
Formation path following control of unicycle-type mobile robots

Jawhar Ghommam, Maarouf Saad and Faı̈çal Mnif

Abstract— This paper presents a control strategy for coordi-
nation of multiple mobile robots. A combination of the virtual
structure and path following approaches is used to derive the
formation architecture. The formation controller is proposed
for the kinematic model of two-degrees of freedom unicycle-
type mobile robots. The approach is then extended to consider
formation controller for its complete dynamic model. The
controller is designed in such a way that the path derivative is
left as a free input to synchronize the robot’s motion. Simulation
results with three robots, are included to show the performance
of our control system.

I. INTRODUCTION

During the last years, efforts have been made to give
autonomy to single mobile robots by using different sensors,
actuators and advanced control algorithms. This was mainly
motivated by the necessity to develop complex tasks in an
autonomous way, as demanded by service or production
applications. In some applications, a valid alternative (or
even the mandatory solution) is the use of multiple simple
robots which, operating in a coordinated way, can develop
complex tasks ([8], [1], [2]). This alternative offers additional
advantages, in terms of flexibility in operating the group of
robots and failure tolerance due to redundancy in available
mobile robots [3]. In the literature, there have been roughly
three methods to formation control of multiple robots : leader
following, behavioral and virtual structure. Each approach
has its own advantages and disadvantages.

In the leader following approach, some vehicles are consi-
dered as leaders, whilst the rest of robots in the group act
as followers [8], [6]. The leaders track predefined reference
trajectories, and the followers track transformed versions
of the states of their nearest neighbors according to given
schemes. An advantage of the leader-following approach is
that it is easy to understand and implement. In addition,
the formation can still be maintained even if the leader is
perturbed by some disturbances. However, the disadvantage
related to this approach is that there is no explicit feedback to
the formation, that is, no explicit feedback from the followers
to the leader in this case.

The behavioral approach prescribes a set of desired beha-
viors for each member in the group, and weighs them such
that desirable group behavior emerges without an explicit
model of the subsystems or the environment. Possible be-
haviors include trajectory and neighbor tracking, collision
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and obstacle avoidance, and formation keeping. In [4] the
behavioral approach for multi-robot teams is described where
formation behaviors are implemented with other navigational
behaviors to derive control strategies for goal seeking, col-
lision avoidance and formation maintenance. The advantage
is that it is natural to derive control strategies when vehicles
have multiple competing objectives, and an explicit feedback
is included through communication between neighbors. The
disadvantages is that the group behavior cannot be explicitly
defined, and it is difficult to analyze the approach mathema-
tically and guarantee the group stability.

In the virtual structure approach, the entire formation is
treated as a single, virtual, structure and acts as a single
rigid body. The control law for a single vehicle is derived
by defining the dynamics of the virtual structure and then
translates the motion of the virtual structure into the desired
motion for each vehicle ([16], [17], [18]). in [5] virtual
structures have been achieved by having all members of the
formation tracking assigned nodes which move into desired
configuration. A formation feedback has been used to prevent
members leaving the group. Each member of the formation
tracks a virtual element, while the motion of the elements are
governed by a formation function that specifies the desired
geometry of the formation. The main advantages of the
virtual structure approach is that it is fairly easy to prescribe
the coordinated behavior for the group, and the formation
can be maintained very well during the manoeuvres, i.e.
the virtual structure can evolve as a whole in a given
direction with some given orientation and maintain a rigid
geometric relationship among multiple vehicles. However, if
the formation has to maintain the exact same virtual structure
at the times, the potential applications are limited especially
when the formation shape is time-varying or needs to be
frequently reconfigured.

This paper develops a control law based on virtual struc-
ture approach for coordination of a group of N mobile
robots. The conventional virtual structure is modified so
that the formation shape can change. A formation of a
simplified kinematic model of robots is firstly considered
to clarify the design philosophy. The proposed technique
is then extended to the dynamics of mobile robots with
nonholonomic constraints. The conventional virtual structure
approach is modified so that the formation shape can vary,
i.e. the robots can change their relative positions with respect
to the center of the virtual structure during the manoeuvre.
The technique of maneuvering design [9] is employed to
guarantee convergence of the robots to their locations with a
prescribed dynamic. The feedback controller is designed in
such a way that the derivative of the path parameter is left
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as an additional control input to synchronize the formation
motion.

II. PROBLEM STATEMENT

A. Kinematic model

We consider a group of N mobile robots, each of which
has the following equations of motion

ẋi = vi cos(θi)
ẏi = vi sin(θi)
θ̇i = ωi (1)

where, ηi = [xi, yi, θi]� denotes the position and the
orientation vector of the ith robot of the group with respect
to an inertial coordination frame see Fig 1. vi and ωi stand
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Fig. 1. Formation Setup.

for the linear and angular velocities respectively. For the
group to move in a prescribed formation, each member will
require an individual parameterized reference path so that
when all paths’ parameters are synchronized the member
i will be in formation. We can generalize the setup of a
single path ξ(s) to n paths by defining the center of a
virtual structure that moves along a given reference path
ξ(s0) = [xd0(s0), yd0(s0)] with s0 being a path parameter
and create a set of n designation vectors li(xd0(si), yd0(si))
relative to the center of the structure. When the center of the
virtual structure moves along the path ξ0(s0), mobile robot
i will then follow the individual desired path given by

ξi(si) = ξ0(s0) + R(θd0(si))li(xd0(si), yd0(si)) (2)

where R(θd0(si)) is a rotation matrix from a frame attached
to the center of the virtual structure and the earth fixed frame.
which is given as

R(θd0(si)) =
[

cos(θ0(si)) − sin(θ0(si))
sin(θ0(si)) cos(θ0(si))

]

θd0(si) = arctan
( ysi

d0

xsi

d0

)
(3)

where the partial derivatives notations in [9]-[10] are used,
i.e.,

ysi

d0 =
∂yd0(si)
∂si

, and xsi

d0 =
∂xd0(si)
∂si

B. Control objective

Before going onward the design, we first give the follo-
wing assumption :

Assumption 1:
1) We assume that each mobile robot i of the formation

broadcasts its state and reference trajectory to the rest
of the robot in the group. Moreover it can receive states
and reference trajectory from the other robot of the
group.

2) The desired geometric path is regularly parameterized
i.e. there exist strictly positive constants ε1i and ε2i,
1 ≤ i ≤ N such that

(xsi

di)
2(s) + (ysi

di)
2(s) ≥ ε1i, ṡ0 ≥ ε2i (4)

Remark 1: The last inequality of equation (4), means
that the center of the virtual structure moves forward.

The overall control objective is to solve the Formation
Problem for N mobile robots which consists of two parts
[9] : The geometric task which ensures that the individual
mobile robot converges to and stay at its designation in
the formation. The dynamic task ensures that the formation
maintains a speed along the path according to the given speed
assignment. The formation control objective boils down to
design controller vi and ωi such that

lim
t→∞ ‖ηi(t) − ηdi(t)‖ = 0

lim
t→∞ |si(t) − s0(t)| = 0 (5)

where ηid denotes the ith reference path to be tracked by
robot i.

III. PATH FOLLOWING ERROR DYNAMIC

The problem we consider here is the path following for
each mobile robot in the formation ; that is we wish to find
control law vi and ωi such that the robot follows a reference
point in the path with position ηdi = [xdi, ydi, θdi]� and
inputs vdi and ωdi. The path error is therefore interpreted in
a frame attached to the reference path ξ(si). Following [11]
we define the error coordinates

 xei

yei

ψei


 =


 cos(θi) sin(θi) 0

− sin(θi) cos(θi) 0
0 0 1





 xi − xdi

yi − ydi

θi − θdi




(6)
where θdi is defined as

θdi = arctan
(ysi

di

xsi

di

)
(7)

The error dynamics are then

ẋei = vi − vdi cos(θei) + yeiωi

ẏei = vdi sin(θei) − xeiωi (8)

θ̇ei = ωi − ωdi
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where we have defined

vdi =
√
xsi

di(si)2 + ysi

di(si)2ṡi := v̄di(si)ṡi (9)

ωdi =
xsi

di(si)y
s2

i

di (si) − x
s2

i

di (si)ysi

di(si)
xsi

di(si)2 + ysi

di(si)2
ṡi := ω̄di(si)ṡi

(10)

IV. CONTROL DESIGN

In the tracking model (8), yei could not be directly
controlled, and to overcome this difficulty, we employ the
backstepping approach. [13].
Define the following variable

˙̃si = ṡi +�i(t, xe, ye, θe) (11)

where xe = [xe1, xe2, . . . , xen]�, ye = [ye1, ye2, . . . , yen]�

and θe = [θe1, θe2, . . . , θen]�, �i(t, xe, ye, θe) is a strictly
positive function that specifies how fast the ith mobile robot
should move to maintain the formation since ṡi is related to
the desired forward speed vdi.

Step 1: Design a controller to stabilize the xei dynamic.
The variable ˙̃si should be left as an extra controller in order
to synchronize all the path parameters of each mobile robot
in the formation. We therefore choose the following control
for xei

vi = −k1ixei + v̄di� cos(θei) (12)

in closed loop the xei dynamic rewrites

ẋei = −k1ixei − v̄di
˙̃si cos(θei) + yeiωi (13)

From (13), it is seen that if ˙̃si and yei are zero, then xei

globally exponentially converges to zero. The next step of
the design will focus on designing a controller to stabilize
θei at the origin.

Step 2: Design a controller for ωi. Consider the follo-
wing Lyapunov function

V =
1
2

n∑
i=1

(x2
ei + y2

ei + θ2ei + γi(si − s0)2) (14)

where γi is a positive constant. The time derivative of (14)
along the solutions of (13) and (8) yields

V̇ =
n∑

i=1

xei(−k1ixei − v̄di
˙̃si cos(θei) + yeiωi)

+
n∑

i=1

yei(v̄di( ˙̃si +�i) sin(θei) − xeiωi) +
n∑

i=1

θei(ωi

−ω̄di( ˙̃s+�i)) +
n∑

i=1

γi(si − s0)( ˙̃si +�i − ṡ0)

(15)

If we select

�i = ṡ0 (16)

the derivative of the Lyapunov function V becomes

V̇ =
n∑

i=1

−k1ix
2
ei + θei

[
yeiv̄di�i

∫ 1

0

cos(λθei)dλ

+ωi − ω̄di�i

]
+

n∑
i=1

[
− v̄di cos(θei)xei

+yeiv̄di sin(θei) − θeiω̄di + γi(si − s0)
]
˙̃si (17)

To make the derivative of the Lyapunov function V negative,
we choose the following controllers

ωi = −k2iθei − yeiv̄di�i

∫ 1

0

cos(λθei)dλ+ ω̄di�i

˙̃si = −εω tanh
(
− v̄di cos(θei)xei + yeiv̄di sin(θei)

−θeiω̄di + γi(si − s0)
)

(18)

where εω is a positive constant to be selected later. Substi-
tuting the equations of (18) into (17) yields

V̇ =
n∑

i=1

−k1ix
2
ei − k2iθ

2
ei − εωφi tanh(φi) (19)

where φi = −v̄di cos(θei)xei + yeiv̄di sin(θei) − θeiω̄di +
γi(si − s0). We are able now to choose an appropriate
function for ṡ0 such that when the tracking errors are large,
the center of the virtual structure will wait for the rest of
the group however when the errors converge to zero, we
impose ṡ0 to approach a given positive bounded function
ω0(t) which means that the center of the virtual structure
will move at a desired speed. ṡ0 can be chosen as among
many others [14]

ṡ0 = ω0(t)(1 − κ1e
−κ2(t−t0))(1 − κ3 tanh(x�e Γxxe

+y�e Γyye + θ�e Γθθe)) (20)

where ω0(t) is a strictly positive and bounded function. This
function specifies how fast the whole group of robots should
move. Γx,Γy and Γθ are weighting positive matrices. All
the constants κ1, κ2 and κ3 are nonnegative and κ1 and κ3

should be less than 1. Now if we choose the constant εω

such that

εω < ω0(t)(1 − κ1)(1 − κ3) (21)

then we have

ṡi = −εω tanh(φi) + ω0(t)(1 − κ1e
−κ2(t−t0))

×(1 − κ3 tanh(x�e Γxxe + y�e Γyye + θ�e Γθθe))
≥ −εω + ω0(t)(1 − κ1)(1 − κ3) > 0 (22)
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From the above control design, we have the closed loop
system

ẋei = −k1ixei − v̄di
˙̃si cos(θei) + yeiωi

ẏei = vdi sin(θei) + k2iθeixei + yeixeiv̄di

×�i

∫ 1

0

cos(λθei)dλ− xeiω̄di�i (23)

θ̇ei = −k2iθei − yeiv̄di�i

∫ 1

0

cos(λθei)dλ− ω̄di
˙̃si

ṡi = −εω tanh(φi) + ω0(t)(1 − κ1e
−κ2(t−t0))

×(1 − κ3 tanh(x�e Γxxe + y�e Γyye + θ�e Γθθe))

We now state the main result of the formation control for
kinematic model of unicycle-type mobile robots.

Theorem 1: Under Assumption 1, the control inputs vi

and ωi given in (12) and (18) and the time derivative of each
individual path ṡi given in (22) for the mobile robot i solve
the formation control objective. In particular the closed loop
system is forward complete and the position and orientation
of the robots track their path reference asymptotically in the
sense of (5)

Proof: (Forward completness) From (19), we have that
V̇ ≤ 0, which implies that

V (t) ≤ V (t0), ∀t ≥ t0 (24)

From the definition of V , the right hand side of (24) is boun-
ded by a positive constant depending on the initial conditions.
The boundedness of the left hand side of (24) also implies
those of xei, yei, θei and si − s0 for all t ≥ t0 ≥ 0. The
assumed boundedness of ω0(t) implies that of the right hand
side of the last equation of (23), depends continuously on t
through bounded functions. It follows that si and therefore
s0 are bounded on the maximal interval of definition [0, T ),
this excludes finite escape time so T = +∞. This in turn
implies by construction that xi(t), yi(t), θi(t), si and s0 do
not go to infinity in finite time.
(Stability of (xei, yei, θei)) From the above argument on the
boundedness of (xei, yei, θei, si − s0), applying Barbalt’s
lemma [19] to (19) results in

limt→∞(xei, θei) = 0
limt→∞ φi tanh(φi) = 0

(25)

On the other hand, from the second equation of (25), we
conclude that

limt→∞ φi = 0
limt→∞ ˙̃si = 0

(26)

From this fact, we also conclude that

limt→∞(si − s0) = 0 (27)

which satisfies the second objective of (5). To satisfy the first
objective of (5), we have to show that yei also converges to
zero as t goes to infinity. In closed loop the θei dynamic
rewrites as follows

θ̇ei = −k2iθei − yeiv̄di�i

∫ 1

0

cos(λθei)dλ− ω̄di
˙̃si (28)

Let f(t) = −yeiv̄di�i

∫ 1

0
cos(λθei)dλ − ω̄di

˙̃si, a direct
application of lemma 2 in [13](see appendix), it follows that

limt→∞ yeiv̄di�i

∫ 1

0

cos(λθei)dλ = 0

since limt→∞
∫ 1

0
cos(λθei)dλ = 1 then limt→∞ yei = 0

which concludes about the first objective of (5).

V. EXTENSION OF FORMATION CONTROL TO DYNAMIC

MODEL OF THE MOBILE ROBOT

In this section, we study the augmented system (8) appen-
ded with a dynamic [12].

ẋei = vi − vdi cos(θei) + yeiωi

ẏei = vdi sin(θei) − xeiωi (29)

θ̇ei = ωi − ωdi

M iν̇i = −Ci(ωi)νi −Diνi +Biτi

where νi = [vi, ωi]�, τi = [τ1i, τ2i]� being the control vector
torque applied to the wheels of the robot i. The modified
mass matrix, Coriolis and Damping matrices are given by

M i = B−1
i MiBi, Ci(ωi) = B−1

i Ci(ωi)Bi

Di = B−1
i DiBi

where Bi is an invertible matrix given by Bi =[
1 bi
1 −bi

]
and M =

[
m11i m12i

m12i m11i

]
, Ci(ωi) =[

0 ciωi

−ciωi 0

]
,Di =

[
d11i 0
0 d22i

]
with

bi,m11i,m22i, d11i, d22i and ci are the dynamic parameters
of each group which are not necessarily know. Definitions
of these parameters are given in [12]. In this section we are
intended to show that the formation control developed for
the kinematic model can also be obtained for the complete
dynamic of the unicycle-type mobile robots. The control
objective is thereby similar to that of (5) and consists of
finding the controller τi that satisfies all conditions of (5).

Introduce the following new variables

νei = νi − ανi
, ⇒ vei = vi − αvi

, ωei = ωi − αωi

(30)
where αvi

and αωi
are defined as in (12) and (18) respecti-

vely. Following the notation in section IV, in the new coor-
dinates (xei, yei, θei, vei, ωei) the system (29) is transformed
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into

ẋei = −k1ixei − v̄di
˙̃si cos(θei) + yeiωi + vei

ẏei = vdi sin(θei) + k2iθeixei + yeixeiv̄di

×�i

∫ 1

0

cos(λθei)dλ− xeiω̄di�i − xeiωei

θ̇ei = −k2iθei − yeiv̄di�i

∫ 1

0

cos(λθei)dλ− ω̄di
˙̃si

+ωei (31)

Mνei = −Ci(ωi)νi −Diνi −M i[α̇vi
, α̇ωi

]� +Biτi

= −Diνei + ΦiΘi +Biτi

where

Φi =
[
ω2

i −αvi
−α̇vi

0 0 0
0 0 0 −ωivi −αωi

−α̇ωi

]
Θi =

[
bici d11i m11i +m12i

ci
bi

d22i m11i −m12i

]�
(32)

At this stage, we design the actual control input vector τi and
updated laws for unknown system parameter vector Θi for
each robot i. To do so, we consider the following Lyapunov
function

V2 = V +
1
2

N∑
i

(
ν�eiM iνei + Θ̃�

i Γ−1
i Θ̃i

)
(33)

where Θ̃i = Θi − Θ̂i, with Θ̂i being an estimate of Θi and
Γi is a symmetric positive definite matrix. Differentiating
both sides of (33) along the solutions of (31) and (17) and
choosing the control input τi, the path parameter si and the
updated law Θ̂i as

τi = B−1
(
−K1iνei − ΦiΘ̂i −

[
xei θei

]� )
˙̂Θi = Γiproj(Φ�

i νei, Θ̂i)
ṡi = −εω tanh(φi) + ω0(t)(1 − κ1e

−κ2(t−t0))
×(1 − κ3 tanh(x�e Γxxe + y�e Γyye + θ�e Γθθe))

(34)

Where the operator, proj, is the Lipschitz continuous
projection [7] algorithm applied in our case as follows :

proj(π, µ̂) = π, if, Ξ(µ̂) ≤ 0
proj(π, µ̂) = π, if, Ξ(µ̂) ≥ 0 and Ξµ̂(µ̂) ≤ 0
proj(π, µ̂) = (1 − Ξ(µ̂))π, if, Ξ(µ̂) > 0 and Ξµ̂(µ̂) > 0

where Ξ(µ̂) = (µ̂2−µ2
M )/(k2 +2kµM ), Ξµ̂(µ̂) = (∂Ξµ̂(µ̂)

∂µ̂ ),
k is an arbitrarily small positive constant, ω̂ is an estimate
of µ and |µ| ≤ µM . The projection algorithm is such that if
˙̂µ = proj(π, µ) and µ̂(t0) ≤ µM then

a) µ̂(t) ≤ µM + k, ∀0 ≤ t0 ≤ t ≤ ∞
b) proj(π, µ̂) is Lipschitz continuous
c) |proj(π, µ̂)| ≤ |π|

d) µ̃proj(π, µ̂) ≥ µ̃π with µ̃ = µ− µ̂

and K1i is a symmetric positive definite matrix. Using
Property d) of the projection algorithm results in

V̇2 ≤ −
n∑

i=1

[
k1ix

2
ei + k2iθ

2
ei + εωφi tanh(φi)

+ν�ei(Di +K1i)νei

]
(35)

From the above control design, we have the closed loop
system

ẋei = −k1ixei − v̄di
˙̃si cos(θei) + yeiωi + vei

ẏei = vdi sin(θei) + k2iθeixei + yeixeiv̄di

×�i

∫ 1

0

cos(λθei)dλ− xeiω̄di�i − xeiωei

θ̇ei = −k2iθei − yeiv̄di�i

∫ 1

0

cos(λθei)dλ− ω̄di
˙̃si

+ωei

Mνei = −(Di +K1i)νei + ΦiΘ̃i −
[
xei θei

]�
ṡi = −εω tanh(φi) + ω0(t)(1 − κ1e

−κ2(t−t0))
×(1 − κ3 tanh(x�e Γxxe + y�e Γyye + θ�e Γθθe))

˙̃Θi = −Γiproj(Φ�
i νei, Θ̂i) (36)

Theorem 2: Under Assumption 1, the control inputs

τi and the update law ˙̂Θi given in (34) for the mobile
robot i solve the formation control objective. In particular
the closed loop system (36) is forward complete and all
signals in the closed loop system are Uniformly Ultimately
Bounded (UUB).

Proof: Let Xei = [xei, yei, θei]� and Zi =
[X�

ei , ν
�
ei, Θ̂

�
i , si]�. Considering (35), by subtracting and

adding 1
2

∑N
i=1 Θ̃�

i Γ−1
i Θ̃i to its right hand side, we arrive

at
V̇2 ≤ δV2 + ρ (37)

where δ = min
(
1, 2µ1, . . . , µN

)
, µi = min

(
k1i, k2i, εω

)
and ρ = 1

2

∑N
i=1 Θ̃�

i Γ−1
i Θ̃i. From (37), it is straightforward

to show that

V2(t) ≤ V2(t0)e−δ(t−t0) +
ρ

δ
(38)

This implies that for all t in the maximal interval of definition
[0, T )

‖Zi‖ ≤ pi‖Zi(t0)‖e−0.5δ(t−t0) + ρi (39)

where pi is a constant that depends on the elements of Γi,
and ρi =

√
ρ
δ . Consequently, all the signals in the closed-

loop are guaranteed to be UUB.
The assumed boundedness of ω0(t) implies that the right
hand side of (36) depends continuously on time t through
bounded function. With Zi being bounded it follows that
(36) is bounded on the maximal interval of definition. This
excludes finite escape times.
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VI. SIMULATIONS

We carry out a simulation example for the formation of the
kinematic model of the robots to illustrate the results, simula-
tion example for the dynamic model is however omitted due
to space limitation. The number of robots in the formation
group is chosen for simplicity N = 3. The initial positions
of robots, the initial conditions and the design constants are
chosen as follows

[x1, y1, θ1]� = [0, 0, 0]�, [x2, y2, θ2]� = [−2, 1, 0]�,

[x3, y3, θ3]
� = [−2,−3, 0]�, ν1(0) = ν2(0) = [0, 0]�

k1 = 150, k2 = 70
si(0) = 2, εω = 0.12, ω0 = 5 (40)

κ1 = 0.5, κ2 = 2, κ3 = 0.5
Γx = Γy = Γθ = diag(1, 1, 1)

We run two simulations with two different reference paths
for the center of the virtual structure, the first reference path
ξ0 is chosen as xd(s) = s, yd(s) = 0. The distance from
the mobile robots to the center of the virtual structure are
therefore as follows

l1(xd0(s1), yd0(s1)) = (0, 4),
l2(xd0(s2), yd0(s2)) = (3, 8 + 3 tanh(0.5s1))
l3(xd0(s3), yd0(s3)) = (3,−8 + 3 tanh(0.5s1))

These choices mean that the first robot coincides with the
center of the virtual structure which moves on a straight
line. The robot’s position and orientation are plotted in Fig.
2. The path tracking errors and linear velocities are plotted
in Fig. (3-4-5) respectively. It is clear from these figures
that each robot in formation asymptotically tracks its own
path generated by the center of the virtual structure and
the formation is achieved. For the second simulation, the
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Fig. 2. Robot position in (x, y) plan.

reference path generated for each robot in the formation are
sinusoidal, the reference path chosen for the center of the
virtual structure is ξ(s0) = (s0, 0), this means that the center
of the virtual structure is moving along a straight line. The
distance from the robots to the center of the virtual structure
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Fig. 3. Path parameter error in the form
√∑3

i=1(si − s0)2.
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Fig. 4. Tracking errors xei, yei and θei.
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Fig. 5. Time evolution of the forward velocity of each robot.

are as follows

l1(xd0(s1), yd0(s1)) = (0, 0),
l2(xd0(s1), yd0(s1)) = (3, 8 + 3 cos(0.5s1))
l3(xd0(s2), yd0(s2)) = (3,−8 + 3 sin(0.5s1))

The robots’ position and orientation is plotted in Fig 6.
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VII. CONCLUSION

This paper has proposed a methodology for formation
control of a group of unicycle-type mobile robots represented
at a kinematic level and a dynamic level. The approach
that has been developed is mainly based on a combination
of the virtual structure and path following approaches. The
controller is designed in such a way that the derivative of
the path parameter is left as an additional control input
to synchronize the formation motion. Future work is to
design an observer for both kinematic and dynamic model to
estimate unavailable signals such as velocities or orientation
error tracking.

APPENDIX

Lemma [13]: Consider a scalar system

ẋ = −kx+ f(t)

where k > 0 and f(t) is a bounded and uniformly continuous
function. If, for any initial t0 ≥ 0 and any initial condition
x(t0), the solution x(t) is bounded and converges to 0 as
t→ ∞ then

limt→∞ f(t) = 0
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