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Abstract— We consider a collection of robots sharing a
common environment, each robot constrained to move on
a roadmap in its configuration space. To program optimal
collision-free motions requires a choice of the appropriate
notion of optimality. We work in the case where each robot
wishes to travel to a goal while optimizing elapsed time and
consider vector-valued (Pareto) optima.

Earlier work demonstrated a finite number of Pareto-optimal
classes of motion plans when the robots are subjected to velocity
bounds but no acceleration bounds. This paper demonstrates
that when velocity and acceleration are bounded, the finiteness
result still holds for certain systems, e.g., two robots; however,
in the general case, the acceleration bounds can lead to continua
of Pareto optima. We give examples and explain the result in
terms of the geometry of phase space.

I. INTRODUCTION

This note considers the well-studied problem of multi-

robot motion planning. The specific focus is on (vector-

valued, or Pareto-) optimal coordination of agents, each of

which has elapsed time-to-goal as its cost function. Such

optimal coordination problems introduce challenges beyond

those of simple obstacle avoidance and motion planning in

single robot settings; robot-robot interactions must likewise

be controlled.

A. Motivation

Our perspective is to emphasize vector-valued optimiza-

tion, preserving all cost function data. This notion of Pareto

optimality [20], [23] is standard in mathematical economics

to model individual consumers striving to optimize dis-

tinct economic goals. It avoids data loss that comes with

scalarization: e.g., minimizing average time, or total elapsed

time. Such scalarizations are both common and commonly

appropriate in robotics ([13], [18], [26]), yet there is a loss

associated with this scalar reduction. In the context of, say,

a dynamic manufacturing or warehousing scenario, the pri-

orities associated to individual agents may change from day-

to-day, resulting in ever-changing optimization problems.

This note treats the global optimization problem for multi-

ple robot coordination without scalarizing the vector-valued

cost function. This centers on the notion of Pareto optimality

[20], [23], a concept which is widely used in mathematical

economics to model individual consumers striving to opti-

mize distinct economic goals. The classification of Pareto
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optima automatically yields the set of all optima for all

(monotone) scalarizations of the cost functions: see [11]. In

addition, it provides a (hopefully small) template of optimal

coordinations which can be used for on-line adaptation to

changing needs and cost functions in day-to-day factory

operations.

Given the desire to filter the space of all possible coor-

dination schemes to a small set of best cases independent

of biases on the robots, we are certainly most interested in

the cases where this collection of optima is finite, and the

existence of such is the focal point of this note.

B. History

Multi-robot coordination is of course a special case of

general motion planning for multiple robots, for which a

long history of work exists. Centralized approaches typically

construct paths in a configuration space derived from the

Cartesian product of the configuration spaces of the individ-

ual robots (e.g., [2], [3], [24]). More decoupled approaches

may generate independent robot paths and then resolve

illegal interactions between the robots (e.g., [5], [9], [19]).

The approach in [9] prioritizes the robots, and defines

a sequence of planning problems for which each prob-

lem involves moving one robot while those with higher

priority are considered as predictable, moving obstacles.

This involves the construction of two-dimensional path-time

space [14] over which the velocity of the robot is tuned to

avoid collisions with the moving obstacles. In [1], [4], [7],

[21], [19], [25] robot paths are independently determined,

and a coordination diagram is used to plan a collision-

free trajectory along the paths. The approaches in [1], [21]

additionally consider dynamics. In [16], [27], an independent

roadmap is computed for each robot, and coordination occurs

on the Cartesian product of the roadmap path domains. In

[17], an approximate Dijkstra-like algorithm to find Pareto

optimal solutions was given. The suitability of one approach

over the other is usually determined by the trade-off between

computational complexity associated with a given problem,

and the amount of completeness that is lost. In some applica-

tions, such as the coordination of AGVs, the roadmap might

represent all allowable mobility for each robot.

There are very few results which give a rigorous classifi-

cation of Pareto optima [8], [11], [10]. The paper [11] gives

a finiteness result for Pareto optima with respect to elapsed
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time in the setting of AGVs restricted to roadmaps. However,

these results assumed only a bound on velocity, not on

acceleration. Acceleration constraints have been considered

in several important works for scalar optimization. In [6],

an exact algorithm for kinodynamic planning in the 2-d case

was given: many of the ideas here are crucial in our analysis.

In [22], the first known polynomial-time approximation

algorithm for curvature-constrained shortest-path problems

in higher dimensions was given.

C. Contributions

This note extends the finiteness results of [11] in the con-

text of acceleration bounds. Section II reviews the classifica-

tion of Pareto-optima in the bounded velocity case [11]. In

§III, we argue that an appropriate first step for implementing

acceleration bounds is to impose an upper bound without a

lower bound: acceleration is more limited than deceleration.

We show that in this context, the finiteness results for Pareto-

optimal paths persists for two robots. In §IV we give a

canonical example of a system with three robots for which

the acceleration upper bound forces an infinite collection

(a continuum in fact) of inequivalent Pareto-optimal path

classes. We conclude with a geometric explanation for this

change in behavior from 2-d to 3-d: it is regulated by the

discrete curvature of the system’s phase space.

II. REVIEW: UNBOUNDED ACCELERATION CASE

This section contains basic definitions and a review of

the finiteness theorem for Pareto optimal robot coordinations

from [11].

A. Coordination spaces

Recall that each robot travels on a roadmap, represented

as a 1-d subspace or graph, Γi, i = 1, . . . , N . The coordina-

tion space is the product of these roadmaps with all illegal

or collision sets removed.

Definition 2.1: A roadmap coordination space of graphs

{Γi}
N
1 is any space of the form

X =

(

N
∏

i=1

Γi

)

−O, (1)

where O denotes an (open) obstacle set.

For simplicity, one may focus on the case where each

factor Γi is a single edge. This is the case where a robot

translates along a track from an initial to final location. All

illustrations in this note follow this convention, though the

results hold for the general setting. All coordination spaces

are assumed to be sufficiently “tame” (see [11] for details).

Most coordination spaces arising in robotics have an

obstacle set O which is cylindrical, in the following sense:

Definition 2.2: A coordination space X is said to be

cylindrical if O is of the form

O =
⋃

i<j

{

(xk)N
1 ∈

N
∏

k=1

Γi : (xi, xj) ∈ ∆i,j

}

, (2)

for some (open) sets ∆i,j ⊂ Γi ×Γj where 1 ≤ i < j ≤ N .

That is to say, a cylindrical coordination space is one for

which illegal states are determined by pairwise configura-

tions. If two robots have collided, it makes no difference

what the positions or configurations of the remaining robot

are — this state still counts as an illegal “collision” state.

B. Pareto-optimality

A coordination of N robots is a path γ in the roadmap

coordination space X . Throughout this note, each robot

will use its elapsed time τi as a cost function with which

optimality is measured. However, since there are N robots,

there is a cost vector τ = (τ1, . . . , τN ) that is a function of

the coordination γ.

A path γ : [0, T ] → X is pareto optimal if and only if

τ(γ) is minimal with respect to the partial order on vectors:

τ(γ) ≤ τ(γ′) ⇔ τi(γi) ≤ τi(γ
′

i) ∀ i = 1 . . .N. (3)

Two paths γ and γ′ are Pareto equivalent if and only if they

are homotopic through locally Pareto optimal paths which are

equal in the partial order; i.e., τ(γ) = τ(γ′), see Fig. 1.

Fig. 1. A collection of Pareto-optimal paths weaving through obstacles
forms a single equivalence class. Each roadmap is equipped with own metric
and parametrized.

Theorem 2.3 ([11]): On a simply-connected cylindri-

cal coordination space, there is a unique Pareto-optimal

(bounded velocity) path class between fixed endpoints. On

a general cylindrical coordination space, the number of

globally Pareto-optimal path classes is finite.

The key to Theorem 2.3 is the construction of a canonical

Pareto-optimal path: such left-greedy paths are reviewed in

the subsequent section.

III. INITIAL BOUNDED ACCELERATION

The finiteness result of §II relies crucially on the lack of

bound on acceleration, since the left-greedy paths used as

canonical path classes always involve sudden starts and stops.

Of course, acceleration bounds are critical in any reasonable

robot system, and the question becomes to what extent these

constraints effect Pareto-optima. If we add the acceleration

bound then the class of admissible paths becomes much more

complex, making optimization more challenging.

A. Left-greedy paths

Assume that X is a simply-connected (connected and

‘hole-free’) cylindrical coordination space and p, q ∈ X are

fixed endpoints for a coordination. Let γ be a path from p
to q. For any point y = (yk)N

1 ∈ X on the path γ, consider
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Algorithm 1 (x, V ) = IBALEFTGREEDY(X , γ)

Require: γ is a collision-free coordination in X .

1: Using γ label each obstacle, determine critical events,

and compute crossing sequence.

2: Start at the initial point x0, and set i = 1.

3: Apply maximum or minimum acceleration until the

integral curve meet critical events from Step 1 and store

the velocity profile V (t).

4: Let xi−xi−1+
∫ Ti

Ti−1

V (s)ds where [Ti−1, Ti] is the time

interval from xi−1 to xi.

5: If xt is not the goal point, then increment i and go to

Step 3. Otherwise, terminate and report x = (x0, . . . , xt)
and V (s).

the N distinct hyperplanes at y: Hk(y) is defined to be the

connected component of {x ∈ X : xk = yk} containing y.

The following definition comes from [10].

Definition 3.1: A path in X from p to q is left-greedy if

it crosses all hyperplanes separating p and q as quickly as

possible. More specifically, for any y ∈ γ and all k = 1...N ,

the (forward) tangent vector to the path, γ̇(y), satisfies the

following:

(1) If Hk(y) separates p from q in X , then the kth compo-

nent of γ̇(y) is nonzero and is positive/negative so as

to point from p to q.

(2) If q ∈ Hk(y), then the kth component of γ̇(y) is zero;

(3) All components of γ̇(y) are maximized with respect to

the speed constraints of 1 and the obstacle constraints.

In [11], [10] it was shown that left-greedy paths form a

canonical representative of the unique Pareto-optimal path

class between fixed endpoints on a simply-connected cylin-

drical coordination space. For non-simply-connected coordi-

nation spaces, one can restrict attention to homotopy classes

of paths (the universal cover is simply-connected).

Unfortunately, left-greedy paths are not of bounded accel-

eration: condition (3) certainly violates the bounded acceler-

ation constraint. Therefore we need to put more conditions

to (3) say that all components of γ̇(y) are maximized with

respect to the speed constraints, the acceleration constraints,

and the obstacle constraints. We will define an equivalent

‘smoothed’ version.

In a manufacturing/automation situation, there is a sharp

distinction between acceleration and deceleration phases of

motion: it is easier to stop than to go. For example, a

standard factory AGV weighs more than a human and,

barring the presence of an uncommonly large and energy-

draining engine, fast accelerations are difficult. However,

quick decelerations (especially when the terminal velocity

is reasonably low) are much easier, being obtainable at the

expense of heat generation and wear (friction on brakes) or

mechanical means (bumpers).

For the remainder of this note we therefore assume an

initial acceleration bound: there is a fixed upper bound on

positive acceleration, but not for deceleration.

Fig. 2. An Initial Bounded Acceleration left-greedy path (solid) and a
Pareto-optimal path (dashed). Empty circles are OC (off-contact) points.

1) IBA left-greedy paths: Algorithm 1 computes an IBA

(Initial Bounded Acceleration) left-greedy path. It start from

initial point with zero velocity vector. We can decide the

maximum velocity and acceleration we need at the current

point by the information from Step 1, and keep moving

forward or backward until it meet the next critical event. The

sign of acceleration depends on hyperplanes that separate

the current point and the goal point. One continues until the

path reaches the goal point. During this step, one stores the

velocity profile V and the critical points xt. The bounded-

velocity left-greedy path is a piecewise-linear path for which

robots maintain constant velocity on each segment. The

IBA left-greedy path is a concatenation of segments for

which robots maintain almost-constant acceleration at each

segment.

A BV left-greedy path is a canonical representative of a

Pareto optimal path [11], [10]. An IBA left-greedy path is not

Pareto optimal in general. The difference is that whenever

some robot restarts from a rest position it consumes more

time than the robot which follows the Pareto optimal path,

i.e., the velocity at this instant is submaximal. We call this

point the Off-Contact (OC) point (see Fig. 2). We generate

a Pareto optimal path by modifying velocities at OC points.

The next algorithm computes the path that has maximum or

minimum velocities at OC points.

B. Critical paths for two robots

For the remainder of this section we assume that X is a

two-dimensional coordination space.

1) Algorithms: Roughly speaking, OC points are points

that can have better velocities on an IBA left-greedy path.

We can detect OC points by checking the velocity profile.

The velocity profile V (t) is a vector valued function V (t) =
(V1(t), V2(t)). At the OC point, one of the functions Vi must

start increasing or decreasing its velocity from 0. Therefore

we need to insert the line that detects OC points in Algorithm

1. Suppose xt = (x(1), x(2)) is an OC point.

We say i is an unsaturated direction for xt if Vi(t) is

changed from zero to nonzero — the other direction is called

the saturated direction [6]. Let X be the critical point if

the next OC point has the different saturated direction.

Let X1 be a first critical point and t1 be a time from the

initial point to X1. The time t1 only depends on the saturated

direction. Replace V (t1) by Ṽ (t1) such that (1) there exists
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Algorithm 2 CRITICALPATH

1: Let y0 be the initial point and j = 1.

2: Start algorithm 1.

3: Stop the algorithm when xi is an OC point. Let yj = xi.

4: If the saturated direction is not changed from yj−1 then

let x0 = xi, increment j and goto Step 2 otherwise

compute the maximum velocity at yj−1, store the critical

point and velocity profile corresponding to the maximum

velocity.

5: Let x0 = yj−1, increment j, and goto Step 2.

a admissible path from the initial point to X1 with a velocity

Ṽ (t1); (2) the velocity of unsaturated direction is maximized

or minimized among all paths satisfying (1). Thus we have

a new velocity Ṽ at X1. Once it hits the one of the goal

position we are now in the one-dimensional space therefore

the next goal time only depends on the velocity at this goal

position which already is maximized. We also consider the

goal positions are critical points. Finally we get path which

is a concatenation of optimal segments connecting critical

points. We call this new path γ̃ the critical path. The critical

path is not unique in general but they share the same critical

points and goal times. So we can form a equivalence class

of critical paths.

2) Pareto optimality: We now prove that the critical path

γ is actually a canonical Pareto-optimal path. Let Hs(a) be

the hyperplane such that Hs(a) = {x ∈ X : x1 = as, where

as is a saturated direction} and Hu(a) be the hyperplane

such that Hu(a) = {x ∈ X : x1 = au, where au is an

unsaturated direction} [6].

Lemma 3.2: Suppose a0 is a critical point on γ and a1

is the next critical point which is not the goal position such

that γ(t0) = a0 and γ(t1) = a1. Suppose b is any point

on Hs(a1) and there exists an optimal path β which is

homotopic (fixing endpoints) to γ such that β(t0) = a0,
˙β(t0) = ȧ0, and β(t1) = b.

Then (1) bs = a1s and ḃs = ȧ1s. (2) If ḃu > ȧu then there

exists t2 > t1 such that γ(t2) = β(t2) and ˙γ(t2) = ˙β(t2)
otherwise γ and β never meet at the same time.

a0

a1

b

Hs(a1)

Fig. 3. The thick line is the path γ and the thin line is the path β.

Proof: Let a1 be (a1s, a1u). (1) Trivially bs = a1s

since b ∈ Hs(a1). Also t1 totally depends on a1s and ȧ1s if

ḃs 6= ȧ1s then b /∈ Hs(a1).
(2) Assume ȧu < vmax otherwise it is trivial. The maximal

(or minimum) velocity at au depends on ∆xa which is

the distance that robot traveled in the unsaturated direction

and ∆t = t1 − t0. Since ḃu is greater than ȧ1u if we

continuously change the velocity ȧu to ḃu then either ∆t
or ∆x must be changed by maximality. Since ∆t is fixed

by the assumption we can only change ∆x. The difference

|au − bu| is proportional to the difference of a distance: see

Fig. 3.

The following is the first principal result of this note: in

dimension two, Pareto-optima obey a finiteness result even

in the case of (initial) bounded acceleration.

Theorem 3.3: Suppose X is a 2-dimensional roadmap

coordination space. Suppose γ is a critical path and β is

another path which is homotopic to γ in X . Then the cost

vector τ(γ) of γ is less than or equal to the cost vector τ(β)
of β: i.e., any critical path γ is a Pareto optimal path.

Proof:

Suppose β is any path with the same endpoints as γ.

Without a loss of generality, we may assume β is the

concatenation of optimal segments (since, if not, we can

replace with optimal segments at no increase in cost vector).

Suppose A = {a1, ..., aM} is a set of critical points of

γ. Let H = {H1, ...,HM} be a set of hyperplanes where

Hi = Hs(ai), i = 1, ..., M .

Hi separates X into two connected pieces; one that

contains an initial point and another containing a goal point.

Therefore, β must pass all Hi, i = 1, ..., M at least once.

Also because Hi and Hi+1, i = 1, ..., M −1, are defined by

different saturated directions, it is safe to assume β follows

the same order that γ do when it passes H. See Fig. 4

H1

H2

H3

H4

Fig. 4. γ (thick line) and β (thin line) go through hyperplanes. Arrows
indicate saturated directions.

It is clear that τ(γ) = τ(β) if β hit every critical points

of γ. Suppose then that β does not pass through all critical

points of γ and γ(t0) = aj is the last critical point before two

paths break down. Let γ(ta) = aj+1 = (a1, a2) be the next

critical point of γ and let Hj and Hi+1 be corresponding

hyperplanes in H for aj and aj+1, respectively.

We focus on comparing the cost of segments of γ and β
connecting Hj and Hj+1. When a time T is a cost of γ for

the segment, there are only three cases of β; the cost of β
is less than T , equal to T , and greater than T .

The first case is fail due to the fact a time T totally depends

on a saturated direction of aj+1. Decreasing T implies

changing velocity or a position of aj and it contradicts that β
also hits aj . The second case can be explained by Lemma3.2.

In this case, β either catchs up γ without losing any cost or

arrives at next critical point of γ with a bigger total time.
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For the last case, suppose b = (bs, bu) is the point on β
which lies on Hj+1, where bu is the component correspond

to the unsaturated direction of aj+1. The increment of time

never decrease the cost of a coordinate bs. Thus we only need

to look at bu. Assume ȧu < 1 where au is a component

in saturated direction of aj+1 unless the cost is always

greater than γ. Let vm be the maximal velocity. Then we

can compute time tm which we need to achieve vm from

ȧu. By optimality assume tu ≤ tm. Suppose β has the best

possible velocity at b corresponding to the additional time

tu. But γ also takes tu for the unsaturated direction to reach

the same velocity β has at b and saturated direction must be

changed at the next critical point. Thus β can not arrive in

concurrence with γ at the next critical point of γ.

So we only need to consider the case they never meet again

before the goal position. But, trivially, the time expended

on the saturated direction is increased and the best that the

unsaturated direction can do is arriving at the goal position

at the same time as γ, i.e., after tu the unsaturated direction

reaches its goal position. Therefore the cost vector of β is

greater than the cost vector of γ.

Corollary 3.4: Any other Pareto-optimal path in X which

is homotopic to a critical path is Pareto equivalent to a critical

path.

Proof: Suppose γ is a critical path and γ̃ is a Pareto-

optimal path which is homotopic (fixing the endpoints) to γ.

Since τ(γ) ≤ τ(γ̃) by Theorem 3.3, τ(γ) must be equal to

τ(γ̃) and the only path that shares the same cost vector is a

path that passes through every critical point of γ or case (2)

in Lemma 3.2.

IV. N-DEGREES OF FREEDOM

A cylindrical coordinate space X can be described by a set

of 2-d projections. Therefore when we only have a bounded

velocity constraint we can easily extrapolate algorithms from

the 2-d case. Unfortunately, the argument fails in the case of

bounded acceleration.

Fig. 5. There are two connected obstacle sets in the 3-d coordination
space which are in different projections and doesn’t intersect each other.

Theorem 4.1: Suppose X is a cylindrical coordinate space

and admissible paths are paths that have bounded (or initial

bounded) acceleration. Then there is no finite bound on the

number of globally Pareto optimal classes in general.

Proof: We show this by example. Suppose there are

3 robots in the workspace, as in Fig. 5. Then X is a 3-

dimensional cylindrical coordinate space. Suppose β is an

IBA left-greedy path. Let x = (x0, y0, z0) be the unique

critical point of β with the velocity ẋ = (1, 0, 1). The 0-

velocity in the second component is due to the obstacle in

(x, y)-plane: see Fig. 6. Suppose the maximal admissible

velocity of x is (1, v0, 1) which means that there is a path γ
such that γ(t0) = x and γ̇(t0) = (1, v0, 1). Clearly v0 < 1
because of the obstacle in the (z, y)-plane. If we slow down

along the z-direction, then v0 can be increased: see Fig. 7.

So we can define a map Π(t, s) such that Π(t0, 0) = γ(t0),
Π(t0, 1) = (x0, y0, z1), z1 < z0, and Π̇(t0, 1) = (1, 1, 1).
Then Π(t, s0) gives a one-parameter family of Pareto optimal

paths, the cost vectors of which are (c, k − h, l + h) where

c, k, l are constant and h > 0. This continuum of paths is

therefore pairwise inequivalent.

Fig. 6. IBA left-greedy path on the (x, y) plane [left] and (x, z) plane
[right].

Fig. 7. The dotted line on the right indicates a collision path; the thin line
is modified to avoid the collision by modifying the robot on the z-axis.

The difference between the bounded and unbounded ac-

celeration cases is how obstacle sets are defined in the phase

space. In the case of unbounded acceleration, a configuration

space and a phase space have the same kind of obstacle set;

both are cylindrical. But if we add the bounded acceleration

constraint the obstacle set in a phase space becomes much

more complicated. Obstacles are comprised of: 1) cylindri-

cal obstacles (from collisions); 2) the region of inevitable

collisions that depends on the speed; and 3) time-limited

unreachable sets. Unlike types 1) and 2) type 3) depends on

the path end points (initial and goal points) crucially.
3) Unbounded acceleration case: We first demonstrate

that unbounded acceleration leads to a cylindrical coordi-

nation phase space.

Suppose X =
∏N

i=1
Γi and O is a obstacle set which is

cylindrical. Let PX denote the phase space X × Ẋ where

Ẋ = {(v1, ..., vN ) | ‖vi‖∞ ≤ 1}. Let us check the possible

obstacles in PX . Suppose x×ẋ ∈ PX and x ∈ O then x×ẋ
clearly is in the obstacle of PX which is cylindrical. Also if

x × ẋ ∈ O then x must be in O. Therefore a configuration

space PX − PO is a cylindrical coordinate space.
4) Bounded acceleration case: The above result fails in

the bounded acceleration case.

Now we must consider the region of inevitable colli-

sion, denoted by Xric. Xric is a set containing points
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in obstacle sets and also points which can not avoid the

future colision[15]. For example, suppose X is 2-dimensional

space. For (x, y, 1, 1) ∈ Xric, there exist x′, y′, vx,

and vy such that (x′, y, 1, 1), (x, y′, 1, 1), (x, y, vx, 1), and

(x, y, 1, vy) are not in Xric: see Figure 8. Therefore there

exist noncylindrical obstacle sets.1

Fig. 8. Only the dotted arrow is in Xric

V. CONCLUSION

The bounded velocity assumption on paths used in earlier

works [11], [10] yields a very clean mathematical theory for

classifying Pareto-optimal paths for multi-robot coordination.

This note gives the first results for the bounded acceleration

case. We restrict to the case of initial bounded acceleration

to respect the physical differences between acceleration and

deceleration in robotics. The two principal results are as

follows.

(1) In the case of two robots, initial bounded acceleration

does not alter the finiteness results for Pareto-optimal path

classes.

(2) In the case of three or more robots which are suf-

ficiently ‘entangled’ — which come close enough to each

other to have obstacles in the coordination space which are

not well-separated — the acceleration bounds force multi-

parameter continua of distinct Pareto-optimal path classes.

In addition, we have observed that the cylindrical con-

straints on the appropriate coordination space (noted in [11]

to be of fundamental importance to the finiteness results) are

satisfied for IBA phase spaces in the 2-d case and are violated

in higher dimensions. This lends credence to the proposition

that cylindricity (and nonpositive curvature associated with

it) is a fundamental reason for the (surprising) finiteness

results.

Future work consists of determining bounds on obstacle

separation to ensure a finiteness result in general multi-

robot coordination problems. In addition, one can address the

problem of terminal acceleration bounds to determine what,

if any, effect these have on Pareto-optima. More broadly,

the general problem of computing the topological type of

the space of Pareto-optimal paths in robot coordination

problems where the agents are unconstrained is both open

and challenging.
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