
Trajectory Inverse Kinematics by Conditional Density Modes
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Abstract— We present a machine learning approach for tra-
jectory inverse kinematics: given a trajectory in workspace, to
find a feasible trajectory in angle space. The method learns
offline a conditional density model of the joint angles given
the workspace coordinates. This density implicitly defines the
multivalued inverse kinematics mapping for any workspace
point. At run time, given a trajectory in the workspace, the
method (1) computes the modes of the conditional density given
each of the workspace points, and (2) finds the reconstructed
angle trajectory by minimising over the set of modes a global,
trajectory-wide constraint that penalises discontinuous jumps
in angle space or invalid inverses. We demonstrate the method
with a PUMA 560 robot arm and show how it can reconstruct
the true angle trajectory even when the workspace trajectory
contains singularities, and when the number of inverse branches
depends on the workspace location.

I. INTRODUCTION

We consider the problem of trajectory inverse kinematics

(IK) [1] of a (say) robot arm, where given a sequence of

positions x1, . . . ,xN in (Cartesian) workspace of the end-

effector, we want to obtain a feasible sequence of joint angles

θ1, . . . ,θN that produce the x-sequence (we do not consider

dynamics in this paper). Given the joint angles, the end-

effector position is given by the forward kinematics mapping,

x = f(θ), which is usually (but not necessarily) known.

However, the inverse f−1(x) can take multiple values, or for

redundant manipulators (where dimθ > dimx), an infinite

number of them; this makes it difficult to represent and com-

pute f−1. At the same time, we want the recovered sequence

of joint angles to trace a continuous, realisable trajectory.

Importantly, our goal is not only to solve IK at each trajectory

point, but also to obtain an angle trajectory that is globally

feasible (e.g. avoiding discontinuities or forbidden regions).

Similar IK-related problems arise in other areas: in computer

graphics, where one wants to achieve realistic animation of

articulated characters (e.g. [2]); in the articulatory inversion

problem of speech, where an acoustic waveform (“position

x”) may be produced by different vocal tract shapes (“angles

θ”) [3], [4]; and in the protein loop closure problem in

computational biology [5].

The forward kinematics mapping f can usually be obtained

in closed form for a kinematic chain as a product of homo-

geneous transformation matrices, one per link (however, we

remark that this is not always the case, as in articulatory

inversion). There exist many approaches to IK; we briefly

review some of them here (see [6], [7], [8] for review). In

analytic approaches, one tries to obtain the IK mapping in

closed form (e.g. [9]); this is only possible for certain types
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of manipulators, and even then it can be complicated. Local

methods [10], [11], [8] are based on linearising the forward

mapping to obtain ẋ = J(θ)θ̇, where J is the Jacobian

of f (Resolved Motion Rate Control [10]). This equation

can then be integrated numerically in order to obtain the

global trajectory for θ. For redundant manipulators, where

J has more columns than rows, a unique value of θ̇ may

be obtained by optimising a suitable objective (such as en-

ergy) over the nullspace of the Jacobian; in particular, one

can obtain the pseudoinverse method by minimising ‖θ̇‖2
,

yielding θ̇ = J+(θ)ẋ, at a computational cost O(m2n)
where m = dimx < n = dimθ. However, the idea breaks

down at singularities θ∗, where J(θ∗) becomes singular;

this is caused by the existence of multiple inverse branches

intersecting at θ∗. Also, the numerical error can accumulate

over time, and the computational cost is high since many

pseudoinverses of non-sparse Jacobians must be computed.

Other local methods [8] use an augmented set of variables

(ẋ,θ) rather than just ẋ. Another local method (well-known

in articulatory inversion) is analysis-by-synthesis, which di-

rectly finds an inverse value θ of f by iteratively minimising

the squared error E(θ) = ‖x − f(θ)‖2
with a numerical

optimisation method, e.g. gradient descent, where ∇E =
2J(θ)T (f(θ) − x). Unfortunately, which inverse value is

found depends on the initial value for θ, and the iteration may

also get stuck at non-inverse values where J(θ)T (f(θ)−x) =
0 but f(θ) 6= x. However, the method is useful if the initial

θ is sufficiently close to the inverse sought. Global methods

[12], [13] propose a variational approach where the trajec-

tory of θ minimises a functional
∫ t1

t0
G(θ, θ̇, t) dt (such as

energy and manipulability) subject to the forward kinematic

constraint x(t) = f(θ(t)) and appropriate boundary con-

ditions. The trajectory is obtained by numerical integration

of the corresponding Euler-Lagrange equation. However, the

method still suffers from singularities [13] and needs the

user to provide boundary conditions that are often unknown.

Thus, an important problem of many of these methods are

the singularities of the Jacobian. These correspond to the in-

tersection of multiple inverse branches (violating the inverse

function theorem), and while locally any of these branches

is valid a priori, globally perhaps only one is valid.

A different type of methods are based on machine learning

(data-driven) techniques. These methods estimate the inverse

mapping using a training set of input-output pairs (x,θ).
While the forward mapping may be learnt by fitting a (say)

neural net directly to pairs (θ,x), learning the inverse map-

ping by fitting a neural net to pairs (x,θ) would average

the different inverse branches, yielding invalid solutions. For

example, consider the function x = f(θ) = θ2; the least-
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squares error ‖θ − g(x)‖2
2 is minimised by g(x) = 0, the

average of the two branches ±√
x, and this is what a neural

net would yield. The distal learning approach [14] first trains

a neural net to model the forward kinematics f ; then another

net is prepended to this, and the resulting, cascaded network

is retrained to learn the identity but keeping unchanged the

weights of the forward model. This results in the prepended

portion of the network learning one of the possible inverses

(with the other branches being irreversibly lost). DeMers

and Kreutz-Delgado [7], [15] try to identify (by clustering)

subsets of the data corresponding to different branches, i.e.,

representing one-to-one mappings, and then they fit to each

of them a neural net. However, in practice it is hard to

identify such subsets. D’Souza et al [8] fit a locally weighted

projection regression to map (ẋ,θ) to θ̇ as in the local

methods discussed above.

We present a different method based on directly repre-

senting multivalued mappings using density models. It is

a machine learning method that learns trajectory IK given

a training set of input-output pairs (x,θ) and possibly but

not necessarily given the forward mapping f . It is a global

method in that it disambiguates multiple branches by min-

imising a trajectory-wide constraint. The goal of the method

is to obtain a θ-trajectory that, while not perfectly accurate, is

sufficiently close at each point to the correct trajectory that it

can be refined (if desired) using a local method. We describe

the method in section II, demonstrate it in experiments in

section III and discuss it in section IV.

II. TRAJECTORY INVERSE KINEMATICS BY CONDITIONAL

DENSITY MODES

Assume we have a training set of pairs (θ,x) with x =
f(θ), where f is the forward kinematics mapping (if we do

not know f , we could estimate it by fitting e.g. a neural net).

At run time, assume we are given a trajectory x1, . . . ,xN in

workspace and want to obtain a trajectory θ1, . . . ,θN of joint

angles that yields the x-trajectory while avoiding discontinu-

ous jumps in θ-space. Our method works as follows. Offline,

it estimates a density model p(θ,x) for both variables, or

just a conditional density p(θ|x), using the training set. At

run time, for each n = 1, . . . , N we obtain the conditional

density p(θ|xn) and its modes; the latter explicitly represent

the multiple inverse solutions at each xn. Then, we obtain

the θ-trajectory by minimising a constraint over the entire set

of modes. Let us describe each step in detail. This method

is a particular case of a more general approach proposed for

reconstruction of sequences with missing data [16].

A. Density model

The key property of the conditional distribution p(θ|x)
is that it will be peaked around the inverse solutions for x

(see fig. 1). Thus, its modes are representatives of the inverse

values. If we represent the density with a Gaussian mixture,

then we can approximate the true data density to arbitrary

accuracy by using a sufficiently large number of components

[20]. Thus, the modes can approximate the inverse values as

closely as desired (at a corresponding computational cost). A
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Fig. 1. Left: joint probability density p(x, θ) (shaded area) and forward
mapping f (thick black line). Right: multivalued mapping θ = f−1(x0) =
{θ0, θ1, θ2} from the multimodal conditional distribution p(θ|x). Depend-
ing on the value of x0, there may be 3 modes (as shown), 2 or 1, and
correspondingly 3, 2 or 1 inverses for x0.

more interesting issue is that the topology of the manifold of

inverse branches can be very complex, where the number of

inverse branches may depend on the value of x; for example,

at a singularity two different branches intersect (fig. 1). The

density can deal with these topology changes in that e.g. two

different modes can merge into a single one, and vice versa.

This is a useful property that frees us from having to guess

the number of inverses and fix it beforehand.

We can estimate the conditional density with statistical

machine learning techniques given the dataset of pairs (θ,x).
One option is to learn a full density model p(x,θ) and then

obtain from it the conditional distribution

p(θ|x) = p(x,θ)/p(x) = p(x,θ)/
∫

p(x,θ) dθ.

A convenient density model for which computing conditional

distributions is straightforward are isotropic Gaussian mix-

tures (GM), p(y) =
∑M

m=1 πmp(y|m) where p(y|m) ∼
N (y;µm, σ2I). The GM parameters πm, µm and σ2 (pro-

portion, mean and covariance) are estimated from the training

set by maximum likelihood with the EM algorithm [20]. An-

other option is to learn directly a conditional density model

p(θ|x); this is more efficient because it needs to model a

density in fewer dimensions (only θ, not θ and x). We study

both choices (full and conditional) in section III.

B. Mode finding

Assume we have a conditional density p(θ|x) which has

the form of a GM. Efficient algorithms for finding all the

modes of a GM exist [17] that iterate a hill-climbing al-

gorithm from every centroid of the GM. In particular, the

Gaussian mean-shift algorithm iterates

θ(τ+1) =
∑M

m=1 p(m|θ(τ);x)µm(x)

where the posterior probability p(m|θ(τ);x) is the normalised

version of

πm(x) exp
(

− 1
2 ‖(θ

(τ) − µm(x))/σm(x)‖2 )

.

Gaussian mean-shift does not require inverting matrices and

takes O(kM2) where M is the number of components in

the GM and k the average number of iterations per compo-

nent. The computational time can be drastically reduced, for

example discarding low-probability components of the GM

(having small πm(x)); see [18] for other accelerations.

1980



C. Global optimisation with dynamic programming

Assume we have collected for each step n in the trajectory

all the modes (candidate inverses). In principle, each of these

modes represents a correct solution for step n (following

a certain solution branch), but a given branch that is valid

for part of the trajectory may be invalid for another part

(e.g. because certain joint angles’ values are forbidden due

to mechanical constraints). In order to determine the solution,

we minimise a global, trajectory-wide constraint over the set

of modes. In this paper, we consider a constraint of the form

C + λF (for λ ≥ 0), where:

• C =
∑N−1

n=1 ‖θn+1 − θn‖ represents a continuity con-

straint (integrated 1st derivative). This penalises discon-

tinuous jumps in θ-space and encourages short trajec-

tories. We also use S =
∑N−2

n=1 ‖θn+2 − 2θn+1 + θn‖,

which represents smoothness (integrated 2nd derivative).

• F =
∑N

n=1 ‖xn − f(θn)‖ represents a forward con-

straint (integrated workspace error), and penalises in-

valid inverses, i.e., modes θn that do not map near

the desired xn. This helps to eliminate spurious modes

produced by ripple in the density model.

Effectively, this is a form of planning in angle space. Global

minimisation of the constraint can be obtained by dynamic

programming in O(Nν2) where ν is the average number of

modes per step (usually very small), thus in linear time on

the trajectory length N . Computationally, this is generally

negligible compared to the mode-finding step.

III. EXPERIMENTS

We show proof-of-concept experiments for several sim-

ple robot arms. Our goal is to illustrate the methods’ per-

formance with known ground truth for different settings.

We consider the following methods: the Jacobian pseudoin-

verse (local method baseline); a conditional mean method,

which estimates a univalued inverse mapping (as a neural

net would do); and our conditional modes method, which

estimates multivalued mappings and disambiguates the solu-

tion by minimising a global constraint. We study different

choices of the density model (full and conditional) and of

the global constraint (C, S, F).

A. Planar 2-link robot arm

First, we consider a 2-dof planar robot arm (fig. 2) for

which it is possible to visualise the conditional density and

study the method. The forward mapping is

x1 = l1 cos θ1 + l2 cos(θ1 + θ2)

x2 = l1 sin θ1 + l2 sin(θ1 + θ2)

where l1 = 0.8 and l2 = 0.2. The inverse mapping can be

computed analytically and has 2 solutions (elbow up/down).

Singularities occur when |J(θ)| = |l1l2 sin θ2| = 0 ⇔ θ2 =
0, ±π, i.e., when the arm is fully stretched or folded. To

make the problem more complex, we limit the θ-domain

to [0.3, 1.2] × [1.5, 4.7] rad so that certain branches are in-

valid in certain regions of the workspace. For example, the

region at the right end of the workspace is only reachable
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Fig. 2. Geometry of the 2-link planar arm of sec. III-A (left: θ-space, right:
x-space). The black dots are the training set of pairs (θ,x) ∈ R

4, which
indicate the reachable region of workspace. The blue curve is the trajectory
to be reconstructed, and the red lines schematically represent the robot arm
in 3 different configurations. Points near the two ends of the workspace can
only be reached by one configuration because of limits on θ1.
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Fig. 3. Marginal densities p(θ) (left) and p(x) (right) for the fine GTM
model p(θ,x) (4–dimensional), as a contour plot. The component centres
of the Gaussian mixture are indicated by red dots.

as elbow-up, and the region at the left end as elbow-down.

More generally, the feasible θ-domain could have a very

complicated shape, where the range of allowed values for a

single angle θi depends on the values of other angles θj , e.g.

to avoid self-intersections in a humanoid robot. Respecting

these constraints is simple in our method, since the training

set will only contain feasible configurations by construction,

and the density modes will always lie on high-density regions

(not so the mean!). The trajectory in fig. 2 goes through

singularities (when the arm is fully stretched); a local method

may choose a branch that later on is unable to reach the

trajectory, but our method can choose the correct branch by

keeping track of all local solutions and then disambiguating

them with the global constraint.

We generated a training set of 2 000 pairs (θ,x) by uni-

formly sampling the θ-space1 and mapping with f (black

dots in fig. 2). We trained density models by max. likelihood:

1We included samples in a slightly larger domain [0.1, 1.4] × [1.3, 4.9]
to avoid boundary effects in the density model. For GTM, we also added a
bit of noise (stdev 0.05) to improve the smoothness of the resulting density.
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• Full density p(x,θ): we could have trained a GM di-

rectly, but instead we trained a generative topographic

mapping (GTM) model [19], since the intrinsic dimen-

sionality of (x,θ) is 2 (not 4, because of the forward

mapping). GTM is a latent variable model that yields

a GM constrained to lie in a low-dimensional mani-

fold. We tried 2 GTM models, one coarse (with M =
225 components in the GM) and one fine (with M =
2500). Fig. 3 shows the resulting density, or rather the

marginals p(θ) and p(x) for visualisation purposes.

• Conditional density p(θ|x): we used a mixture density

network (MDN) [20]. This is a particular case of mix-

tures of experts [21] that yields a GM

p(θ|x) =
∑M

m=1 πm(x)N (θ;µm(x), σm(x))

where the functions πm(x), µm(x) and σm(x) are neu-

ral nets. We used M = 2 components and 2-layer neural

nets with 10 hidden units. Note a MDN is different from

a neural net; the latter is a univalued function, while the

MDN represents multimodal densities, whose number

of modes depends on x.

Fig. 4 shows, for each model, the conditional density for

a particular x value. The conditional density model (MDN)

gives a sharply peaked density with 2 modes near the true

inverses. The fine GTM model gives also a bimodal density

but less sharp, and the coarse GTM model gives a multimodal

density where spurious modes arise along the line connecting

the true inverses. The reason for this is the interference from

the additional dimensions (for x) that GTM is modelling, so

that more components are necessary to achieve an accurate

conditional density. However, as seen below, all 3 models

succeed in recovering the true trajectory thanks to the for-

ward constraint F (which filters out the spurious modes).

Figs. 5–6 show the reconstructed trajectories for each den-

sity model (we obtained similar results with other trajecto-

ries). We also show the trajectory that results from using

the mean of the conditional density. This yields the GM

regression mapping and is essentially equivalent to fitting a

neural net directly to pairs (x,θ). Since it can only represent

a univalued mapping, it averages the two inverse branches,

resulting in the fully stretched configuration, which is in-

valid (i.e., it does not equal the desired x) for most x;

it is valid where the inverse is univalued, namely at the

ends of the workspace. When using conditional modes, all

3 density models (MDN, coarse GTM, fine GTM) succeed

in reconstructing the true trajectory with good accuracy, but

more importantly, yielding a globally correct trajectory that

chooses the appropriate branch at all steps.

It is very interesting to note that the x-trajectory of fig. 2

can actually be produced by different θ-trajectories (fig. 7).

In theory, they all have exactly the same value for the global

constraint, but in practice they differ slightly due to the

particular training set and model used. The pseudoinverse

method, being local, can only find one of these trajectories

(fig. 5–6, green). In our method, the dynamic programming

search considers all these trajectories and selects the one

with globally minimal constraint value. However, if (say)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

1718

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

θ1

θ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 1

 2

 3
 4

 5

 6

 7 8

 910
1112

13

1415

16

17

18

x1

x2

1

2

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

θ1

θ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

2

x1

x2

0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

4.5

5

1

2

θ1

θ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

12

x1

x2

Fig. 4. Sample conditional densities p(θ|x = (0.78, 0.48)) for 3 models:
coarse GTM (top, 18 modes), fine GTM (middle, 2 modes) and MDN
(bottom, 2 modes). Left: contours of the conditional density in θ-space,
its modes (red dots) and the true inverses (black circles). Right: robot arm
configurations for the modes (red) and true inverses (black).

the region [1, 1.5] × [1.5, 2] of θ-space were not allowed

(e.g. because of mechanical constraints) then the trajectory

found by the pseudoinverse method would be invalid; a local

method has to decide which inverse branch to take at the

singularity near θ = (0.3, 3) and does not benefit from the

information about the forbidden θ–rectangle that lies in the

future (assuming the trajectory starts near θ = (0.3, 1.6)).
Our method does benefit from it by learning (through the

training set) only those regions and branches that are actually

feasible and succeeds in reconstructing the correct trajectory.

Table I gives the errors in θ and x wrt the true trajectory

(true = any of fig. 7). For x they are of around 2% of
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Fig. 5. True (blue) and reconstructed trajectories with the fine GTM model
(red) and the pseudoinverse (green). Left: θ-space, right: x-space. Top: using
the conditional mean, bottom: using the modes and the continuity constraint
C. The pseudoinverse solution is one of the trajectories of fig. 7.

the length of the fully stretched arm (l1 + l2 = 1) for the

fine and coarse GTM models, and of 0.5% for the MDN

model. These errors are very close to the “oracle” column,

which gives the error achieved if the closest modes to the

true solution were selected. We could refine the trajectory

and reduce the error as much as desired in a postprocessing

step by initialising an analysis-by-synthesis search at each

point in the trajectory. We find that the continuity constraint

alone is enough to find the correct trajectory with the MDN

and the fine GTM model, but not with the coarse GTM

model, because of the spurious modes it has (which provide

shortcuts that the continuity constraint favours). However,

adding the forward constraint F as C+λF (over a wide range

of λ > 0) yields the correct trajectory for all methods. The

smoothness constraint S performs as well as the continuity

constraint C. The errors when using the mean of the density

are considerably larger, but only the figures show how truly

bad its solutions are.

Both the pseudoinverse and our method can achieve low

reconstruction error, depending on the chosen number of it-

erations and of GM components. Besides its ability to ensure

globally feasible trajectories, our method has the advantage

of being less sensitive to singularities. Near singularities,

the pseudoinverse method is numerically unstable and takes

many iterations to converge (not so our method).
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Fig. 6. As fig. 5 but for the MDN model (red).
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Fig. 7. Four trajectories in θ-space that produce the same x-trajectory of
fig. 2 (blue).

TABLE I

RECONSTRUCTION ERRORS FOR THE 2D ROBOT ARM

Angle reconstruction error 1

N

P

N

n=1
‖θn − θ̂n‖ (rad)

Model mean oracle C S C + λF S + λF
coarse GTM 0.783 0.083 0.628 0.704 0.118 0.122

fine GTM 0.798 0.114 0.114 0.127 0.114 0.127
MDN 0.668 0.037 0.037 0.037 0.037 0.037

pseudoinv 0.06

Workspace reconstruction error 1

N

P

N

n=1
‖xn − f(θ̂n)‖

Model mean oracle C S C + λF S + λF
coarse GTM 0.084 0.024 0.094 0.097 0.022 0.028

fine GTM 0.084 0.021 0.021 0.021 0.021 0.021
MDN 0.072 0.005 0.005 0.005 0.005 0.005

pseudoinv 0.016
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Fig. 8. Training set for the PUMA 560 robot arm of sec. III-B (top views,
left: θ-space, right: x-space). The workspace contains an unreachable region
shaped like a vertical cylinder passing through the robot foot.
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Fig. 9. Left: modes (red dots) for the conditional density p(θ|x) for the
MDN model and the PUMA 560 robot arm. There are 4 true inverses (black
circles), which are well represented by the modes, but there are also two
spurious modes (which are removed by the forward constraint F , since they
map far from the desired x). Right: modes and true inverses in workspace,
represented as schematic arms.

B. PUMA 560 robot arm with 6 DOF

Figs. 10–11 and table II show similar experiments for a

PUMA 560 robot arm with 3 dof for position θ = (θ1, θ2, θ3),
3 dof for orientation (which we ignore), and a 3D workspace

x ∈ R
3. The (point) IK can be solved analytically for this

robot [9] and yields 4 solution branches (two combinations

of elbow up/down; fig. 9); we use the implementation of

the Matlab Robotics Toolbox [22]. As before, we limit the

angle domain in order to complicate the topology of the

inverse mapping, and generate a training set of 5 000 pairs

(θ,x) (shown in fig. 8). The GTM (full density model) that

we trained (results not shown) failed to produce a good

reconstruction because of the existence of multiple spurious

modes. The reasons for this are the higher dimensionality of

the space, but also the fact that GTM is practically limited

to an intrinsic dimensionality of at most 2, while in this

case the intrinsic dimensionality is 3. We also trained a

MDN (conditional density model) with M = 12 components

(and neural nets with 300 hidden units), which did succeed

in reconstructing various trajectories, with errors of similar

magnitude as with the planar arm of sec. III-A; we show

a sample of results, for 3 trajectories (an elliptical closed

loop, a figure–8 closed loop, and an open trajectory; figs. 10–

11, table II). Again, the symmetry of the problem results in

several equivalent global solutions; the pseudoinverse and

our method choose different ones. The larger errors occur
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Fig. 10. Reconstruction of an elliptical trajectory (blue) for the PUMA
560 arm: MDN (red); pseudoinverse (green). Left: θ-space, right: x-space.
Top: mean of the density, bottom: modes and continuity constraint C.
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Fig. 11. As fig. 10 but for a figure–8 trajectory.
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TABLE II

RECONSTRUCTION ERRORS FOR THE 3D ROBOT ARM (PUMA 560)

Angle reconstruction error 1

N

P

N

n=1
‖θn − θ̂n‖ (rad)

Traj. pseudoinv mean C S C + λF S + λF
Ellipse 0.072 2.110 0.076 0.069 0.071 0.069

Figure–8 0.076 1.990 0.082 0.081 0.081 0.080
Open 0.042 2.140 0.173 0.778 0.173 0.176

Workspace reconstruction error 1

N

P

N

n=1
‖xn − f(θ̂n)‖

Traj. pseudoinv mean C S C + λF S + λF
Ellipse 0.025 0.819 0.030 0.029 0.029 0.029

Figure–8 0.019 0.750 0.028 0.027 0.027 0.027
Open 0.007 0.665 0.055 0.080 0.055 0.055

for points near a cylindrical hole at centre of the workspace

which is not reachable by the robot, because of boundary

effects of the density model. They could be reduced by in-

creasing the number of components in the GM, or more

efficiently by refining the trajectory with a local method.

The “oracle” (best achievable) error (not shown) was very

similar to that of C + λF .

C. Redundant planar 3-link robot arm

When dimθ > dimx (redundant manipulator), an infinite

number of inverses θ exist for a given x. The corresponding

density p(θ|x) would ideally be uniform over this set of in-

verses. Instead, because we use a Gaussian mixture, this uni-

form density becomes approximate and has multiple modes

distributed over the set of inverses. Thus, these modes act as

a quantised representation of the inverse set, and are available

for use by the global constraint (which could also incorporate

terms suggested by arguments of movement economy, such

as integrated jerk or torque). We show this with a 3-link

redundant manipulator with 3 dof for θ (link lengths: 3, 2.5,

2; foot at x = 0) and a 2D workspace x ∈ R
2. We generate a

training set in a subset of [0, 2π]3 and train a MDN (M = 36
components, neural nets with 300 hidden units). Figs. 12–

13 and table III show experiments for three trajectories in

x–space (a circle, a loopy trajectory with self-intersections

and a figure–8). The larger errors occur when the robot arm

is close to fully-stretched configurations (corresponding to

singularities). Both the pseudoinverse and our method are

able to retrieve continuous (but different) trajectories in θ–

space. As before, near singularities the pseudoinverse method

is unstable and takes many iterations to converge.

TABLE III

RECONSTRUCTION ERRORS FOR THE REDUNDANT MANIPULATOR

Workspace reconstruction error 1

N

P

N

n=1
‖xn − f(θ̂n)‖

Model pseudoinv mean C S C + λF S + λF
Circle 0.060 4.610 0.173 0.185 0.140 0.161
Loopy 0.106 3.970 0.231 0.040 0.040 0.040

Figure–8 0.135 3.930 0.069 0.069 0.069 0.069
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Fig. 12. Reconstruction of the loopy trajectory for the redundant arm:
MDN with constraint C + λF (red); pseudoinverse (green).
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Fig. 13. As fig. 12 but for a figure–8 trajectory.

IV. DISCUSSION

Our method, by directly representing multivalued map-

pings and using a global constraint, is able to achieve fea-

sible, globally correct solutions to trajectory IK even in the

presence of (1) singularities of the Jacobian, where the for-

ward mapping has multiple local inverses, and (2) compli-

cated angle domains, which are captured through the train-

ing set. The power of the density model is its flexibility:

in principle, it represents implicitly (through its modes) all

the feasible solution branches once and for all, even when

their topology can be very complex (e.g. with a number of

branches that depends on x) because of the nonlinearity of

the forward mapping, or because of mechanical constraints.

The disadvantage is that the mappings are implicit, and must

be made explicit at run time by mode finding. We discuss

several aspects of the method next.

Data collection: In common with other machine learn-

ing methods, we need a training set of pairs (θ,x). These

can be collected by sampling the θ-space and computing

x = f(θ), if the forward mapping f is known, or by recording

(θ,x) while the robot is performing a task (perhaps imitating

a human). This has the advantage of yielding valid pairs (by

definition) and sampling only those areas of θ-space that

correspond to typical motion, rather than feasible but atypical

motions. Besides, typical behaviour may result in correla-

tions between joints that reduce the intrinsic dimensionality

of the θ-space. This idea is being exploited in motion-capture

systems and has wide applicability in IK in graphics [2]

and articulated pose tracking in computer vision [23], [24].

The density model need not be overly accurate; it suffices

to yield modes near the true solution, and spurious modes

(if there are not too many of them) may be filtered out

by the forward constraint. Being data-driven, a limitation of
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our method is that the estimated global trajectories are not

perfectly accurate, however they are very close to the true

trajectory and may be refined a posteriori if desired by a

local method (e.g. RMRC or analysis-by-synthesis).

Run time: In practice, the run time is dominated by

the mode-finding step, which takes O(kM2) where M is

the number of components in the GM and k the average

number of iterations per component (≈ 50). When using a

full density model p(x,θ), M is very large, which prevents

use in real time. But with a conditional density model p(θ|x)
(e.g. a MDN), which besides is more accurate, we can limit

M to a number slightly larger than the (estimated) maximum

number of solution branches for all x, which is far smaller.

The mode-finding algorithms, e.g. Gaussian mean-shift, can

also be significantly accelerated [18], again noting that there

is no need to converge with large accuracy. Our method

does not use the Jacobian and needs no matrix inversions. In

our unoptimised Matlab implementation for the PUMA arm,

our method took 50/10/4 ms per point (worst/average/best),

while the pseudoinverse method took 200/30/10 ms.

In summary, our method can obtain very accurate solutions

if a GM with a large enough number of components is used.

However, its main strength is in being able to find a globally

feasible solution without suffering from singularities of the

Jacobian (since it does not use the Jacobian or possibly even

a closed-form forward mapping), and dealing in a natural

way (through the training set) with complex angle domains

that are very difficult to express in analytical form.

V. CONCLUSION

We have introduced a machine learning method for tra-

jectory IK that can deal with trajectories containing singu-

larities, where the inverse mapping changes topology, and

with complicated angle domains caused by mechanical con-

straints (e.g. to prevent self-intersection of body limbs in a

humanoid robot)—a hard problem for local methods (e.g. Ja-

cobian pseudoinverse). Given a training set (θ,x), the method

learns a conditional density p(θ|x) (using a mixture density

network, MDN) that implicitly represents the branches of the

inverse mapping θ = f−1(x); the mappings are obtained by

finding the modes of the conditional density using a Gaussian

mean-shift algorithm, and the final θ-trajectory is obtained by

minimising a global, trajectory-wide constraint over the set

of modes. We have demonstrated the method with trajectory

IK for simple robot arms (e.g. PUMA 560) with known

forward and inverse mappings. Future work will apply it to

trajectory IK in other domains (such as animation in com-

puter graphics, articulated pose tracking in computer vision

or articulatory inversion in speech), where neither the inverse

nor possibly the forward mappings are known, and having

complex mechanical constraints that are best captured by

data-driven approaches. Another advantage of the method is

its probabilistic nature: it can model noise in the measured θ,

x and estimate the uncertainty in the reconstructed trajectory

(error bars); it is also applicable when some of the x variables

are missing or unspecified (e.g. for a humanoid robot we

might not care about the hand position when walking).
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