired pattern
is represented by a region between two curves Γ1 and Γ2,
we can define a harmonic function which drives the robots
toward the goal region and at the same time drives the
robots away from the obstacles. If the desired pattern, Γ,
is parameterized by a function s(x, y) = 0, then Γ1 is
such that s(x, y) = ε and Γ2 is such that s(x, y) = −ε.
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Fig. 2. Domain example.

Figure 2 presents an example of a domain with a circular
pattern. Harmonic functions are solutions to the Laplace’s
equation. In order to guarantee uniqueness in the solution, we
must define boundary conditions. We use constant Dirichlet
boundary conditions such that a maximum value is obtained
at the boundaries of the configuration space and a minimum
value is obtained at the desired pattern. This boundary value
problem (BVP) is given by:


∇2φ = 0 ,
Γ1 = Γ2 = 0 ,
∂Ω1 = ∂Ω2 = P = Vc ,

(13)

where φ is the harmonic function, Vc is a positive constant,
and P is a point inside desired closed curves (see Fig. 2).

In obstacle-free environments with desired smooth star
shapes, we can use shape functions. For a desired curve
parameterized by a function s(x, y) = 0, a shape function, φ,
is defined such that φ is a positive semi-definite function with
a minimum value equal to zero at the boundary Γ. In this
case, the pattern may be described in polar coordinates by
r = �(α) and the following shape function may be applied:

φ = ((r − �(α)) ◦ f)2 , (14)

where f : (x, y) → (α, r).

B. Holonomic Point Robot Abstraction

Our controller is derived by considering each robot as a
SPH particle at qi = [xi, yi]T subjected to an external force
given by the descent gradient of a global potential function.
Under the assumption of fully-actuated, holonomic, point
robots, each robot’s acceleration is given by q̈i = ui(q, t),
where q = [qT

1 , . . . ,qT
N ]T . The controller for each robot is:

ui(q) = bi − ζvi + kfi , (15)

where

bi = −
∑

j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

+ Πij

)
∇iWij , (16)

k and ζ are positive constants and fi is given by a vector
defined by −∇φ. In fact, we use vector fields of the form:

fi =

{
− ∇φ(qi)

‖∇φ(qi)‖β if ∇φ(qi) �= 0
0 if ∇φ(qi) = 0

, (17)

where β is a non-negative integer number. In (15) we include
a dissipative term proportional to vi, which represents a

(a) (b)

(c) (d)

Fig. 3. Simulation with 121 point robots from a starting configuration
(Fig. 3(a)) to the goal (Fig. 3(d)), with intermediate configurations (Figs.
3(b) and 3(c)).

damping to stabilize the system. It is important to mention
that ui(q) in (15) can be computed by taking into account
only robots in the neighborhood Ni defined in (12) due to
the compact support of the kernel, W . Figure 3 presents
a simulation with 121 point robots with control law given
by (15). Additional simulations can be found in [13].

C. Finite-size, Nonholonomic Robots

Now, we will describe how our approach may be adapted
to take into account actual robot issues. The first issue we
address is the finite size of actual robots. The static obstacles
are directly taken into account since we plan our potential
functions in the robots configuration space. We also assume
that our robots are circular in shape with radius R. Given
two robots, we guarantee that the robots do not collide with
each other if ‖qij‖ ≥ 2R + ε, where ε is a safety factor.
The collision avoidance of our approach is performed by the
artificial viscosity term in (8) with

µij =
hvij · qij

(‖qij‖ − (2R + ε))2
. (18)

This adaptation guarantees a repulsive term in (16)
between robots which are moving toward each other. This
term is repulsive since Πij ≥ 0 and ∇iWij points in the
direction of −qij . Note that Πij → ∞ when ‖qij‖ →
(2R + ε), i.e., when the robots are about to collide.

Besides the robot size, motion constraints are also an im-
portant consideration. In our experiments we use differential
drive, kinematically controlled robots. To control such robots
we use feedback linearization:[

v
ω

]
=
[

cos(θ) sin(θ)
− sin(θ)

d
cos(θ)

d

]
·
[

ẋd

ẏd

]
, (19)

where v and ω are linear and angular velocities, respectively,
and θ is the robot orientation. The parameter d defines a
point, [xd, yd]T , in the global frame, which corresponds to
[d, 0]T in the robot frame. Now, each robot is represented in
its configuration space by the point [xdi

, ydi
]T such that the

physical extent of the robot lies within the circle of center
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[xdi
, ydi

]T and radius R′ = R + d. The SPH particles are
also placed at the points [xdi

, ydi
]T . Since our controllers

were devised for robots fully actuated in their acceleration
we compute the integral [ẋdi

, ẏdi
]T =

∫
ui(q)dt.

D. Virtual Particles

When controlling multiple robots, due to the presence of
inter-particle forces, bi, the external force, fi, may be not
enough to avoid collisions. We add virtual particles right
at the boundaries of the configuration space such that we
can guarantee collision avoidance. In fact, we want to take
advantage of the collision avoidance property provided by the
artificial viscosity. There are several ways of implementing
this virtual particle idea. One option is to create a virtual
particle at the closest boundary point, p. Then we adapt the
term bi in (16) such that:

b′
i = −

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

+ Πij

)
∇iWij(h)

− λΠip∇iWip(h′) ,

(20)

where λ is a positive constant, j iterates only through the N
particles that represent real robots, and p refers to the virtual
particle. Due to the fact that the size of the robot is already
taken into account in the configuration space, we use R = 0
in (18). Note that the virtual particle does not change the
density ρi and also does not have its own density. The other
terms necessary to compute Πip are ρip = ρi and cip = ci.

Another option is to assign virtual particles to each cell
with obstacle in a local occupancy grid. This option was
found to be the most robust during experiments.

IV. ANALYSIS

Our stability and convergence analysis is built upon the
results in [9]. The next four results correspond to our version
of the Results 4.1 to 4.4 in [9]. We assume obstacle-free
environments and fi in (15) is given by −∇φ, where φ is
the shape function in (14). We also assume that the robots
are represented by identical SPH particles with mass m.

Before presenting our results we define the function φS(q)
as a measure of performance that should be minimized:

φS(q) = k
∑

i

φ(qi). (21)

Proposition 1 Given a system of N point robots with dyna-
mics q̈i = ui(q, t) and a control law determined by (15),
where fi = −∇φ and φ is a shape function, the system
equilibrium points are at an extremum of φS .

Proof: Since the system is in equilibrium we have q̈ =
0 and q̇ = 0. We have also Πij = 0 and ui = 0. Therefore,∑

i ui = 0. Since ∇iWij = −∇jWij , we have
∑

i ui =
k
∑

i ∇φi = 0. However, k
∑

i ∇φi = 0 is the necessary
condition for φS to be at an extremum.

Proposition 2 Consider the positive semi-definite function:

V = φS +
∑

i

(e′i − e0) +
1
2
vTv , (22)

where e′i is the part of the internal energy related to
conservative forces such that:

de′i
dt

=
1
2

∑
j

m

(
Pi

ρ2
i

+
Pj

ρ2
j

)
vij · ∇iWij (23)

and e0 is the minimum internal energy which is obtained
when vi = 0 and ρi = ρ0 for all i. Consider also the set
Ωc = {x ∈ X|V (q,v) ≤ c}, where X is the state space
defined by x = [qT

1 vT
1 . . .qT

NvT
N ]T . Given the set S with

boundary determined by the desired pattern Γ and the system
of robots defined in Proposition 1 with initial conditions x0 ∈
Ωc, the system converges to an invariant set, ΩI ⊂ Ωc, such
that the points in ΩI minimize the measure function φS .

Proof: Since V is continuous, we conclude that Ωc is
closed for some c > 0. Also, due to the fact that φS+

∑
i(e

′
i−

e0) ≤ c and vT v ≤ c we conclude that Ωc is compact.
We have that

V̇ =
∑

i

(k∇φT
i q̇i + vT

i v̇i) +
∑

i

de′i
dt

. (24)

By using (15) and (23), and the fact that ∇iWij =
−∇jWji and Πij = Πji

V̇ = −
∑

i

ζvT
i vi −

∑
i

1
2

∑
j

mΠijvT
ij∇iWij ≤ 0.

By using the LaSalle’s Invariance Principle, we conclude
that for any x0 ∈ Ωc the system converges asymptotically
to the largest invariant set ΩI = {x ∈ X|V̇ = 0}, which
corresponds to vi = 0 ∀i with ΩI ⊂ Ωc. Since ΩI contains
all equilibrium points in Ωc and based on the Proposition 1
we conclude that all points in ΩI minimize φS .

Proposition 3 Consider the set ΩS defined by

ΩS = {x|φ(qi) = 0,vi = 0, ρi = ρ0∀i} , (25)

where φ is a shape function. Given the system of N robots
defined in Proposition 1, the set ΩS is a stable submanifold
and ΩS ⊂ ΩI .

Proof: Since vi = 0 for all i, ΩS ⊂ ΩI . The potential
energy of the system is given by U = φS +

∑
i e′i. We need

to show that the hessian of U , HU = HφS
+ H∑

i e′
i
, is

positive semi-definite when qi ∈ Γ and ρi = ρ0 ∀i.
It is proved in [9] that the 2N×2N matrix HφS

is positive
semi-definite when φ(qi) = 0. Therefore, we need to prove
that H∑

i e′
i
≥ 0 when ρi = ρ0. By using ∇iWij = −∇jWji

in (23) we can write after some algebra

∂
∑

n e′n
∂qi

=
∑

j

m

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇iWij . (26)

After using the state equation (10), computing the second
derivatives, and using ρi = ρ0, we can obtain

H∑
i e′

i
=

m2γσ

ρ2
0

AAT ≥ 0 , (27)
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where σ is a positive constant and

A =




∑
k ∂ W1k

∂x1
∂ W12

∂x1
. . . ∂ W1N

∂x1∑
k ∂ W1k

∂y1
∂ W12

∂y1
. . . ∂ W1N

∂y1
...

...
...

...
∂ WN1

∂xN
∂ WN2

∂xN
. . .

∑
k ∂ WNk

∂xN

∂ WN1
∂yN

∂ WN2
∂yN

. . .
∑

k ∂ WNk

∂yN




.

Proposition 4 For any smooth star shape, Γ, the system of
N robots defined in Proposition 1, with ρi = ρ0 ∀i during
all instants of time t, converges to Γ for any x0 ∈ Ωc.

Proof: If ρi = ρ0, ∀i, during all instants of time t,
then the equilibrium of the system is given by ∇iφ(qi) = 0,
∀i. Proposition 2 guarantees the system converges to ΩI .
As proven in [9] we have that ∇iφ(qi) = 0 if and only if
qi ∈ Γ. Therefore ΩI ≡ ΩS ≡ Γ.

Next, we present results concerning collision avoidance.

Proposition 5 Given a pair of robots, i and j, with radius
R, dynamics q̈i = ui(q, t), and control law (15), where µij

is given by (18), the robots will never collide with each other.

Proof: The worst case happens when the robots i and j
drive with opposite maximum finite velocities vm and −vm,
respectively, and bi and fi assume constant maximum finite
values in the direction qji, and bj and fj assume constant
maximum finite values in the direction qij . Since −∇iWij

points in the direction of qij and Πij ≥ 0 we conclude that
the term given by the artificial viscosity is a repulsive term.
Due to the symmetry we have in this case vi = −vj . Further,
by checking the expression of µij in (18) one should notice
that the artificial viscosity term corresponds to a nonlinear
damping −F (qi,qj)vi−G(qi,qj)v2

i , where F ≥ 0 and G ≥
0. The artificial viscosity is active in the interval ‖qij‖ < 2h,
and since F → +∞ and G → +∞ when ‖qij‖ → (2R+ε)
we can guarantee that vi → 0 somewhere in the interval
2R + ε ≤ ‖qij‖ < 2h. Due to symmetry we can guarantee
that vij · qij ≥ 0 when ‖qij‖ → 2R + ε.

Proposition 6 Given a robot, i, with dynamics q̈i =
ui(q, t), and the control law determined by (15), with virtual
particles defined as in Subsection III-D, the robot will never
collide with static obstacles.

Proof: We just need to guarantee that vi · (qi −p) ≥ 0
when ‖qi −p‖− ε → 0, where p is the closest point in the
boundary of the configuration space. We have that vp = 0
and b′

i is determined by (20). The arguments of the proof
of Proposition 5 complete the proof.

V. EXPERIMENTAL AND SIMULATION RESULTS

In this section, we present experimental and simulation
results that verify the proposed approach for finite size and
nonholonomic robots. Movies can be seen on the web page
http://kumar.cis.upenn.edu/∼lucpim/icra2008.

Fig. 4. The 20 × 13.5 × 22.2 cm3 differential drive robotics platform.

In the experiments we used a team of seven differen-
tial drive, kinematically controlled robots called Scarabs
(see Fig. 4). Details of the Scarabs are described in [14]. The
team of robots were provided with a map of the environment
which was defined by the boundaries of the experimental
area and static obstacles. A vector field based on harmonic
functions was computed off-line. Each robot computed its
location in the map based on localization information from
an overhead tracking system and current velocity from its
motor controller. This information was broadcasted over
the network to the other robots. To emulate the notion of
neighborhoods in the smaller experimental area, each robot
ignored messages from robots a distance greater than 2 m. At
every update of the control algorithm, each robot computed
its current SPH state based on its local information and the
information received over the network. Additionally, each
robot incorporated virtual particles based on the map within
a region 2h′ × 2h′, with h′ = 0.3 m.

A vignette of one trial run of the implementation is shown
in Fig. 5. The control law was executing at an update rate of
10 Hz while the inter-agent network communications were
executing at a higher rate of 20 Hz to accommodate the
asynchronous system design. One can see that two robots
did not converge to the goal. This was due to limitations of
the minimum allowed velocities of the actual robots. Since
one of the robots that had already reached the goal was not
moving, the two other ones could not converge.

We implemented simulations using the 3D environment
GAZEBO [15], which allows for simulating conditions that
are very close to the real world ones. We used robot models
that capture the geometry, kinematics, and dynamics of the
Scarab robots. Moreover, we considered a virtual world with
the same dimensions of the area where the experiments were
performed. The obstacles and the goal were also the same.
A simulation trial with 15 robots is presented in Fig. 6.

VI. CONCLUSIONS

In this work we extended the results of a novel decen-
tralized approach to control swarms of robots presented in
[13] to the case of finite size and differential drive robots.
We used the SPH technique to model the swarm as an
incompressible fluid and also a global potential function
that allows for solving the pattern generation task in the
presence of obstacles. We chose the potential function to
be a harmonic function. The Finite Element Method was
used to compute this function which guarantees efficiency in
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Fig. 5. Experimental Results. A team of seven robots, starting from an
initial configuration (Fig. 5(a)), control around an obstacle (Figs. 5(c), 5(e),
and 5(g)) to a goal circular formation (Fig. 5(i)). The results in the
configuration space are also shown in Figs. 5(b), 5(d), 5(f), 5(h), and 5(j).

geometrically complicate domains. By adapting the artificial
viscosity term and also by including virtual particles we
were able to guarantee that the robots are driven safely.
For obstacle-free environments we used shape functions and
proved stability and convergence of our controllers.

Our approach is scalable and there is no need for labelling
the robots. The approach is also robust to dynamic deletion
and addition of agents. Since the robots try to keep the
density of the fluid model constant, this approach allows for
a loose way of controlling the group connectivity.
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