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Abstract— We propose an inverse agreement control strategy
for multiple nonholonomic agents that forces the team members
to disperse in the workspace in a distributed manner. Both
the cases of an unbounded and a circular bounded workspace
are considered. In the first case, we show that the closed loop
system reaches a configuration in which the minimum distance
between any pair of agents is larger than a specific lower
bound. It is proved that this lower bound coincides with the
agents’ sensing radius. In the case of a bounded workspace,
the control law is modified to force the agents to remain
within the workspace boundary throughout the closed loop
system evolution. Moreover the proposed control guarantees
collision avoidance between the team members. The results are
supported through relevant computer simulations.

I. INTRODUCTION

The emerging use of multi-robot and multi-vehicle sys-
tems in various applications has recently raised the need for
control designs that force a team of multiple vehicles/robots
(from now on called “agents”) to achieve various goals. As
the number of agents increases, centralized control designs
fail to guarantee robustness and are harder to implement than
decentralized approaches, which also provide a reduce in the
computational complexity of the overall feedback scheme.

Among the various objectives that the control design aims
to impose on the agents, convergence of the multi-agent
team to a common configuration, known as the agreement
problem, is a specification that has been extensively pur-
sued recently. Many control laws that achieve distributed
agreement have been presented, e.g., [1],[16], [6],[12],[18].
Furthermore, the application of motion models of large
populations of animals/insects (swarms) in nature to multi-
agent systems is also a field of extensive research activity
in the last few years. Relevant results include algorithms for
swarm aggregation [9] and flocking [15],[20].

This paper presents a control methodology for nonholo-
nomic swarm dispersion which can be considered as an
inverse agreement problem. Each agent follows a flow, whose
inverse leads the team to agreement [6]. The control is
distributed, in the sense that each agent has only knowledge
of the states of agents located within its sensing zone at each

Dimos Dimarogonas is with KTH ACCESS Linnaeus Center, School
of Electrical Engineering, Royal Institute of Technology (KTH), Stock-
holm, Sweden {dimos@ee.kth.se}. Kostas Kyriakopoulos is with
Control Systems Lab, Department of Mechanical Engineering, National
Technical University of Athens, Greece {kkyria@mail.ntua.gr}.
The authors were supported by EU through contract I-SWARM (IST-2004-
507006). The first author’work was also done within TAIS-AURES program
(297316-LB704859), funded by the Swedish Governmental Agency for
Innovation Systems (VINNOVA) and Swedish Defence Materiel Admin-
istration (FMV). He was also supported by the Swedish Research Council,
the Swedish Foundation for Strategic Research, and EU NoE HYCON.

time instant. The sensing zone is assumed to be a circular
area around each agent. The application of this inverse
agreement strategy is dispersion of the nonholonomic agents,
i.e., convergence to a configuration where the minimum
distance between the swarm members is bounded from below
by a controllable lower bound. It is shown that this bound
coincides with the radius of the sensing zone of the agents.
The results are then extended to the case of a circular
bounded workspace. Applications of the proposed dispersion
algorithm include coverage control [7], [4], and optimal
placement of a multi-robot team in small areas [11],[2].
However, we also show that inverse agreement algorithms
can be used to provide solutions to various problems in multi-
agent control. This is a topic of probable related research
directions. We note that the results of this paper were shown
to hold for the case of single integrator point agents [5].

The rest of the paper is organized as follows: Section II
presents the system and problem in hand. Tools from nons-
mooth and matrix theory used in the paper are reviewed in
Section III. The swarm dispersion methodology is presented
in Section IV, while the case of a bounded workspace is
considered in Section V. Simulations supporting the theory
are included in Section VI. Section VII summarizes the
results of this paper and indicates current research efforts.

II. SYSTEM AND PROBLEM DESCRIPTION

Consider N nonholonomic circular agents operating in a
workspace W ⊂ R

2. Let qi = [xi, yi]T ∈ R
2 be the position

of agent i. All agents have a common radius r. However,
the proposed framework is easily applied to agents with
varying, not necessarily common, radii. The configuration
space is spanned by q = [qT

1 , . . . , qT
N ]T . Each agent has an

orientation θi with respect to the global coordinate frame.
The orientation vector of the agents is θ = [θ1 . . . θN ]T .
The configuration of each agent is pi =

[
qT
i θi

]T ∈
R

2 × (−π, π]. Agent motion is described by the kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

, i ∈ N = [1, . . . , N ] (1)

where ui, ωi denote the translational and rotational velocity
(control inputs) of agent i, respectively.

Each agent can only sense agents whose center is found
within a circle of radius d, common for all agents, around
the center of the agent. This circle is called the sensing
zone of agent i and d its sensing radius. We require that
d is larger than the sum of the radii of any two agents,
i.e. d > 2r. We denote by Ni the subset including the
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agents that i can sense at each time instant, i.e., Ni =
{j ∈ N , j �= i : ‖qi − qj‖ ≤ d}. The objective is dispersion
of the team members in a distributed manner. We assume
that a large number of agents is gathered in a workspace
close to each other. The goal is to design control laws that
force the agents to converge to sufficiently large distances
between them. Specifically, we equip each agent with a
repulsive potential field with respect to each other agent
within its sensing zone. The main result states that the closed
loop system converges to a configuration where the sensing
zone of each agent is empty, i.e. every agent is located at a
distance no less than d from every other agent. In addition,
the control law is designed to guarantee collision avoidance
between the team members, in the sense that the discs that
represent the agent never overlap throughout the closed loop
system evolution. The stability analysis is performed first for
a bounded and then an unbounded workspace.

A dispersion potential between agents i and j is given by

γij (βij) =




1
2βij , 0 ≤ βij ≤ c2

φ(βij), c2 ≤ βij ≤ d2

h, d2 ≤ βij

where βij = ‖qi − qj‖2 − 4r2. The positive scalars
c, d, h and the function φ are chosen in such a way
so that γij is everywhere C1. In this paper, we choose
the polynomial function φ(x) = a2x

2 + a1x + a0.
The parameters of φ(x) satisfy the differentiability
requirement for γij , provided that they fulfil the
following relations: a2 = 1

4(c2−d2) , a1 = d2

2(d2−c2) ,,

a0 = c4

4(c2−d2) , h = d2+c2

4 . The gradient and the partial
derivative of γij are computed by ∇γij = 2ρijDijq and
∂γij

∂qi
= 2ρij (Dij)i q where ρij

∆= ∂γij

∂βij
and the matrices

Dij ,(Dij)i, for i < j are given by Dij = D̃ij ⊗ I2, where(
D̃ij

)
ii

=
(
D̃ij

)
jj

= 1,
(
D̃ij

)
ij

=
(
D̃ij

)
ji

= −1

and
(
D̃ij

)
kl

= 0 for k, l �= i, j, and (Dij)i =[
O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

] ⊗ I2

where ⊗ denotes the standard Kronecker product between
two matrices [10]. The definition of the matrices Dij ,(Dij)i,
for i > j is straightforward. It can easily be shown that
ρij > 0 for 0 < βij < d2 and ρij = 0 for βij ≥ d2.

III. MATHEMATICAL PRELIMINARIES

We review tools from matrix theory and nonsmooth anal-
ysis that we use in the analysis of the following paragraphs.

A. Tools from Matrix Theory

For an undirected graph G = (V,E) with n vertices denote
by V its set of vertices and by E its set of edges. If there
is an edge connecting two vertices i, j, i.e. (i, j) ∈ E, then
i, j are called adjacent. A path of length r from a vertex i
to a vertex j is a sequence of r + 1 distinct vertices starting
with i and ending with j such that consecutive vertices are
adjacent. If there is a path between any two vertices of the
graph G, then G is called connected. The undirected graph
G = (V,E) corresponding to a real symmetric n×n matrix

M is a graph with n vertices indexed by 1, . . . , n such that
there is an edge between vertices i, j ∈ V if and only if
Mij �= 0, i.e. (i, j) ∈ E ⇔ Mij �= 0. A n × n real
symmetric matrix with non-positive off-diagonal elements
and zero row sums is called a symmetric Metzler matrix.
All the eigenvalues of a symmetric Metzler matrix are non-
negative and zero is a trivial eigenvalue [13]. Zero is a simple
eigenvalue of a symmetric Metzler matrix if and only if
the corresponding undirected graph is connected. The trivial
corresponding eigenvector is the vector of ones,

−→
1 [14].

B. Tools from Nonsmooth Analysis

For a differential equation with discontinuous right-hand
side we have the following definition:

Definition 1: [8] In the case of a finite dimensional state-
space, the vector function x(.) is called a Filippov solution
of ẋ = f(x), where f is measurable and essentially locally
bounded, if it is absolutely continuous and ẋ ∈ K[f ](x) al-
most everywhere where K[f ](x) ≡ co{limxi→x f(xi)|xi /∈
N0} and N0 is a set of measure zero that contains the set of
points where f is not differentiable.

The following chain rule provides a calculus for the time
derivative of the energy function in the nonsmooth case:

Theorem 1: [19] Let x be a Filippov solution to ẋ = f(x)
on an interval containing t and V : R

n → R be a Lipschitz
and regular function. Then V (x(t)) is absolutely continuous,
(d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃

V (x) :=
⋂

ξ∈∂V (x(t))

ξT K[f ](x(t))

where “a.e.” stands for “almost everywhere”.
In this theorem, ∂V is Clarke’s generalized gradient. The

definition of ∂V and of the regularity of a function are found
in [3]. In this paper, the Lyapunov function V is smooth and
hence regular, while ∂V is a singleton which is equal to the
usual gradient everywhere: ∂V (x) = {∇V (x)}∀x. We use
the following nonsmooth version of LaSalle’s principle:

Theorem 2: [19] Let Ω be a compact set such that every
Filippov solution to ẋ = f(x), x(0) = x(t0) starting in Ω is
unique and remains in Ω for all t ≥ t0. Let V : Ω → R be a

time independent regular function such that v ≤ 0,∀v ∈ ˙̃
V (if

˙̃
V is the empty set then this is trivially satisfied). Define

S = {x ∈ Ω|0 ∈ ˙̃
V }. Then every trajectory in Ω converges

to the largest invariant set,M , in the closure of S.

IV. SWARM DISPERSION WITH COLLISION AVOIDANCE

Consider V =
∑
i

∑
j �=i

1
γij

as a candidate Lyapunov function

for the closed loop system. Since V is smooth in the
domain of interest, its generalized gradient is a singleton and
coincides with its usual gradient. We can compute ∇V =∑
i

∑
j �=i

(
− 1

γ2
ij

)
∇γij = −∑

i

∑
j �=i

2ρij

γ2
ij

Dijq = −2 (R1 ⊗ I2) q,

where the matrix R1 is given by

(R1)ij =




∑
j �=i

ρij

γ2
ij

+
∑
j �=i

ρji

γ2
ji

, i = j

−ρij

γ2
ij
− ρji

γ2
ji

, i �= j
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Then, ρij

γ2
ij

= ρji

γ2
ji

⇒ R1 = 2R2 where

(R2)ij =




∑
j �=i

ρij

γ2
ij

, i = j

−ρij

γ2
ij

, i �= j

and hence ∇V = −4 (R2 ⊗ I2) q. Denote the stack vector
q = [x, y]T into the coefficients that correspond to the x, y
directions of the agents respectively, while the notation (a)i

denotes the i-th element of the vector a. We propose the
following control law for each agent i:

ui = sgn {rxi cos θi + ryi sin θi} ·
(
r2
xi + r2

yi

)
(2)

ωi = − (θi − arctan 2 (ryi, rxi)) (3)

where rxi = (R2x)i , ryi = (R2y)i. We point out that since
ρij = 0 for βij ≥ d2, the proposed control law satisfies the
agents’ limited sensing radius, since each agent i has to take
into account only agents within its sensing zone in order to
implement the control laws (2),(3). In particular, we have
rxi = (R2x)i =

∑
j �=i

2ρij

γ2
ij

(xi − xj) =
∑

j∈Ni

2ρij

γ2
ij

(xi − xj) ,,

ryi = (R2y)i =
∑
j �=i

2ρij

γ2
ij

(yi − yj) =
∑

j∈Ni

2ρij

γ2
ij

(yi − yj),

and hence agent i must be aware of the relative positions
only of those agents belonging to Ni at each time instant.
The generalized time derivative of V is given by:

˙̃
V = (∇V )T · K




u1 cos θ1

u1 sin θ1

...
uN cos θN

uN sin θN



⊂

⊂ −4 ((R2 ⊗ I2) q)T
K




u1 cos θ1

u1 sin θ1

...
uN cos θN

uN sin θN



⊂

⊂ −4 (R2x)T




K [u1] cos θ1

...
K [uN ] cos θN


−

−4 (R2y)T




K [u1] sin θ1

...
K [uN ] sin θN


 ⊂

⊂ − ∑
i∈N

{4K [ui] (rxi cos θi + ryi sin θi)}

where we used Theorem 1.3, [17] to calculate the in-
clusions of the Filippov set. Since K [sgn(x)] x =
{|x|}([17],Theorem 1.7), the choice of controls (2),(3) yields

˙̃
V = −

∑
i

{
4 |rxi cos θi + ryi sin θi|

(
r2
xi + r2

yi

)} ≤ 0 (4)

so that the generalized derivative of V reduces to a singleton.
The first result establishes collision avoidance:
Lemma 1: Consider the system of multiple kinematic

agents (1) driven by the control law (2),(3) and start-
ing from a feasible set of initial positions I (q) =

{q| ‖qi − qj‖ > 2r,∀i, j ∈ N , i �= j}. Then the set I (q) is
invariant for the trajectories of the closed loop system.

Proof: For every initial condition q(0) ∈ I(q), ˙̃V remains
non-positive for all t ≥ 0, by virtue of (4). Hence V (q(t)) ≤
V (q(0)) < ∞ for all t ≥ 0. Since V → ∞ if and only if
‖qi − qj‖ → 2r for at least one pair i, j ∈ N , we conclude
that q(t) ∈ I (q), for all t ≥ 0. ♦

By virtue of Lemma 1, collision avoidance is guaranteed.
The control design however is also directly related to the final
configurations of the nonholonomic swarm members. The
main result of this section is summarized in the following:

Theorem 2: Consider the system of multiple
nonholonomic agents (1) driven by the control law (2),(3)
and starting from a set of initial positions I (q) ∩ F (q)
where I (q) = {q| ‖qi − qj‖ > 2r,∀i, j ∈ N , i �= j}
was defined in Lemma 1 and F (q) =
{q| ‖qi − qj‖ < (N − 1) d∗,∀i, j ∈ N , i �= j,} where
d∗ > d is chosen arbitrarily. Then the agents reach a static
configuration (i.e. all agents eventually stop) which satisfies
‖qi − qj‖ ≥ d,∀i, j ∈ N , i �= j, with zero orientations.
Proof: Since the set of initial conditions is contained in
I(q), we have ‖qi (t) − qj (t)‖ > 2r ⇒ qi (t) �= qj (t) ,
for all i, j ∈ N , i �= j, and all t ≥ 0, by virtue of
Lemma 1. Pick V as a candidate Lyapunov function.
The generalized time derivative of V is reduced
to a singleton within I(q), and is given by (4):
˙̃
V = −∑

i

{
4 |rxi cos θi + ryi sin θi|

(
r2
xi + r2

yi

)} ≤ 0.

The boundedness of solutions of the closed-loop system
is checked based on the relative positions of the swarm
members. Pick d∗ > d. Since ρij = 0 whenever βij > d,
the set ‖qi − qj‖ ≤ (N − 1) d∗ for all i, j ∈ N is
positively invariant for the trajectories of the closed-loop
system. By virtue of Lemma 1, I (q) ∩ F (q) is also
positively invariant. Since this set is closed and bounded,
we can apply Theorem 2, to deduce that the agents
converge to the largest invariant subset of the set S =
{(rxi = ryi = 0) ∨ (rxi cos θi + ryi sin θi = 0) ,∀i ∈ N}.
However, for each i ∈ N , we have |ωi| = π

2 whenever
rxi cos θi + ryi sin θi = 0, due to (3). In particular,
(3) renders the surface rxi cos θi + ryi sin θi = 0 non-
invariant for agent i, whenever i is not located at the
desired equilibrium, namely when rxi = ryi = 0.
Hence the largest invariant set Sv contained in S is
S ⊃ Sv = {rxi = ryi = 0,∀i ∈ N}. Within Sv, we have
rxi = ryi = 0,∀i ∈ N and hence ui = 0, for all i ∈ N , i.e.,
all agents eventually stop. Moreover, within Sv , we have
θ̇i = −θi for all i, and hence the orientations of all agents
tend to zero. Note now rxi = ryi = 0,∀i ∈ N is equivalent
to rxi = ryi = 0,∀i ∈ N ⇒ (R2 ⊗ I2) q = 0. Hence Sv

can be written as Sv = {q| (R2 ⊗ I2) q = 0}. We next show
that Sv can only be invariant when it coincides with the set
S0 = {q|ρij = 0,∀i, j ∈ N , i �= j}. Clearly, S0 is a subset
of Sv which is invariant for the trajectories of the closed-loop
system. Suppose now that ρij > 0 for some pairs of the team
members. We denote the undirected graph corresponding to
R2 by G(R2). The assumption that ρij > 0 for some pairs
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i, j ∈ N , i �= j guarantees that G(R2) has at least one edge.
The graph G(R2) can now be decomposed into its connected
components. Please note that since the graph is undirected,
no vertex can belong to two different components
simultaneously. Ignoring the connected components
containing only one vertex (i.e. vertices k for which
ρkj = 0 for all j �= k), and rearranging the agent indices
accordingly, equation (R2 ⊗ I2) q = 0 can be decomposed
into different equations, each of which corresponds to
a different connected component of G(R2). Specifically
for the connected component containing agents/vertices
{i1, i2, . . . , il} , ij ∈ N , j = 1, . . . l with l ≤ n we have(
R̃2 ⊗ I2

)
q̃ = 0, where q̃ =

[
qT
i1

. . . qT
il

]T
and the

l × l matrix R̃2 has the same form as R2 taking into
account the set of agents {i1, i2, . . . , il}. By denoting
x̃, ỹ the stack vectors of q̃ in the x, y directions, we have(
R̃2 ⊗ I2

)
q̃ = 0 ⇒ R̃2x̃ = R̃2ỹ = 0. Matrix R̃2 has zero

row sums and non-positive off-diagonal elements, i.e., it is
a symmetric Metzler matrix. Thus, the eigenvalues of R̃2

are nonnegative. Furthermore, since R̃2 corresponds to a
connected graph (a connected component of G(R2)), zero is
a simple eigenvalue of R̃2 with corresponding eigenvector
the vector of ones,

−→
1 . Hence equations R̃2x̃ = R̃2ỹ = 0

guarantee that both x̃, ỹ are eigenvectors of R̃2 belonging
to span{−→1 }. Thus, all elements of q̃ attain the same
value, implying that all agents converge to a common
configuration at steady state. However this is impossible,
since, due to the invariance of I(q), no trajectory of the
closed-loop system starting from I(q) can ever leave this
set, i.e., ‖qi (t) − qj (t)‖ > 2r, and hence qi (t) �= qj (t),
for all i, j ∈ N , i �= j, and all t ≥ 0. We conclude that the
largest invariant subset of S is S0. Since ρij = 0 only for
‖qi − qj‖ ≥ d, the proof is complete. ♦

Thus, the closed-loop system converges to a configuration
where each agent is located at a distance no less than d
from every other agent. This reveals an important geometric
property: since any pair of agents is located at least at a
distance d from each other, each agent occupies a disc of
radius d/2 in which no other agent is present. In other words,
the agents are dispersed to n disjoint discs of radius d/2.

V. THE BOUNDED WORKSPACE CASE

We proposed a dispersion algorithm for multiple non-
holonomic agents in an unbounded workspace. In practical
applications such as coverage control and sensor deployment
the problem is to modify the controller in order to take into
account the workspace boundary. In this paper, we consider
the case of a cyclic workspace W0 of radius RW0 . However,
the proposed design is applicable to any convex workspace.
In order to take into account the agent radii, we define a
virtual workspace W in the interior of W0 that has the same
center as W0 and radius RW = RW0 −r < RW0 (see Figure
1). By proving that the center of each agent qi remains within
W for all time it is also guaranteed that the discs representing
the agents remain within the real workspace W0. Hence we
consider the virtual workspace W in the sequel.

W

W0

RW0
RW

Fig. 1. The virtual boundary W is a smaller circle in the interior of the real
boundary W0 with the same center and radius equal to RW = RW0 − r.

A potential similar to the inter-agent dispersion potential
is used for the agent-boundary repulsion. Copying with the
sensing capabilities of the agents, the repulsive potential of
each agent with respect to the workspace boundary is defined
as

γib (βib) =




1
2βib, 0 ≤ βib ≤ c2

b

ϕb (βib) , c2
b ≤ βib ≤ d2

b

hb, d2
b ≤ βib

where βib = ‖qi − qi,min‖2, db < d and qi,min =
arg min

q∈∂W
‖qi − q‖2. Note that qi,min is continuous for all

i due to the convexity of W . The positive scalars hb, cb and
the function ϕb are defined in such a way so that γib is
rendered everywhere continuously differentiable. Each agent
has to have knowledge of the workspace boundary only when
located at a distance smaller than db from it.

Denote ρib = ∂γib

∂βib
. We have ρib = 0 for βib > d2

b

and ρib > 0 for βib ≤ d2
b . Denote by qmin the stack

vector of all qi
min and by xmin, ymin its coefficients in

the x, y directions. Similarly to the case of an unbounded
workspace, we use Vb =

∑
i

∑
j �=i

1
γij

+
∑
i

1
γib

as a candidate

Lyapunov function. Since Vb is smooth in the domain of
interest, ∂Vb is a singleton and coincides with its usual
gradient. The latter is calculated by ∇Vb = −4 (R3 ⊗ I2) q+
4 (R4 ⊗ I2) qmin where R3 = R2+diag

{
ρ1b

γ2
1b

, . . . , ρNb

γ2
Nb

}
and R4 = diag

{
ρ1b

γ2
1b

, . . . , ρNb

γ2
Nb

}
. We propose the following

control law for each agent i of the nonholonomic swarm

ui = sgn
{
rb
xi cos θi + rb

yi sin θi

} · ((rb
xi)

2 + (rb
yi)

2
)

(5)

ωi = − (
θi − arctan 2

(
rb
yi, r

b
xi

))
(6)

where rb
xi = (R3x)i−(R4xmin)i , rb

yi = (R3y)i−(R4ymin)i.
The generalized time derivative of Vb is now given by

˙̃Vb = (∇Vb)
T · K




u1 cos θ1

u1 sin θ1

...
uN cos θN

uN sin θN



⊂

1976



−4 ((R3 ⊗ I2) q − (R4 ⊗ I2) qmin)T




K [u1] cos θ1

K [u1] sin θ1

...
K [uN ] cos θN

K [uN ] sin θN




⊂ −4 (R3x − R4xmin)T




K [u1] cos θ1

...
K [uN ] cos θN




−4 (R3y − R4ymin)T




K [u1] sin θ1

...
K [uN ] sin θN




⊂ −∑
i

{
4K [ui]

(
rb
xi cos θi + rb

yi sin θi

)}

The choice of control laws (5),(6) now yields

˙̃Vb = −
∑

i

{
4
∣∣rb

xi cos θi + rb
yi sin θi

∣∣ ((
rb
xi

)2
+

(
rb
yi

)2
)}
(7)

so that ˙̃Vb reduces again to a singleton. The first result
guarantees that the interior of the workspace is invariant:

Lemma 3: Consider (1) driven by (5),(6) and starting from
the set of initial conditions I(q) ∩ J (q) where J (q) ={

q|qi ∈ int (W ) ∆= W\∂W,∀i ∈ N
}

is the interior of W

and I(q) was defined previously. Then I(q) ∩ J (q) is
invariant for the trajectories of the closed-loop system.
Proof: I(q) is invariant by Lemma 1. For every initial

condition q(0) ∈ I(q) ∩ J (q), ˙̃Vb remains non-positive for
all t ≥ 0, by virtue of (7). Hence Vb(q(t)) ≤ Vb(q(0)) < ∞
for all t ≥ 0. Since Vb → ∞ whenever qi → qi,min for at
least one agent i ∈ N , and the latter implies qi → ∂W , we
conclude that q(t) ∈ J (q), for all t ≥ 0. ♦

Thus, if agents start within the interior of the virtual
workspace, they are forced to remain within it. Collision
avoidance, i.e., Lemma 1 also holds. We now show that
agents reach a configuration where ui = 0, θi = 0 for all i:

Corollary 4: Consider the system of multiple nonholo-
nomic agents (1) driven by (5),(6) and starting from the set
of initial conditions I(q)∩J (q). Then the system reaches a
configuration in which ui = 0 and θi = 0 for all i ∈ N .
Proof: J (q) is closed and bounded for the trajectories
of the closed-loop system, by Lemma 3, and (7)
guarantees that ˙̃Vb is negative semidefinite. By
Theorem 2, the trajectories of the closed-loop system
reach the largest invariant subset of the set Sb ={(

rb
xi = rb

yi = 0
) ∨ (

rb
xi cos θi + rb

yi sin θi = 0
)
,∀i ∈ N}

.
Using the same arguments as in the proof of Theorem 2, we
deduce that the largest invariant set Sb

v contained in Sb is
Sb ⊃ Sb

v =
{
rb
xi = rb

yi = 0,∀i ∈ N}
. Within Sb

v , we have
rb
xi = rb

yi = 0,∀i ∈ N and hence ui = 0, for all i ∈ N .
Within Sb

v , we also have θ̇i = −θi for all i, and hence the
orientations of all agents tend to zero. ♦

Note that rb
xi = rb

yi = 0,∀i ∈ N ⇒ (R3 ⊗ I2) q −
(R4 ⊗ I2) qmin = 0. We now show that the control law is
related to the final relative positions of the agents in a manner
similar to the unbounded case. From the proof of Corollary

4 we derive that the system converges to the largest invariant
subset of the set Sb

v. Please note that the result of Lemma
3 holds for arbitrarily small cb, db. For cb, db → 0, we have
that either qi → qi,min, or ρib → 0, for those agents that do
not satisfy the condition qi → qi,min. Thus, in this case

(R3 ⊗ I2) q − (R4 ⊗ I2) qmin =
= (R2 ⊗ I2) q − (R4 ⊗ I2) (q − qmin)
= (R2 ⊗ I2) q −

((
diag

{
ρ1b

γ2
1b

, . . . , ρNb

γ2
Nb

})
⊗ I2

)
(q − qmin)

= (R2 ⊗ I2) q−
−

[
ρ1b

γ2
1b

(q1 − q1,min) . . . ρ1b

γ2
1b

(qN − qN,min)
]T

= (R2 ⊗ I2) q

since for each i ∈ N , we have either qi → qi,min, or
ρib → 0, for cb, db → 0 as discussed above. Thus, Sb

v

coincides with the set Sv of the proof of Theorem 2.
As proved in that Theorem, the largest invariant subset
within Sv is the set S0 = {q|ρij = 0,∀i, j ∈ N , i �= j} =
{q| ‖qi − qj‖ ≥ d,∀i, j ∈ N , i �= j}. Hence the system
reaches a configuration it which all agents remain within the
workspace bounds and each agent is located at a distance
no less than d from every other agent in the group, provided
that such configuration exists within the workspace bounds.

This result is formally stated in the next Theorem:
Theorem 5: Consider the system (1) driven by the controls

(5),(6) and starting from I(q) ∩ J (q). Assume that the
set B (q) = {q ∈ int (W ) | ‖qi − qj‖ ≥ d,∀i, j ∈ N , i �= j}
is nonempty. Then the system reaches a configuration in
which all agents remain in the interior of the workspace,
and ‖qi − qj‖ ≥ d,∀i, j ∈ N , i �= j, with zero orientations.

Remark 1: Similarly to the unbounded case, B(q) being
non-empty corresponds to a case where each agent occupies
a d/2-disc at steady state. If B(q) is empty, the workspace
is not large enough to fulfill the above geometric condition,
and the system converges to a configuration that minimizes
the cost function Vb, respecting the constraint of Lemma 3
that the agents are forced to remain within the workspace
boundary. Thus, some of the d/2-discs may overlap.

Remark 2: Since the centers of agents remain within the
virtual workspace boundary, the actual discs that represent
the agents remain within the real workspace boundary ∂W0.

Remark 3: The results can be extended to the case where
the workspace is an arbitrary convex region.

VI. SIMULATIONS

To support the results presented in the previous para-
graphs, we provide a series of computer simulations.

In the first simulation, six nonholonomic agents navigate
under the controls (2),(3). Screenshots I-III in Figure 2 show
the evolution of the closed-loop system. The agents are
located at their initial positions in the first screenshot. The
sensing radius d is equal to 0.0894 in this simulation. The
collision avoidance objective is fulfilled, due to the proposed
control design. The agents disperse in the workspace and
eventually stop in screenshot III. Screenshot IV depicts the
final positions of agents. Each agent occupies a disc of radius
d/2. These discs are visualized in Screenshot IV by the

1977



large discs whose center is the center of corresponding agent.
By virtue of Theorem 2, the large discs are disjoint. In the
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Fig. 2. Swarm dispersion for six nonholonomic agents. The agents disperse
in the workspace and eventually occupy six disjoint discs of radius d/2.

second simulation (Figure 3), agents navigate in a bounded
workspace under (5),(6). We have again d = 0.0894 and the
workspace radius is RW = 15d. Agents start from an initial
condition where they are aggregated near the workspace
center. Some agents approach the workspace boundary and
remain within it due to the repulsive potential. Collision
avoidance is fulfilled throughout the closed-loop system
evolution. The workspace is large enough to allow the agents
to occupy six disjoint discs of radius d/2 at steady state, i.e.
the set B of Theorem 5 is nonempty. This is depicted in the
last screenshot of Figure 3.
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Fig. 3. Swarm dispersion for six nonholonomic agents in a bounded
workspace. The workspace is large enough to allow the agents to occupy
six disjoint discs of radius d/2 at steady state. Agents are forced to remain
within the workspace boundary.

VII. CONCLUSIONS

We proposed a distributed inverse agreement strategy
for multiple nonholonomic agents that forces the agents to

disperse in the workspace. Both the cases of unbounded and
circular workspace were treated. In the first case, we showed
that the closed-loop system reaches a configuration in which
the minimum distance between any pair of agents is larger
than a specific lower bound. It was proven that this bound
coincides with the agents’ sensing radius. In the case of a
bounded workspace, the control law was redefined in order
to force the agents to remain within the workspace boundary
throughout the closed loop system evolution. The results
were supported through computer simulations. Current re-
search involves exploring the relation of the sensing radius,
the number of agents and the radius of the workspace with
the emptiness of the set B of Theorem 5.
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