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Abstract—A unified formulation for deriving the equations
of motion of constrained or unconstrained multi-body systems
(MBS) in terms of (reduced) quasi–velocities is presented. In
this formulation, the square–root of the mass matrix is used
to transform disparate units into homogeneous units for all
the quasi-velocities resulting the gauge invariance. We show
that the square–root factorization of mass matrix and hence
the quasi–velocities are not unique, rather they are related
by unitary transformations. Subsequently, we show that a
particular transformation leads to significant simplification of
the dynamic modeling. The number of differentiations required
to derive the equations of motion is reduced. This fact combined
with the fact that the expression of the inverse of the mass
matrix factorization can be given in a closed–form make the
formulation suitable for symbolic manipulation or numerical
computation. Moreover, in this formulation the equations of
motion are decoupled from those of constrained force and each
system has its own independent input (that is not attainable
by other formulations). This allows the possibility to develop
a simpler force control action that is totally independent from
the motion control action. The structure of the formulation
is also suitable for control purposes. Tracking control and
regulation control of constrained multi-body systems based on
a combination of feedbacks on the vectors of the quasi–velocity
and the configuration variables (which may contain redundant
variables) are presented.

I. INTRODUCTION

Manipulators’ dynamics are often described by the second-

order nonlinear equations parameterized by a configuration-

dependent inertia matrix and the nonlinear vector containing

the Coriolis and centrifugal terms. Since these equations

are the cornerstone for simulation and control of robotic

manipulators, many researchers have attempted to develop

efficient modelling techniques to derive the equations of

motion of multi-body systems (MBSs) in novel forms. A

unifying idea for most modeling techniques is to describe the

equations of motion in terms of joint coordinates and their

time–derivatives. However, this is not the only possibility.

There also exist other techniques to describe the equations

of motion in terms of quasi–velocities, i.e., a vector whose

Euclidean norm is proportional to the square root of the

system’s kinetic energy, which can lead to simplification of

these equations [1]–[10]. A recent survey on some of these

techniques can be found in [9]. In short, the square–root

factorization of mass matrix is used as a transformation to

obtain the quasi–velocities, which are a linear combination

of the velocity and the generalized coordinates [9].

It was shown by Kodistchek [1] that if the square–root

factorization of the inertia matrix is integrable, then the

robot dynamics can be significantly simplified. In such a

case, transforming the generalized coordinates to quasi–

coordinates by making use of the integrable factorization

modifies the robot dynamics to a system of double integra-

tor. Then, the cumbersome derivation of the Coriolis and

centrifugal terms is not required. Rather than deriving the

mass matrix of MBS first and then obtaining its factorization,

Rodriguez et al. [5] derived the closed–form expressions of

the mass matrix factorization of an MBS and its inverse

directly from the link geometric and inertial parameters.

This eliminates the need for the matrix inversion required

to compute the forward dynamics.

The interesting question of when the factorization of the

inertia matrix is integrable, i.e., the factorization being the

Jacobian of some quasi–coordinates, was addressed indepen-

dently in [4] and [3]. Using the notion that the inertia matrix

defines a metric tensor on the configuration manifold, Spong

[4] showed that the necessary and sufficient condition for the

existence of an integrable factorization of the inertia matrix

is that the metric tensor is a Euclidean metric tensor.1 The

concept of quasi–velocities has also been used for the set-

point control of manipulators [6], [11]. However, the problem

of the tracking control of manipulators using quasi–velocities

feedback still remains unsolved owing to unintegrability of

the quasi–velocities.

The main goal of this paper is to extend the concept

of quasi–velocities for the efficient modeling of constrained

MBSs for simulation, analysis, and control purposes. Taking

advantage of the fact that square–root factorizations are

invariant under unitary transformations, we find a particular

transformation that greatly simplifies the Lagrangian equa-

tions of constrained MBS. The formulation appears to be

in a compact form with minimum number of differentiation

operations required to derive that the equations of motion

is reduced. Moreover, the unitary transformation naturally

and elegantly leads to decoupling of the equations of motion

and those of the constrained forces in such a way that each

system has its own control input. This gives the possibilities

for an independent control design and analysis of a con-

1A manifold with a Euclidean metric is said to be ”flat” and the curvature
associated with it is identically zero [6].
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strained MBS that cannot be attained by other approaches

[12]–[16]. We also present some properties of the quasi–

velocity dynamic formulation that could be useful for control

purposes. Unlike the previous derivation, the Coriolis term in

our formulation is expressed explicitly in terms of (reduced)

quasi–velocities that are not only simpler but also useful

for control implementation. The dynamic model is used for

developing tracking control of constrained MBSs based on

a combination of feedbacks on the vector of reduced quasi–

velocity and the vectors of configuration-variables, which can

contain redundant variables. It is worth noting that, unlike the

conventional schemes [13]–[15] for control of a constrained

MBS, the quasi–velocity-based controller does not require a

set of independent configuration-variables that is not always

possible to find. Finally, various square–root factorizations of

inertia matrix are reviewed.

II. QUASI-VARIABLES TRANSFORMATIONS

A. Square-Root Factorization of the Mass Matrix

Dynamics of a MBS with kinetic energy, T , and potential

energy, P , obeys the standard Euler–Lagrange (EL) equa-

tions, which are given as

d

dt

(

∂T

∂q̇

)

− ∂T

∂q
= f, (1)

where q ∈ R
n is the vector of configuration-variables2 used

to define the configuration of the system, and f is the gen-

eralized forces acting on the system. The generalized forces

f = fp + fa contain all possible external forces including

the conservative forces fp = −∂P/∂q owing to gravitational

energy plus all active and dissipative forces represented by

fa. The system kinetic energy is in the following quadratic

form:

T (q, q̇) =
1

2
q̇T M(q)q̇, (2)

where the generalized inertia matrix M(q) is symmetric and

positive definite for all q. It is well known that any symmetric

positive-definite matrix M can be decomposed as

M = WWT , (3)

where W is the square root factorization of M .

Considering the transformation

W̄ = WV,

where V is an orthogonal matrix, i.e., V V T = V T V = I ,

one can trivially verify that W̄W̄T = M . Thus, we get the

following remark

Remark 1: The square–root factorization (3) is not unique,

rather they are related by unitary transformations.

Now, substituting (3) into (2) and then applying the EL

formulation yields

f =
d

dt

(

WWT q̇
)

− 1

2

( ∂

∂q
‖WT (q)q̇‖2

)T

= W
d

dt

(

WT q̇
)

+
(

Ẇ − ∂
(

WT (q)q̇
)T

∂q

)

WT q̇ (4)

2also known as generalized coordinates

Note that (4) is obtained using the property that for any vector

field a(q), we have

∂

∂q
‖a(q)‖2 = 2aT ∂a

∂q
. (5)

Define

v , WT (q)q̇ and u , W−1(q)f, (6)

which are the so-called vectors of quasi–velocity and quasi–

force, respectively. Since M is an invertible matrix, W−1 is

well–defined and hence the reciprocals of relations (6) always

exist. Pre-multiplying (4) by W−1 and the substituting (6)

into the resultant equation, we arrive at the equations of

mechanical systems expressed by the quasi–variables:

v̇ + Γv = u, (7a)

where

Γ , W−1
(

Ẇ − ∂vT

∂q

)

(7b)

is the Coriolis term associated with the quasi–velocity.

B. Changing Coordinates by Unitary Transformations

Remark 1 states that the quasi–velocities (and also quasi–

forces) can not be uniquely determined. Rather, the following

variables:

v̄ = V T v and ū = V T u, (8)

obtained by any unitary transformation V , are also valid

choices for the new quasi–velocities and quasi–forces. Now

we are interested to derive the equations of motion expressed

by the new quasi–variables v̄. To this end, using the reciprocal

of (8), i.e., v = V v̄ and f = V f̄ , into (7a) and then

multiplying the resultant equation by V , we arrive at

˙̄v + V T V̇ v̄ + V T ΓV v̄ = ū (9)

Analogous to the rotation transformation in the three-

dimensional Euclidean space, consider matrix V as a trans-

formation in the n-dimensional space. Then, it is known that

the time–derivative of an orthogonal matrix V satisfies a

differential equation of this form [17]

V̇ = −ΩV, (10)

where Ω is a skew symmetric matrix representing the angular

rates in n−D space [18]. It is worth noting that in the three-

dimensional space, the angular rate matrix can be obtained

from the vector of angular velocity by Ω = [ω×]. For the

n–dimensional case, the method for computing the elements

of matrix Ω can be found in [17], [19], [20]. Finally, by

replacing (10) in (9), we can show that the latter equation is

equivalent to

˙̄v + Γ̄v̄ = ū, where Γ̄ = V T
(

Γ− Ω
)

V. (11)
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C. Conservation of Kinetic Energy

The kinetic energy expressed by the quasi–velocities is

trivially

T =
1

2
‖v‖2. (12)

In the absence of any external force, the principle of con-

servation of kinetic energy dictates that the kinetic energy

of mechanical system is bound to be constant, i.e., u =
0 =⇒ Ṫ = 0. On the other hand, the zero-input response

of a mechanical system is v̇ = −Γv. Substituting the latter

equation in the time-derivative of (12) gives

vT Γv = 0, (13)

which is consistent with the earlier result reported by Jain et

al. [6] that the Coriolis term associated with quasi–velocities

does no mechanical work. Note that (13) is a necessary but

not a sufficient condition for Γ to be a skew-symmetric matrix.

D. State-Space Model

It should be pointed out that although there is a one-to-

one correspondence between velocity coordinate q̇ and the

quasi–velocity v, they are not synonymous. This is because

the integration of the former variable leads to the generalized

coordinate, while that of the latter variable does not always

lead to a meaningful vector describing the configuration of

the mechanical system.

Defining a matrix R = WΓ, we can calculate its element

from (7b) as

Rij =
∑

k

(

Wij,k −Wkj,i

)

q̇k. (14)

Now let us assume that ξ̇ = v. If ξ is a conservative field

then it must be the gradient of a scalar function, and hence

ξ is an explicit function of q, i.e., ξ = ξ(q). In that case, (6)

implies that WT (q) is actually a Jacobian as Wij = ξj,i.

Since the Jacobian is an invertible matrix, ξ(q) must be

an invertible function meaning that there is a one-to-one

correspondence between ξ and q. Under this circumstance, ξ
is called the vector of quasi–coordinates. It is well known that

the existence of quasi–coordinates fundamentally simplifies

the equations of motion [1]–[4]. It can be also seen from

(7b) that if ξ(q) exists and it is a smooth function, then the

expression in the parenthesis of the right-hand side of (14)

vanishes, i.e.,

Wij,k −Wkj,i = ξj,ik − ξj,ki = 0,

because of the equality of mixed partials. Thus, Γ ≡ 0 and

the equations of motion become a simple integrator system.

Technically speaking, a necessary and sufficient condition

for the existence of the quasi–coordinates, ξ, is that the Rie-

mannian manifold defined by the robot inertia matrix M(q)
be locally flat.3 However, that has been proved to be a very

stringent condition [3]. Nevertheless, vector xT =
[

qT vT
]

is sufficient to describe completely the states of MBSs.

Hence, similar to [6], we look at the transformation only

3By definition, a Riemannian manifold that is locally isometric to Eu-
clidean manifold is called a locally flat manifold [4].

in the velocity space. That is, only the velocity coordinate

is replaced with the quasi–velocity whereas the generalized

coordinate remains. Setting (6) and (7a) in state space form

gives
d

dt

[

q
v

]

=

[

W−T

−Γ

]

v +

[

0
I

]

u. (15)

It is interesting to note that dynamics system (15) is in

the form of the so-called second-order kinematic model

of constrained mechanism, which appears in kinematics of

nonholonomic systems. This is the manifestation of the fact

that the integration of quasi–velocities, in general, does not

lead to quasi–coordinates.

III. CONSTRAINED MBS

A. Equations of Motion

In this section, we extend the notion of the quasi–velocity

for modeling of constrained mechanical systems where the

coordinates are related by a set of m algebraic equations

Φ(q) = 0. The constraints can be written in the Pfaffian

form as

A(q)q̇ = 0 (16)

where Jacobian A = ∂Φ/∂q ∈ R
m×n is not necessarily

a full-rank matrix because of the possible redundant con-

straints. The EL equations of the constrained MBSs with

kinetic energy T are

d

dt

(

∂T

∂q̇

)

− ∂T

∂q
= f −AT λ, (17)

where λ ∈ R
m are the generalized Lagrangian multipliers.

Using any form of the square–root factorizations in a

development similar to (6)-(7), we can show that (17) is

equivalent to

v̇ + Γv = u− ΛT λ, (18)

where

Λ , AW−T . (19)

It can be verified that the quasi–velocities satisfy the follow-

ing Paraffin constraint equation:

Λv = 0. (20)

Also, (20) may suggest that Λ be taken as the Jacobian of the

constraint with respect to the quasi–coordinates. However,

this is true only if the quasi–coordinates ever exist. This

means that, in general, system (18) together with (20) most

likely constitutes a non-holonomic system even though the

configuration–variables q satisfies a holonomic constraint

equation.

Since W is a full-rank matrix, we can say rank(Λ) =
rank(A) = r, where r ≤ m is the number of independent

constraints. Then, according to the singular value decom-

position (SVD) there exist unitary (orthogonal) matrices

U = [U1 U2] ∈ R
m×m and V = [V1 V2] ∈ R

n×n (i.e.,

UT U = Im and V T V = In) such that

Λ = UΣV T where Σ =

[

S 0
0 0

]

(21)
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and S = diag(σ1, · · · , σr) with σ1 ≥ · · · ≥ σr > 0 being

the singular values [21]. The unitary matrices are partitioned

so that the dimensions of the submatrices U1 and V1 are

consistent with those of S. That is the columns of U1 and V2

are the corresponding sets of orthonormal eigenvalues which

span the range space and the null space of Λ, respectively.

Now, we take advantage of the arbitration in choosing

the square–root factorization to find a particular one that

leads to decoupling of the equations of motion and those

of constrained force. Consider the unitary transformation (8)

where the orthogonal matrix V corresponds to decomposition

(21). Then, the equations of motion expressed in terms of the

new quasi–variables become

˙̄v + Γ̄v̄ = ū− Λ̄T λ, (22)

where Λ̄ , ΛV and Γ̄ has been already defined in (11).

Again, it can be easily verified that the new quasi–velocities

satisfy the following Pfaffian constraints:

Λ̄v̄ = 0. (23)

At the first glance, the transformed system (22)–(23) re-

assembles (18)–(20) without gaining any simplification.

However, it is the structure of Λ̄ that will result in further

simplification. Using (21) in the definition of Λ̄ gives

Λ̄ =
[

Λr 0m×(n−r)

]

where Λr , U1S. (24)

Since Λr ∈ R
m×r is a full-rank matrix, it can be inferred

from (23) that the first rth elements of the transformed quasi–

velocity v̄ must be zero. That is,

v̄ =

[

0r×1

vr

]

, (25)

where vr ∈ R
n−r represents a set of reduced quasi–

velocities– in the following, the subscript r denotes variables

associated with the reduced-order variables. Clearly, the zero

components of the transformed quasi–velocities are due to

the r–independent constraints. It can be verified that (25) is

equivalent to

V T
2 v = vr. (26)

Now, by using (26) in the reciprocal of relation (6), we can

show that there is a one-to-one correspondence between v
and q̇ as

q̇ = W−T V2vr, and vr = V T
2 WT q̇. (27)

Moreover, by virtue of (25), we partition the quasi–force

accordingly as

ū =

[

uo

ur

]

, where
uo , V T

1 W−1f

ur , V T
2 W−1f

. (28)

In addition, we assume that matrix Γ̄ is divided into four

block matrices

Γ̄ij = V T
i

(

Γ− Ω
)

Vj , i, j = 1, 2, (29)

and then define

Γr , Γ̄22, and Γo , Γ̄12. (30)

Now, substituting (25) into (22) and then using definitions

(28) and (29), we arrive at

v̇r + Γrvr = ur, (31a)

and

ΛT
r λ + Γovr = uo (31b)

Apparently, (31a) and (31b) represent the equations of motion

and those of constraint force which are completely decoupled

from each other. Note that the partitioned components of

the quasi–force, i.e., ūr and ūo, contribute exclusively to the

motion system and the constraint force system, respectively.

Now, we are ready to combine (31a) and (27) into the state–

space form:

d

dt

[

q
vr

]

=

[

W−T V2

−Γr

]

vr +

[

0
I

]

ur. (32)

The Lagrangian multipliers can be uniquely obtained from

(31b) through matrix inversion only if r = m, i.e., in the

presence of no redundant constraints. Otherwise, there are

fewer equations than unknowns, and hence there is no unique

solution to (31b). Nevertheless, the minimum norm solution

can be found by

min ‖λ‖ ← λ = U1S
−1
(

uo − Γovr

)

. (33)

B. Calculating the Coriolis Term

The Coriolis force term Γr itself characterized completely

the motion dynamics of a constrained mechanical system

expressed by reduced quasi–velocities. In this section, we

describe Γr expressed in terms of vr that appears to be

simpler than (30). First, in view of (5) and the facts that

v = V2vr and ‖vr‖ = ‖v‖, one can verify that

∂vr

∂q
=

∂v

∂q
V2. (34)

Now, consider the relation between vr and q̇ as

vr = WT
r (q)q̇,

where Wr = WV2. Then, from (7b), (10), (30), and (35) we

obtain

Γr = V T
2 W−1

(

Ẇ − ∂v

∂q

)

V2 + V2V̇2

= V T
2 W−1

(

Ẇr −WV̇2 −
∂v

∂q
V2

)

+ V T
2 V̇2

= V T
2 W−1

(

Ẇr −
∂vr

∂q

)

. (35)

Finally, by noting that V T
2 W−1 = W+

r is a left inverse of

Wr, that is, W+
r Wr = I , we can express (35) by

Γr = W+
r

(

Ẇr −
∂vr

∂q

)

, (36)

which closely resembles the Coriolis term of unconstrained

mechanical systems in (7b). It is interesting to note that

Wr ∈ R
n×(n−r) can be thought of as the factorization of

the semi-positive ”mass matrix” Mr = WrW
T
r = WPWT ,

where P = V2V
T
2 is a projection matrix which projects

vectors from R
n to the null space of system (20). A com-

parison between systems (31a)–(36) and (7) reveals that the
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formulation of constrained mechanical systems remains es-

sentially similar to that of unconstrained mechanical systems

if the quasi–velocity is simply replaced by a reduced quasi–

velocity.

Finally, a development similar to (35) shows that

Γo = W−

r

(

Ẇr −
∂vr

∂q

)

,

where W−

r = V T
1 W−1 is an annihilator for Wr , i.e.,

W−

r Wr = 0.

IV. CONTROL

In general, it should be always possible to choose a

minimal set of independent velocity coordinate, equal in

number of the degrees-of-freedom (DOF) exhibited by the

mechanical system. However, a minimal set of independent

generalized coordinates may not exist; a well-known example

is the orientation configuration of a rigid-body that can not

be expressed by a three-dimensional vector. However, the

conventional control of constrained mechanical system relies

on the existence of a minimal set of parameters defining the

configuration of a constrained MBS. In this section, we pro-

vide velocity and position feedbacks from (reduced) quasi–

velocities and (dependent) configuration variables, respec-

tively, for tracking control and regulating a constrained MBS.

Interestingly enough, the control challenge, then, becomes

similar to that of non-holonomic systems, as the configuration

of MBS can not be represented by any quasi–coordinates.

A. Properties

First, we explore some properties of system (31) that will

be useful in control design purposes.

Remark 2: Using (13) and the fact that Ω is a skew-

symmetric matrix in definition (29), we can say

vT
r Γrvr = 0.

Assume that c1 denote the minimum eigenvalue of M for

all configurations q, that is, c1I ≤ M(q). Then, using the

norm properties leads to

‖W−1‖ ≤ c
−1/2
1 , (37)

which in turn leads to the following.

Remark 3: Matrices Γr and Γo satisfy

‖Γr‖ ≤ γ‖vr‖ and ‖Γo‖ ≤ γ‖vr‖ (38)

for some bounded constant γ > 0 (see Appendix A for

details).

Furthermore, we assume that Wr(q) is a sufficiently

smooth function so that it satisfies the Lipschitz condition,

i.e., there exists a finite scalar c2 > 0 such that

‖WT
r (q)−WT

r (q∗)‖ ≤ c2‖q − q∗‖ ∀q, q∗ ∈ R
n. (39)

B. Tracking Control

We adopt a Lyapunov-based control scheme [22, p. 74]

for designing a feedback control in terms of quasi–velocities.

Define the composite error

ǫ , ṽr + WT
r (q)Kpq̃, (40)

where Kp > 0 and ṽr = vr − vrd
. Also, define the new

variable as s = vrd
−WT

r Kpq̃, which is used in the following

control law:

ur = ṡ + Γrs−Kdǫ, (41)

where Kd > 0. Applying control law (41) to system (31a)

gives the dynamics of the error ǫ in terms of the first-order

differential equation:

ǫ̇ = −
(

Γr + Kd

)

ǫ. (42)

As shown in Appendix B, the solution of (42) is bounded by

‖ǫ‖ ≤ ‖ǫ(0)‖e−η1t, (43)

where η1 = λmin(Kd), and hence the composite error ǫ is

exponentially stable. On the other hand, pre-multiplying both

sides of (40) by W−T (q)V2(q), the resultant equation can be

rearranged to the following differential equation

˙̃q =−W−T (q)V2(q)
[

WT
r (q)−WT

r (qd)
]

W−T (qd)V2(qd)vd

−Kdq̃ + W−T (q)V2(q)ǫ. (44)

Assuming that ‖q̇d‖ ≤ c4, c = c2c4/c1 and η2 = λmin(Kd)−
c and using (37) and (39), we can show that the solution of

the above differential equation satisfies

‖q̃‖ ≤ (‖q̃(0)‖ − κ‖ǫ(0)‖) e−η2t + κ‖ǫ(0)‖e−η1t, (45)

where κ−1 = c
1/2
1 (η2 − η1); see Appendix C for details.

Equation (45) implies that q̃ exponentially converges to zero

as t goes to infinity if η2 > 0, i.e., T

λmin(Kp) > c. (46)

The above development can be summarized in the following

theorem.

Theorem 1: Assume that the mass matrix factorization is

a smooth function satisfying the Lipschitz condition and

that ‖vd‖ is bounded. Then, for a sufficiently large position

gain, i.e., (46) is satisfied, the error trajectories of the

configuration-variables and quasi–velocities of a constrained

MBS under control law (40)–(41) exponentially converge to

zero.

Tracking of the desired constraint force λd can be achieved

simply by compensating for the velocity perturbation term in

(31b), i.e.,

uo = ΛT
r λd + Γovr. (47)

C. Regulation

The advantages of using the notion quasi–velocity for

control of serial manipulators have been recognized by many

researchers and various setpoint PD controllers based on the

quasi–velocity feedbacks have been proposed [6], [11], [23],

[24]. In this section, we extend such a feedback control
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for hybrid motion/force control of constrained mechanical

systems.

Consider the following control law for system (31a)

ur = −Kdvr − V T
2 (q)W−1(q)Kpq̃, (48)

where Kd and Kp are positive definite gain matrices, and

q̃ = q − qd is the configuration error. Then, the dynamics of

the closed–loop system becomes

v̇r = −Γrvr −Kdvr − V T
2 W−1Kpq̃. (49)

Choose the following standard Lyapunov function

V =
1

2
‖ṽr‖2 +

1

2
q̃T Kpq̃. (50)

Then, using Remark 2 in the time-derivative of (50) along

(49) yields

V̇ = −vT
r Kdvr,

which is negative-semidefinite. Clearly, we have V̇ = 0
only if vr = 0, and hence the largest invariant set

with respect to system (49) can be found as follows:

S = {vr, q̃ : vr = 0, V T
2 W−1Kpq̃ = 0}. On the other

hand, V T
2 W−1Kp is a full-rank matrix and thus the vector

equation inside the set S can only hold if the configuration

error q̃ vanishes. Therefore, according to LaSalle’s Global

Invariant Set Theorem [25], [26, p.115], the solution of

system (49) asymptotically converges to the invariant set S,

that is, q → qd as t goes to infinity.

In the case of full-rank Jacobian, the Lagrangian multiplier

can be simply regulated to its desired value λd by

uo = ΛT
r λd. (51)

Substituting (51) into (31b) and using Remark 3, we get

‖λ− λd‖ ≤
γ

sr
‖vr‖2.

Since vr → 0, then λ → λd as t goes to infinity.

D. Gauge Invariant

A problem that often arises in robotics, namely hybrid

control or minimum solution to joint rate or joint force,

is that generalized coordinate q may have a combination

of rotational and translational components that can be even

compounded by having combination of rotational and transla-

tional constraints [27]. This may lead to inconsistent results,

i.e., results that are invariant with respect to changes in

dimensional units unless adequate weighting matrixes are

used [16], [27]–[29].

An important property of the reduced quasi–velocity and

quasi–force is that they always have homogenous units. As

a matter of fact, since

‖vr‖ = ‖v‖ =
√

2T ,

we can say that all elements of the vector of quasi–velocity

v or vr must have a homogenous unit [
√

kgm/s]. This is

true even if the vector of the generalized coordinate or the

constraints have combinations of rotational and translational

components. Similarly, one can argue that the elements of the

quasi–force have always identical unit [
√

kgm/s2], regardless

of the units of the generalized force of the constraint wrench.

q1

q2

q2
1 + q2

2 = R2

Fig. 1. Constrained motion of a two-DOF manipulator.

E. An Analytical Example

Consider a Cartesian robot with 2 DOF whose end-effector

is constrained to move on a circle as illustrated in Fig.1.

Let us assume M = diag
(

m1, m2

)

denote the inertia matrix

of the robot. Then, a simple choice for the square–root

factorization of the inertia matrix is W = diag
(√

m1,
√

m2

)

.

In addition, the constraint equation is trivially

Φ(q) = q2
1 + q2

2 −R2 = 0.

Thus, A =
[

2q1 2q2

]

and the unitary matrix whose columns

span the null space of Λ =
[

q1/
√

m1 q2/
√

m2

]

and its

orthogonal complement can be derived as

V =
1

g(q)

[√
m2q1 −√m1q2√
m1q2

√
m2q1

]

.

where g(q) , (m2q
2
1 + m1q

2
2)

1/2. Therefore, according to

(27), the reduced-order quasi–velocity is

vr =
gq̇1

q2
, (52)

and

Λr =
2g√

m1m2
. (53)

Having obtained variables (52) and (53), one can design

an force/motion setpoint controller according to (48) and

(51). Derivation of the full–dynamic model of the robotic

system, say for a model-based control, requires the angular

rate matrix Ω. In the two–dimensional Euclidean space, the

angular rate matrix takes the following simple form:

Ω =

[

0 −ω
ω 0

]

,

where scalar ω can be calculated by virtue of (10) as

ω =

√
m1m2R

2

g2
vr.

Having obtained Ω, we can implement the reference tracking

controller (40)–(41).

V. VARIOUS SQUARE-ROOT DECOMPOSITIONS

An important result of Remark 1 is that the quasi–velocity

of a particular system is not unique. Rather, different fac-

torizations of the inertia matrix can be used to transform

velocity coordinates to quasi–velocities. Selecting an ad-

equate factorization can play an important role in model
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simplification and/or computational efficiency. Fortunately,

there are a variety of algorithms for computing numerical and

symbolical factorizations some of which will be reviewed in

this section.

A. Cholesky Decomposition

According to the Cholesky decomposition, a symmetric and

positive-definite matrix M can be decomposed efficiently into

M = LLT , where L is a lower–triangular matrix with strictly

positive–diagonal elements; L is also called the Cholesky

triangle. The following formula can be used to obtain the

Cholesky triangle through some elementary operations

lii =
(

mii −
i−1
∑

k=1

l2ik
)1/2 ∀i = 1, · · · , n (54)

lji =
(

mji −
i−1
∑

k=1

ljklik
)

/lii ∀j = i + 1, · · · , n

Since L is a lower-triangular matrix, its inverse can be simply

computed by the back substitution technique.

B. Positive Square Root

According to the spectral theorem, there is an opera-

tor W = M1/2 such that M1/2 is itself positive and

(M1/2)2 = M . The operator M1/2 is the unique positive

square root factorization of M . Consider the diagonalized

form of M as M = ZDZT , where the diagonal matrix

D contains the eigenvalues of M and the columns of Z
consist of the corresponding orthogonal eigenvectors. Then,

the factorization can be found by

M1/2 = ZD1/2ZT .

Although this factorization is conceptually simple, it does

not appear to be computationally efficient. This is because

computing the symmetric square–root factorization requires

the eigenvalues and eigenvectors, whereas the Cholesky de-

composition only needs simple algebraic operations. Never-

theless, it is known that symmetric square–root of a matrix

can be obtained numerically through a fast converging itera-

tion loop [30]. A method to robustly handle the mass matrix

eigenfactor derivatives was developed in [20] based on the

square–root algorithm to solve the matrix Riccati differential

equation [19].

C. Spatial Operator Factorization

An alternative to the above numerical factorization ap-

proach is provided by the results on operator factorization

of the manipulator mass matrix [5], [6], [31], where closed–

form expressions of the mass matrix factorization and its

inverse and time–derivatives are provided. Rodriguez et al

[5] developed a recursive factorization of the mass matrix of

serial chain manipulators that can be directly obtained from

the link geometric and inertial parameters. It was shown that

the mass matrix has factorization W =
(

I + HΦG
)

D1/2,

where H and Φ are given by a known link geometric

parameters while the diagonal matrix D and matrix G are

related to the link masses [5], [31]. This factorization has

been referred to as the ”Innovative Factorization” [5]. Since

I + HΦG is a lower triangular matrix, the inversion of the

factorization can be readily obtained. Moreover, a closed–

form expression of the time–derivative of the Innovative

Factorization was presented by Jain et al. [6].

VI. CONCLUSIONS

Quasi-velocities had been proven to be a strong tool for

efficient modeling of MBSs. In this paper, we have extended

the concept of quasi–velocities for comprehensive and effi-

cient modeling of the constrained MBSs. Taking advantage

of the fact that the square–root factorization is invariant under

unitary transformations, we showed that the quasi–velocities

associated with a given system are not unique rather they

are related by unitary transformation. Subsequently, it has

been shown that the unitary matrix corresponding to the

kernel of the Paffinian constraints of the quasi–velocities

could lead to a significant simplification of the dynamics for-

mulation of constrained MBS if the equations are expressed

in terms of the reduced quasi–velocities. The expression of

the Coriolis term was presented in a unified way applicable

for unconstrained and constrained MBSs alike. In it, the

number of required differentiation operations was reduced,

which can lead to computational efficiency. Furthermore,

the transformation naturally led to the decoupling of the

equations of motion than those of constraint forces such

that each system has its own independent force input. This

allowed the possibility to develop a simple force control

action that is totally independent from the motion control

action. Another import aspect of this formulation is that the

invariance problems rising in hybrid force/motion control

of constrained MBS due to the use of selection matrices

becomes a nonissue. This is because the the square root

of the mass matrix nicely transforms disparate units into

homogeneous units for all the quasi–velocities.

The structure of the formulation was proved to be also

suit control application. To this end, some properties of the

quasi–velocity dynamic formulation that could be useful for

control purposes were presented. It has been followed by

development of the tracking control of a constrained MBS

based on the composite feedback on the vectors of quasi–

velocity and configuration–variables, where the latter vector

contains redundant variables.

APPENDIX A

In view of (27) and (37) and knowing that ‖V2‖ = 1, we

can say

‖q̇‖ ≤ ‖W−T ‖‖V2‖‖vr‖ ≤ c
−1/2
1 ‖vr‖. (55)

Assuming that the factorization W (q) is a sufficiently

smooth function, then all the partials in (14) are bounded and

hence there exists a finite c3 > 0 such that ‖R‖ ≤ c3‖q̇‖.
Using this result, (55) and (37) in (7b), we get

‖Γ‖ ≤ γ‖vr‖, (56)

where γ = c3/c1. Finally, knowing that ‖V1‖ = ‖V2‖ = 1,

we can infer (38) from (29) and (56).
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APPENDIX B

Consider the following positive–definite function:

V =
1

2
‖ǫ‖2

In view of Remark 2, the time-derivative of the above

function along the error trajectory (42) is obtained as

V̇ = −ǫT Kdǫ

which gives

V̇ ≤ −2λmin(Kd)V.

Thus

V ≤ V (0)e−2λmin(Kd)t,

which is equivalent to (43).

APPENDIX C

Consider the following positive–definite function

V =
1

2
‖q̃‖2, (57)

whose time–derivative along (44) gives

V̇ = −q̃T Kdq̃ − q̃T W−T (q)V2(q)ǫ

− q̃T W−T (q)V2(q)
[

WT
r (q)−WT

r (qd)
]

W−T (qd)V2(qd)v̇d.

From (37) and (39), we can find a bound on V̇ as

V̇ ≤− λmin(Kd)‖q̃‖2 + c
−1/2
1 ‖q̃‖‖ǫ‖+ c−1

1 c2c4‖q̃‖2 (58)

≤ −2η2V +
√

2c
−1/2
1 V 1/2‖ǫ‖,

which is in the form of a Bernoulli differential inequality. The

above nonlinear inequality can be linearized by the following

change of variable U =
√

V , i.e.,

U̇ ≤ −η2U + (2c1)
−1/2‖ǫ‖ (59)

In view of the comparison lemma [26, p. 222] and (43), one

can show that the solution of (59) must satisfy

U ≤ U(0)e−η1t +
‖ǫ(0)‖√

2c1

∫ t

0

e−η2(t−τ)−η1τdτ,

which is equivalent to (45).
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