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Abstract— A new method for the computation of the dynamics
of structure-varying kinematic chains is proposed. This is based
on the complete redefinition of the system connectivity deriving
from a given structural change. The derived computational
efficiency is then described with examples of typical motion
planning tasks and structure changes for free-flying robots.
These include open branched chains and closed loops, in free
and grappled conditions. The method may then contribute to
the efficiency of motion planning for robots which may require
different kinematic structures for a given task.

I. INTRODUCTION

This paper presents an algorithm for the efficient compu-

tation of the dynamics of structure-varying kinematic chains.

As major application, multiple-arm free-flying space robots

are considered. Other applications may however also be of

interest. Structure variants include open branched chains and

closed loops, in free and grappled conditions (see Fig. 1).

The aim of this work is to support motion planning

methods, to be implemented on robots which may require

different kinematic structures for different tasks, or even

for single complex tasks. As is already argued in [1], it

is generally useful to be able to handle structure changes

without switching between different models and algorithms.

Furthermore, the alternative of locking non-active joints,

leads to computational inefficiency.

The goal of computing the dynamics of structure-varying

kinematic chains was previously treated in [1], where the

proposed method was based on two important features: firstly,

changes to the connectivity, which describes the kinematic

structure of the system, are minimized; secondly, the use of

virtual links is made. Examples are given for handling closed

loops and grappling of a free-floating robot to an inertially

fixed structure. It is then argued that the advantage in this

approach is that it is simple to implement and that it can be

easily parallelized.

The method proposed here instead, is based on full con-

nectivity variation. In fact, despite the extra implementation

complexity, it is shown that this approach present an advan-

tage in the computational efficiency.

As mentioned above, another advantage of the structure-

varying modeling is to avoid unnecessary computations. This

Fig. 1. Free-flying robot with four arms: free open branched chain (above);
grappled closed loop (below)

is because the dynamic model of a given system can be

reduced to only possess the degrees of freedom which are

necessary to plan or perform a given task. Other degrees of

freedom, which would normally have to be locked, are thus

omitted in the computation. This point is demonstrated with

some examples.

Structural changes are handled on-line, which practically

means that they can take place without necessity to recompile

the algorithm. This is a mandatory feature for treating tasks

during which the structure of the system varies. It also opens

the possibility to eventually tackle the problem of optimizing

the kinematic structure for a given system and a given task.

The modeling of the free-flying base is derived from basic

principles of free rigid-body dynamics, as opposed to the al-

ternative six degree-of-freedom virtual link approach. Closed

loops are also treated in [2], where Lilly and Bonaventura
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proposed a dynamic formulation for a space robot with one

robot arm, constrained at the end-effector to be fixed with the

base. In this paper, we consider a more general formulation

for free-flying space robots, to allow for one or more closed

loops between any of the system links and also to treat

branching.

The paper is then structured as follows: in section II the

mathematical model used for a free-flying robotic system is

presented. In section III, the necessary functions to perform

structure changes are described. Examples are then treated in

section IV, including one discussed in [1] and others for 3D

free-flying robots. Section V gives the conclusions.

II. MODELING

A. Open branched chains

In this section the modeling of the dynamic equations

is introduced. We first consider the simplest case, that of

the open kinematic chain. We assume a free-flying base, as

opposed to one fixed to an inertial point. We will later arrive

at this latter case, by virtue of the proposed modeling method.

The system of interest in depicted in Fig. 2.

1) Equations of motion: The equations of motion are the

following:
[

Hb Hbm

HT

bm Hm

] [

ẍb

φ̈

]

+

[

cb

cm

]

=

[

Fb

τ

]

+

[

JT

b

JT

m

]

Fe,(1)

where xb and φ are the generalized coordinates of the

base body and the robot joints respectively. The remaining

TABLE I

MAIN NOTATION IN THE DYNAMIC EQUATIONS

Hb ∈ R6×6 : inertia matrix of the base

Hm ∈ Rn×n : inertia matrix of the robot arms

Hbm ∈ R6×n : coupling inertia matrix between

the base and the arms

cb ∈ R6×1 : non-linear velocity dependent

term on the base

cm ∈ Rn×1 : non-linear velocity dependent

term of the arms

Fb ∈ R6×1 : force and moment exerted on the

base

Fe ∈ R6×1 : force and moment exerted on the

end-effector

τ ∈ Rn×1 : torque on the joints

Jb ∈ R6×6 : Jacobian matrix for the base

J i

m ∈ R6×n : Jacobian matrix for the ith arm

JC ∈ R6×n : Jacobian matrix for the closed loop
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Fig. 2. Open Tree Structure
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Fig. 3. Closed Loop Chain

variables are described in table I. A gravity-free environment

is assumed.

In implementing these, the Articulated Body Algorithm

(ABA) proposed by Featherstone [3] is used. This is well

applicable, since it directly addresses free-floating systems.

The ABA provides O(n) in both the forward and the inverse

dynamics.

2) Connectivity: The connectivity is described as follows,

following the standard approach. The i-th body is attributed

an index, parent(i) which defines its parent. The first body

is generally the base body, with index 0.

Furthermore, one or more bodies are defined as an end-

effector, by means of a second index, end − effector(i),
which is non-zero if affirmative and 0 otherwise. For more

end-effectors, the index is also used to number them.

For the case of branching, an example of which is shown

at link 1 in figure 2, a parent simply possesses two (or more)

children.

B. Closed loop

The dynamic model for the closed loop stems from that of

the open chain structure, subject to the closed loop kinematic

constraints. In a simple example in Fig. 3, the constraint

between the arm A and the arm B can be described with
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the Jacobian matrices:

[

JA

m −TJB

m

]

[

φ̇A

φ̇B

]

= JCφ̇ = O, (2)

where

T =

[

E ∆̃P e

O E

]

(3)

and where ∆P e is the vector between the two end-effectors.

Furthermore, if m independent kinematic constraints exist,

which may relate to N ≥ m linearly dependent closed loops,

the constraint equation is expressed by:

JCφ̇ =
[

JG JD

]

[

φ̇G

φ̇D

]

= O, (4)

where the joint vector φ is divided into the indepen-

dent(active) joints vector φG ∈ R(n−m) and the depen-

dent(passive) joints vector φD ∈ Rm. JG ∈ Rm×(n−m)

and JD ∈ Rm×m denote the Jacobian matrix with respect

to the joints φG and φD, respectively.

By virtue of d’Alembert’s principle and the above kine-

matic constraints, the dynamic equations of the closed loop

system can be deduced from that of the tree-structure system

(1) as follows:

M

[

ẍb

φ̈G

]

+ C =

[

Fb

τG

]

+ Π
T

[

JT

b

JT

m

]

Fe, (5)

where

M = Π
T HΠ,

C = Π
T

[

cb

cm

]

+ Π
T HΠ̇

[

ẋb

φ̇G

]

,

H =

[

Hb Hbm

HT

bm Hm

]

,

Π =





E6×6 O6×(n−m)

O(n−m)×6 E(n−m)×(n−m)

Om×6
−J−1

D
JG



 .

M and C denote the inertia matrix and the non-linear

velocity dependent term for the closed loop, respectively. Π

represents the transform matrix from the tree-structure to the

closed loop system. Eq. (5) is a general formulation for the

dynamics of the free-flying robot with closed loops. A more

detailed derivation can be found in [4].

1) Connectivity Representation for Closed Loop Chains:

To represent the connectivity for the closed loop chains, we

introduce one additional index, namely cflag. The cflag index

indicates that the i-th link forms a closed loop with the j-th

link as cflag(j) = i.

III. STRUCTURAL CHANGES

In this section we describe the method for treating struc-

tural changes. The latter comprise the following possibilities:
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Fig. 4. Examples for chain inversion of a branched system

• given a system with n joints, to lock p of them, resulting

in a reduction of DOF;

• given a free-flying system, to fix its base, or its end-

effector, to an inertially fixed point;

• given an open kinematic chain, to close one or more

loops.

To accomplish these changes, the following four functions

are constructed.

A. New number of joints

This function calculates the new parameters which describe

the system for its n − p DOF. The parameters for the ith

link consist of the inertial and the DH parameters. These

parameters are of course known for the complete system.

The required transformation is function of the position of

the locked joints. Practically, each locked joint is omitted

in the new modeling description and the parameters relative

to the links before and after it are updated, in function of

its position. Mathematical rules for the updating are here

omitted, but can be found in [5], for example, for the

calculation of the new composite inertia.

In this process, the connectivity of the system is also

updated. To represent the locked joints, we introduced an ad-

ditional index, namely connect, which expresses the number

of links which are connected together. Examples are given in

section IV.

The equations of motion remain structurally identical

to (1), whereas the dimension of φ is reduced or increased

to represent the new number of joints of the system.
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TABLE II

LINK CONNECTIVITY REPRESENTATION FOR FIGURE 3

Link No. parent end-effector connect cflag

1 0 0 0 -1

2 1 1 0 -1

3 1 0 0 -1

4 3 2 0 -1

5 0 0 0 -1

6 6 0 0 -1

7 7 3 2 2

B. Invert chain

This function inverts the order of the system connectivity,

such that a chosen end-effector becomes the new base. This

is a simple procedure for an open kinematic chain.

For a branched system the procedure is more involved.

Consider the example shown in Fig. 4. From it, the following

rules follow:

• given a new base, construct the connectivity of an open

chain moving along the system, until an end-effector is

reached;

• then continue the numbering of the remaining branches,

such that the first child belonging to a branch is con-

nected to the new parent which has the same numbering

as that which its old parent receives.

The equations of motion remain structurally identical to (1).

For the closed loop case, the same procedure applies, as

shown in the example in Fig. 6.

C. Extract fixed-base equations

This function extracts the fixed-base system equations from

the equations of the equivalent free-flying system. When

referring to Eq. (1), the outcome is then simply the second

row with ẍb = ẋb = 0.

D. Close loop

An example is shown in switching from Fig. 2 to Fig. 3.

The system has in total n DOF. When the open kinematic

structure changes to the closed loop, two links are connected

together, as shown in Fig. 3.

As mentioned in section II-B, the i-th link forms the

closed loop with the j-th link by expressing cflag(j) = i. The

corresponding model description for the system depicted in

Fig. 3 is shown in Table II. In the example, link 2 and link

7 are connected to form the closed loop and cflag(7) = 2 is

set, as shown in the table.

The equations of motion are extended to those described

in eqn. (5), by means of the transformation matrix Π.

IV. EXAMPLES

A. Example 1: Open chain grappling to fixed inertial point

In this example, the first computational advantage of

the proposed method can be seen. Consider the structure

variation shown in Fig. 5, where a one joint free-flying robot

grapples to a fixed inertial point by means of a one DOF

fixture. In alternative to the approach proposed in [1], where

the connectivity is preserved and a subsidiary link between

the end-effector and ground is introduced, the following

procedure is instead suggested, where the system is converted

to a fixed-base system and its connectivity inverted:

• in order to allow for an extra joint at the end-effector,

an extra link is first added to the system, by means of

the New number of joints function;

• the system is inverted, by means of the Invert chain

function;

• finally, the fixed-base equations are derived, by means

of the Extract fixed-base equations function.

This example shows how this approach allows to represent

a free-flying system and a fixed-base system with the same

model. Furthermore, a fixed-base two-degree-of-freedom sys-

tem results. This has a clear numerical advantage on the

5 degree-of-freedom system obtained in [1] (with also the

additional geometric constraints on the end-effector). The

numerical burden for calling the structure varying functions is

of the order of milliseconds. This is neglegible, if compared

to the efficiency gained in the thousands of function calls,

necessary in motion planning procedures.

B. Example 2: Closed loop grappling to fixed inertial point

Consider the structure variation shown in Fig. 6, where

a three-arm free-flying system grapples to a fixed inertial

point forming two closed loops. The following procedure is

applied:

• the first loop is closed, by imposing the necessary con-

straint on end-effector 2, to be connected to end-effector

1. This is achieved by setting the index cflag(5) = 3;

• the system is inverted, such that end-effector 1 becomes

the base, by means of the Invert chain function. The

change in connectivity can be seen in Fig. 6;

• the fixed-base equations are obtained by means of the

Extract fixed-base equations function;

• finally, the third arm is connected to the base, by

applying the closed loop constraint on its end-effector

and by setting the index cflag(7) = 0. The appropriate

choice of the vector ∆P e (defined in figure 3) ensures

the correct positioning of the point of connection to the

fixed structure.

C. Example 3: DOF reduction for an open chain

A free-flying robot may consist of a multibody system with

up to 37 DOF, when considering 6 DOF for the base, 7 DOF

for each arm and 3 DOF for reaction wheels (see Fig. 1). It
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Fig. 6. Free-Flying Space Robot Application

may however need to perform tasks which only require part

of these DOF.

As a first example, maneuvers where discussed in [6],

where three joints of one arm were used to induce motions of

the free-floating base for identification of the latter’s inertial

parameters, or those of the load (it was assumed that the

inertial parameters of the arms were known from CAD data).

This process involved solving a motion planning problem,

based on the integration of the system equations of motion.

The necessary DOF for this task however are only 6 DOF for

the base + 3 DOF for the actuated arm. The model reduction

is then from 37 to 9 DOF. For this example, the respective

connectivity indexes before and after the structural change are

described in table III. A simplified version of this operation

is shown in Fig. 7.

The computational advantage between using a 9 DOF

TABLE III

LINK CONNECTIVITY REPRESENTATION FOR EXAMPLE IV-C: 2 ARM

SYSTEM WITH 2 ACTIVE JOINTS IN ARM 1

Link No. parent end-effector connect cflag

BEFORE

1 0 0 0 -1

2 1 0 0 -1

3 2 0 0 -1

4 3 0 0 -1

5 4 1 2 -1

6 1 0 4 -1

7 6 0 4 -1

8 7 0 4 -1

9 8 2 4 -1

AFTER

1 0 0 0 -1

2 1 0 0 -1

3 2 1 0 -1

1
1

Fig. 7. System description for Example IV-C: 2 arm system with 2 active
joints in one arm

system and using a 37 DOF system with 28 locked joint is

evident. Note that the computational burden between actuated

and locked joints is equivalent, due to the recursive nature

of the dynamics computation. The computation of the path

planning problem is then linear in the number of joints.

This is because it involves the computation of the system

Jacobian matrices for the base and for the end-effector,

and of the actuation forces, through the inverse dynamics.

These are both linear functions in the number of joints for

the algorithms applied here, as described in section II. As

such, for this example the time for the reduced system is

approximately one quarter of that for the full system. Typical

running times for our current implementations range between

15 and 30 seconds on an Intel Pentium 4 (3.2 GHz), for the

reduced system.

An example for a grasping maneuver of a tumbling target is

given in Fig. 8. Here, the task is divided into: a waiting phase,

where the target approaches the stationary robot; an approach

phase, i.e. a point-to-point maneuver of the robot towards the

target; a tracking phase, where the robot tracks the moving

target to avoid impacts; a grasping and stabilization phase.

The computational time for this optimal motion planning task

is in the order of 30 seconds on an Intel Pentium 4 (3.2 GHz),

for a 13 DOF robot system.
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Fig. 8. Grasping maneuver of tumbling target: wait, approach, track and
grasp

For the above motion planning examples, the structure-

varying approach may give a clear computational advantage.

Furthermore, note that the same approach allows, in principle,

to tackle the optimization problem of determining which

structure may be best for performing a desired task.

V. CONCLUSION

A new method for the computation of the dynamics

of structure-varying kinematic chains is proposed. A first

computational advantage with respect to existing approaches,

validated with examples, is gained by the complete redef-

inition of the system connectivity deriving from a given

structural change. A second advantage is pointed out, for the

case of locked joints, where these are simply omitted from

the computation.

Since structure variations are handled on-line, there is no

need to prepare every possible kinematic chain in advance,

for a given system. This constitutes an important practical

advantage. Furthermore, the method improves the efficiency

of motion planning.

Examples are given for the application of the proposed

method, which include typical motion planning tasks and

structure changes for free-flying robots. Free-flying robots

models are thus switched between open branched chains,

closed loop, in the free and in the grappled states.
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