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Abstract— This paper is concerned with the hybrid dynam-
ics and stability of a planar rigid body supported by two
frictional contacts in a gravitational field. The stability of
equilibrium postures is investigated under initial perturbations
which may involve sliding or separation of the contacts. The
paper formulates the hybrid dynamics induced by collisions and
impacts at the two contacts. The Zeno behavior of bouncing
and clattering motion converging to limit points of one- or
two-contact re-establishment are analyzed, and a condition
guaranteeing convergence to a Zeno point is derived. Finally,
this condition is combined with the results of the companion
paper to derive sufficient conditions for stability of frictional
two-contact equilibrium postures of a planar rigid body.

I. INTRODUCTION

Performing robotic tasks of quasistatic manipulation and

locomotion with frictional contacts is based on transition

through equilibrium postures. In order to enhance reliability,

the selected postures must be dynamically stable with re-

spect to small perturbations, which, in many practical cases,

involve separation, sliding, or rolling of the contacts. The

goal of this paper is to focus on the simplest possible model

of a planar rigid body supported by two frictional contacts,

analyze its hybrid dynamics under small perturbations about

an equilibrium posture, and derive conditions for posture’s

stability. The rigid body, having a variable center-of-mass,

serves as a simplification for a two-legged mechanism mov-

ing quasistatically on a rough terrain. A companion paper

[12] analyzed the constrained frictional dynamics of such

multiple-contact mechanisms under perturbations about an

equilibrium posture, and derived a necessary condition for

stability and a sufficient condition for finite-time recovery of

initially perturbed contact. Focusing on the reduced problem

of a rigid-body with two contacts, this paper analyzes the

hybrid dynamical system which is dominated by collisions

at the contacts. The two main contributions of this paper are

as follows. First, it derives a condition guaranteeing that the

dynamic response of the perturbed rigid body converges in

finite time to a limit point at which either one or two contacts

are re-established. Second, it combines this condition with

the results of [12] and establishes sufficient conditions for

stability of two-contact equilibrium postures.

The classical notion of stability focuses on the solution

convergence or boundedness, for a dynamical system under

small perturbations about equilibrium points (e.g. Lyapunov

stability for continuous dynamical systems [8]). A mechan-

ical system with intermittent contacts is a special subclass

of hybrid dynamical systems, in which phases of continuous

dynamics are interleaved by discrete events of non-smooth

changes due to collisions. [7], [14]. A classical technique

for analyzing the dynamics and stability of such systems

is the Poincaré map [6], [10], which is based on sampling

the dynamic solution of the hybrid system at the collision

times, and thus reducing to a discrete-time dynamical system.

Wang [15] used linearization of the Poincaré map to analyze

the stability of a rigid body under sequential impacts at a

single contact. Goyal et al. [4], [5] analyzed the linearized

discrete dynamics of a symmetric rod undergoing alternating

collisions at its two endpoints under the simplifying assump-

tion of zero gravity. Another central approach for stability

analysis of hybrid systems is based on using generalized

Lyapunov functions for hybrid systems [10], [16]. However,

frictional equilibrium postures typically form a continuum of

configurations which do not lie at minima of the potential

energy. Thus they are not associated with any obvious

candidate for a Lyapunov function.

A key feature of hybrid dynamical systems, which is

strongly related to stability, is the Zeno solution [13], [17].

This special type of solution involves an infinite number

of switches (i.e. collisions) and converges in finite time to

some limit point. While the hybrid system cannot predict the

dynamic solution past the limit point, Ames et al. proposed

the concept of completed hybrid system [1]. This concept

postulates that after convergence of the Zeno solution, the

system switches to a holonomically constrained dynamical

system, thus enabling composition of the hybrid phases and

the constrained phases of the dynamics. This principle is key

to the stability analysis presented in this paper.

The structure of the paper is as follows. The next section

reviews the notions and main results presented in [12].

Section III formulates the impact-induced hybrid dynamics

and demonstrates the Zeno phenomenon. Section IV presents

sufficient conditions for finite-time convergence to contact

re-establishment. Section V combines the results with the

results of [12], and derives sufficient conditions for frictional

stability. Finally, the concluding section discusses limitations

and possible extensions of the results.

II. PROBLEM STATEMENT

This section defines the basic terminology and reviews the

notions and main results presented in [12]. Consider a planar

rigid body B having mass m and moment of inertia I =mρ2,

where ρ is the radius of gyration. In its nominal posture, B
is supported by two point contacts on a frictional terrain
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Fig. 1. A planar rigid body supported by two contacts.

under gravity. The nominal position of B’s center-of-mass is

denoted x, and the nominal position of the contacts are x1

and x2. For convenience, it is assumed that the contacts are

made between two vertex points of B and two segments of

a piecewise-linear terrain. Thus, the tangent and normal unit

vectors at the vicinity of the i-th contact, denoted ti and ni,

are constant. The terrain is assumed as upward facing, in the

sense that ni · ey > 0 for i = 1, 2, where ey is the upward

vertical direction. The configuration of B is parametrized

by the coordinates q = (r, θ), where r = (rx, ry) is the

displacement of B’s center-of-mass from its nominal position

and θ is the orientation of B relative to its orientation at the

nominal posture. The positions of the two vertex points of

B are given by ri(q) = r + R(θ)(xi − x), for i = 1, 2,

where R(θ) =

Ń
cos θ − sin θ

sin θ cos θ

ű

. Since B is not allowed

to penetrate the terrain, its configuration must satisfy the

constraints given by

hi(q) = ni · (ri(q) − xi) ≥ 0 , i = 1, 2. (1)

Let q̇, q̈ denote the generalized velocity and acceleration of B.

The state of B is thus constrained to lie within the collision-

free region in state space, defined by

F =

{

(q, q̇) :
hi(q) ≥ 0 for i = 1, 2 such that

if hj(q)=0 then ∇hj(q) · q̇≥0

}

. (2)

A contact force fi ∈ IR2 acts at each contact point ri that

satisfies hi(q) = 0. According to Coulomb’s friction law,

each contact force must lie within a friction cone, denoted

Ci, which is given by Ci = {fi : |ti ·fi| ≤ µ(ni ·fi)}, where

µ is the coefficient of friction. The dynamics of B is governed

by its equation of motion, given by

Mq̈ + G = JT
1 (q)f1 + JT

2 (q)f2 , where

M =





m 0 0
0 m 0
0 0 mρ2



, G=





0
mg
0



, Ji(q)=
∂ri(q)

∂q

(3)

and g is the gravitational acceleration. The nominal configu-

ration q0 =0 of B is characterized by the nominal positions

of the center-of-mass x and the contacts x1 and x2. q0 is

called a frictional equilibrium posture if there exist contact

forces fi∈Ci , i=1, 2 that satisfy (3) with q=q0, q̇=0, and

q̈ = 0. For given nominal contacts x1 and x2, the feasible

equilibrium region, denoted REQ, is the region of center-of-

mass locations x that form a frictional equilibrium posture.

This region is an infinite vertical strip, whose computation

is analyzed in [11] and reviewed in [12]. In the following,

we assume that q stays within a small neighborhood U of

q = 0. Hence, we simplify the notation by using a local

chart of U and treat both q and q̇ as elements of IR3. An ǫ-

neighborhood of the equilibrium state (q, q̇)= (0, 0) is then

defined as Nǫ = {(q, q̇) : ‖q‖<ǫ and ‖q̇‖<ǫ}. Using this

notion, the definition of frictional stability is as follows:

Definition 1 (Frictional stability). Consider the planar

rigid body supported by two frictional contacts, whose

dynamics is given in (3). A frictional equilibrium posture

q=0 possesses frictional stability if for any arbitrarily small

ǫ > 0, there exists sufficiently small δ > 0, such that for

any initial conditions (q(0), q̇(0)) ∈ Nδ ∩ F , the dynamic

solution q(t) exists, and converges to an equilibrium posture

while staying within the neighborhood Nǫ of the original

equilibrium.

Note that the notion of dynamic solution is not completely

defined at this stage. It is composed of two different phases,

namely the constrained frictional dynamics and the impact-

induced hybrid dynamics. The results of [12] regarding the

constrained frictional dynamics are briefly reviewed below,

while the impact-induced hybrid dynamics will be analyzed

in sections III-IV. Assume that B is given an initial position-

and-velocity perturbation which imposes contact constraints

on its motion. In order to compute the resulting trajectory

q(t) of B, one needs to solve (3) under the constraints,

as follows. Let vi = Ji(q)q̇ denote the velocity at the i-th
contact. Each contact is governed by one of four distinct

modes, denoted S, F, R, and L, which correspond to contact

separation, fixed (or rolling) contact, right-sliding and left-

sliding, respectively. For two contacts, a contact mode is thus

encoded by a two-letter word. For example, the contact mode

SR means that the contact x1 is instantaneously separating,

while the contact x2 is sliding to the right. Each contact mode

is associated with equality and inequality constraints on the

contact force fi and on the contact velocity vi as summarized

in Table I. Choosing a particular contact mode, its equality

constraints on velocities vi are differentiated with respect

to time, yielding affine constraints on the acceleration q̈.

Augmenting the constraints with the equation of motion (3),

one obtains a square linear system in q̈, f1, f2, generically

having a unique solution for the instantaneous dynamics

under the chosen contact mode. However, each contact mode

must also satisfy its associated inequality constraints in order

to be consistent. A well-known observation is that in some

cases, no consistent solution exists, and the only way to

resolve the inconsistency is to incorporate impulsive forces

[9]. In order to avoid such scenarios, the companion paper

[12] introduced the notion of kinematic-strong equilibrium,

which is briefly reviewed here.

TABLE I

THE POSSIBLE CONTACT MODES AT A PLANAR FRICTIONAL CONTACT.

contact physical kinematic force

mode meaning constraints constraints

S Separation vi · ni > 0 fi = 0
F Fixed/rolling vi = 0 |fi · ti| ≤ µ(fi · ni)
R Right sliding vi · ni = 0 fi · ti = −µ(fi · ni)

vi · ti > 0 fi · ni ≥ 0
L Left sliding vi · ni = 0 fi · ti = µ(fi · ni)

vi · ti < 0 fi · ni ≥ 0
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Consider now a frictional equilibrium posture with zero

initial velocity. Since such initial conditions do not determine

a unique contact mode, one needs to consider each non-static

contact mode, compute its associated instantaneous dynamic

solution, and then check its consistency, where under zero

velocity, the kinematic constraints are evaluated with contact

velocities vi replaced by contact accelerations. Using these

notions, the definition of kinematic-strong equilibrium is as

follows. An equilibrium posture q0 =0 is a kinematic-strong

equilibrium if for each non-static contact mode, the instanta-

neous dynamic solution under zero velocity satisfies all force

constraints, and violates at least one kinematic constraint.

The following theorem establishes the relation of kinematic-

strong equilibrium with the boundedness of dynamic solution

and recovery of initially-perturbed contacts.

Theorem 1 ([11]). Let q0 be an equilibrium posture of

B. Then for any arbitrarily small t0, ǫ > 0, there exists a

sufficiently small δ, such that under any initial conditions

(q(0), q̇(0)) ∈Nδ(q0) ∩ F , there exists a time t′ < t0 such

that the initial contact mode is consistent during the time

interval [0, t′), and the solution stays within the neighbor-

hood Nǫ(q0). Moreover, at the time t= t′, either an initially

sliding contact becomes stationary (or rolling), or an initially

separated contact recovers via a collision.

III. IMPACT-INDUCED HYBRID DYNAMICS

This section formulates the hybrid dynamics of B and

reviews the phenomenon of Zeno behavior, demonstrated on

the classical bouncing ball example. When the state (q, q̇)
of B lies in the collision-free region F defined in (2),

its free-flight is governed by the unconstrained dynamics

Mq̈ + G = 0, where M and G are given in (3). When

B reaches a contact with a non-zero approach velocity, a

collision occurs. This event is characterized in terms of (q, q̇)
as hi(q) = 0 and ∇hi(q) · q̇ < 0, for some i ∈ {1, 2}. The

collision is modeled as an instantaneous event of discon-

tinuous velocity change, while the configuration q remains

unchanged. The velocity change due to a collision at the i-th
contact in a configuration q is given by M∆q̇ = JT

i (q)Pi,

where Pi is the contact impulse. In order to compute the

post-collision velocity, one needs to establish a collision law,

which is a relationship between the pre-collision velocity

q̇(t−) and the impulse Pi, which, in turn, determines the

post-collision velocity q̇(t+). In this work we adopt the

frictionless restitution law [1], which assumes that Pi acts

in the direction of the contact normal and its magnitude

is determined such that the change in the normal velocity

at the contact, denoted vn
i , satisfies vn

i (t+) = −evn
i (t−),

where e∈(0, 1) is termed the coefficient of restitution. Under

these assumptions, the velocity change due to collision in a

configuration q satisfies the linear relationship given by ([1]):

q̇(t+)=Ai(q)q̇(t
−), where

Ai(q)=I− 1+e
▽hi(q)T M−1▽hi(q)

M−1▽hi(q)▽hi(q)
T

(4)

and I is the identity matrix. Examples of more complicated

collision laws that account for friction at the contacts can be

found in [2], [3]. Using a simplified version of the notation

in [1], a solution of the hybrid dynamics under a given initial

state (q(0), q̇(0)) is defined by a piecewise-smooth trajectory

q(t) and a countable (possibly infinite) set of collision times

T = {t1, t2, . . .}. For t ∈ (tk, tk+1), the trajectory q(t)
satisfies the unconstrained dynamics. At each collision time

tk ∈ T , the system’s state satisfies hi(q(tk)) = 0 and

vn
i (tk)< 0 for some i∈{1, 2}, corresponding to a collision

at the i-th contact, and the velocity is changed according to

the collision law q̇(t+k )=Ai(q(tk))q̇(t−k ).
A fundamental phenomenon in hybrid dynamical systems

is the Zeno behavior, at which the solution q(t) converges

to a limit point through an infinite sequence of collisions

occuring in finite time. A classical example of Zeno behavior

is a ball modeled as a point mass m, which bounces on a

horizontal floor under gravity. The unconstrained dynamics

of the ball’s height y(t) is mÿ = −mg. The contact is

represented by the unilateral constraint y ≥ 0, and the

collision law (4) reduces to ẏ(t+) = −eẏ(t−). It is then

easily shown that the discrete-time dynamics of the post-

collision velocity (i.e. the Poincaré map) is ẏ(t+k+1)=eẏ(t+k ),
and that y and ẏ converge asymptotically to zero for any

e∈(0, 1). Moreover, the infinite sequence of collision times

tk converges to a finite limit t∞. The Zeno behavior is of

crucial importance in the ensuing stability analysis, since it

guarantees contact re-establishment in finite time.

In order to complete the formulation of the hybrid dynam-

ics of B under small initial perturbations, we define a new

set of coordinates as q′ = (h1, h2, θ) where h1(q), h2(q) are

given in (1), and linearize the hybrid dynamics about the

state (0, 0). The linearized unconstrained dynamics is given

in terms of (q′, q̇′) as ([11]):




ḧ1

ḧ2

θ̈



 =





−g1

−g2

0



, (5)

where gi = −ni · g for i = 1, 2, and g is the vector of

gravity acceleration. The linearized collision laws expressed

in terms of (q′, q̇′) are given by ([11]):

q̇′(t+) = Aiq̇
′(t−) , i = 1, 2 , where

A1 =





−e 0 0
(1 + e)ψ1 1 0
(1 + e)ϕ1 0 1



, A2 =





1 (1 + e)ψ2 0
0 −e 0
0 (1 + e)ϕ2 1



,

ϕi =− bi

b2
i
+ρ2

, ψi =−b1b2+(n1·n2)ρ
2

b2
i
+ρ2

, and bi = ti ·(xi − x).

(6)

IV. CONDITIONS FOR CONVERGENCE TO ZENO POINTS

This section analyzes the linearized hybrid dynamics of

B and derives conditions guaranteeing that its solution con-

verges to a Zeno point involving re-establishment of one or

two contacts in finite time.

A. One- and Two- Contact Zeno Solutions

We now describe two types of Zeno solutions of the hybrid

dynamics of B, named the bouncing and clattering motions.
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The bouncing motion is a Zeno solution involving an infinite

sequence of collisions at a single contact ri, which converges

in finite time to a limit point named 1-Zeno point, that

satisfies hi =0, i.e. the contact at ri is re-established. Note

that the linearized hybrid dynamics of a single coordinate hi

under collisions at ri only is identical to the hybrid dynamics

of a bouncing ball. Thus, it is easily shown that there exists

an open set of initial conditions leading to a Zeno solution

of single-contact bouncing without any collision at the other

contact.

When the solution of the hybrid dynamics involves colli-

sions at both contacts, proving existence of general Zeno

solutions becomes highly complicated. In this work we

focus on the simplest Zeno solution involving collisions at

two contacts, named the clattering motion [4], and derive

conditions for its convergence. Clattering motion involves

an infinite sequence of alternating collisions at both contact,

which converge in finite time to a limit point named 2-

Zeno point, that satisfies h1 = h2 = 0, i.e. both contacts

are re-established. We now formulate the Poincaré map for

the linearized hybrid dynamics of h1(t) and h2(t) under

clattering motion. First, we define the alternating indices

{a, b}, where a is the index of the colliding contact, and

b is the index of the free-flying contact at time tk. Without

loss of generality, we assume that a = 1, b = 2 for odd k,

and a = 2, b = 1 for even k. Let us denote hik = hi(t
+
k )

and uik = ḣi(t
+
k ) for i∈{a, b}, where by convention, k = 0

corresponds to the time t−1 . Note that, by definition, hak = 0
for all k. The Poincaré map of clattering motion is then given

by ([11]):

ua,k+1 =e
√

v2
bk+2gbhbk

ub,k+1 =uak−ubk−(ψb(1+e)+1)
√

v2
bk+2gbhbk

hb,k+1 =uakτbk−gτ2
k/2,

where τk =(ubk+
√

v2
bk+2gbhbk)/gb.

(7)

The intermediate variable τk is the time to next collision,

i.e. τk = tk+1 − tk. The dynamics of clattering motion (7)

must also satisfy an auxiliary persistence condition requiring

that the alternating order of collisions is maintained, which

is formulated as

ηk < 1 for k ≥ 1, where ηk =
τkga

2uak
. (8)

B. Conditions for Convergence to Zeno Points

We now derive conditions for convergence of clattering

motion, and for overall convergence to 1- or 2- Zeno points.

First, note that (7) is a nonlinear discrete-time dynami-

cal system whose right-hand side is not differentiable at

uak =ubk =hbk =0. Thus, its stability properties cannot be

determined by conventional linearization. Motivated by the

work of Goyal et al. [4], [5] who analyzed the dynamics of

clattering under the simplifying assumption of zero gravity,

we define the ratio ǫk = 2gbhbk/u2
bk, and require that

ǫk → 0. The physical interpretation of this requirement is

that at times t+k , the separation distance of the free-flying

contact hbk is sufficiently small compared to its approach

velocity ubk, thus the change in the velocities ḣa, ḣb due

to gravity during the next flight phase is negligible. Let

ūak, ūbk, h̄bk denote the dynamic solution of uak, ubk, hbk

in (7) in the limit of ǫk→0 (i.e. zero gravity). The discrete-

time dynamics of ūak, ūbk, h̄bk is then given by

ūa,k+1 = −eūbk

ūb,k+1 = ūak + ψb(1 + e)ūbk

h̄b,k+1 = ūak τ̄k , where τ̄k = h̄bk/|ūbk|.
(9)

Note that the dynamics of ūak and ūbk in (9) is linear and

decoupled from h̄bk. It is shown in [11] that if the parameters

e, ψ1, ψ2 satisfy the condition given by

ψ1 > 0, ψ2 > 0, and
√

ψ1ψ2 >
e1/3 + e2/3

1 + e
, (10)

then the solutions of (9) for ū1k, ū2k, h̄bk and ǭk converge

asymptotically to zero in an infinite number of discrete-time

steps completed in finite time (i.e. the sum of the infinite se-

quence τ̄k is finite), where ǭk, is defined as ǭk = 2gh̄bk/ū2
bk.

The following lemma states that (10) also guarantees con-

vergence of clattering motion under nonzero gravity, and is

based on comparing the solutions of the dynamical systems

(9) and (7) under the same initial conditions.

Lemma IV.1 ([11]). Consider the solutions of (7) and (9) un-

der initial conditions satisfying h̄b1 =hb1 >0, ūa1 =ua1≥0,
and ūb1 =ub1 <0. Then these solutions satisfy the following

inequalities:

1) hbk ≤ h̄bk for all k > 1
2) τbk ≤ τ̄ bk for all k > 1
3) ǫk ≤ ǭk for all k > 1

Moreover, if the condition (10) is satisfied, then both ǫk and

ηk decrease monotonously to zero with k.

The results implied by this lemma are as follows. First,

note that once a collision at a contact r1 is followed by

a collision at r2, the initial value of η satisfies η1 < 1,

and condition (10) then implies that ηk is monotonously

decreasing. As a result, the solution is guaranteed to satisfy

the persistence condition (8), along with finite-time conver-

gence to a 2-Zeno point. Thus, condition (10) is named the

clattering convergence condition. Another implication is that

condition (10) guarantees that the solution of the linearized

hybrid system converges in finite time to either 1- or 2- Zeno

point, under any given initial conditions. Finally, the results

regarding the linearized hybrid system can be extended to

the nonlinear hybrid dynamics of B under sufficiently small

initial perturbation about equilibrium. All these implications

are summarized in the following theorem.

Theorem 2. Let q =0 be an equilibrium posture of B with

two contacts on a piecewise-linear terrain, and assume that

the clattering convergence condition (10) is satisfied. Then

for any arbitrarily small t0, ǫ> 0, there exists a sufficiently

small δ, such that under any initial conditions (q(0), q̇(0))∈
Nδ ∩ int(F), the solution of the hybrid dynamics converges

in finite time t′ <t0 to a Zeno point at which either h1 =0
or h2 =0 or both, while staying within the neighborhood Nǫ
during the entire time interval [0, t′].
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Fig. 2. Clattering convergence region in (e, ψ) plane.

C. Example - the Symmetric Rod on Flat Floor

We now demonstrate the application of Theorem 2 to the

example of a slender horizontal rod on a flat horizontal

floor, which was previously analyzed in [4], [5] under the

simplifying assumption of zero gravity. The length of the rod

is 2L, and its radius of gyration is ρ. It is assumed that the

mass distribution of the rod is symmetric about its center, and

that it makes contact with the terrain only at its endpoints.

Due to symmetry, the two parameters ψ1 and ψ2 in (6)

are equal and given by ψ1 =ψ2 ,ψ=(L2−ρ2)/(L2+ρ2).
The parameter ψ∈ [0, 1] (denoted q in [5]) characterizes the

mass distribution of the rod as follows. ψ = 1 corresponds

to a concentrated mass at the center of the rod. ψ = 0.5
corresponds to uniformly distributed mass. ψ=0 corresponds

to concentrated masses at the rod’s endpoints. The conditions

of clattering convergence (10) reduce to a single inequality

in the parameters (e, ψ). Graphically, this inequality defines

a region in the plane of (e, ψ), which is the shaded region

shown in Fig. 2. Note that in order to ensure clattering con-

vergence, the coefficient of restitution e must be sufficiently

small, and the parameter ψ must sufficiently large, i.e. the

rod’s mass is concentrated close to its center. The dashed

curve in Fig 2a corresponds to the condition derived in [5]

for clattering convergence. Note that this condition is less

conservative than our condition (10), since we account for

the effect of gravity and impose the additional requirement

ǫk→0. Another key difference is that [5] did not account for

bouncing motion, which is governed by gravity effects, while

in our setting, solutions of clattering motion and of bouncing

motion are both possible, depending on initial conditions.

The reader is referred to [11] for the closed-from dependence

on initial conditions and for numerical simulation results

V. FRICTIONAL STABILITY OF TWO-CONTACT POSTURES

This section combines the results above with the results of

the companion paper [12], and presents sufficient conditions

for frictional stability of two-contact frictional equilibrium

postures of a planar rigid body.

A. The Completed Hybrid System

We now consider the composition of the two different

phases of the dynamics of B, namely, the impact-induced

hybrid dynamics and the constrained frictional dynamics

analyzed in [12]. Theorem 2 gives sufficient conditions

for finite-time convergence of the hybrid dynamics solution

to a Zeno point. Note that Zeno points are not physical

equilibrium points, as they involve nonzero velocity of B.

Thus, one needs to determine the dynamic solution past a

Zeno point. A recent work by Ames et al. [1] postulates

that at the Zeno time t∞, the hybrid systems switches to a

holonomically constrained dynamical system, with the initial

conditions q(t∞), q̇(t∞). This composition of dynamical sys-

tems, termed a completed hybrid system in [1], applies nat-

urally to the two-contact hybrid dynamics of B, as follows.

When the hybrid dynamics converges to a 1-Zeno point of

via bouncing motion, it switches to the constrained frictional

dynamics of a single-contact sliding or rolling, i.e. one of the

contact modes RS, FS, or LS. When the hybrid dynamics

converges to a 2-Zeno point of a via clattering motion, it

switches to the constrained frictional dynamics of a two-

contact sliding, i.e. contact modes RR or LL. Finally, when

the solution of the constrained dynamics of single-contact

sliding or rolling reaches a collision at the free-flying contact,

it undergoes an infinite sequence of alternating collisions

while both contacts are maintained. Under the clattering

convergence condition (10), this sequence converges to a

2-Zeno point, and the dynamics eventually switches to a

constrained two-contact sliding. This special Zeno solution,

occurring in zero time , is termed chattering Zeno in [1].

B. Sufficient Conditions for Frictional Stability

We now finally address the problem of frictional stability.

The following theorem gives sufficient conditions for fric-

tional stability of two-contact equilibrium postures of B.

Theorem 3 ([11]). Let q0 be a frictional equilibrium posture

of a planar rigid body B on an upward-facing piecewise-

linear terrain under gravity. Then if both kinematic-strong

equilibrium condition and clattering convergence condition

(10) are satisfied at q0, then it possesses frictional stability.

The main idea of the proof is based on the observation

that these two conditions impose a chronological order on

the composed phases of solution under small initial per-

turbations, as follows. First, consider a small perturbation

at which both contacts are initially separated. Since q0 is

a kinematic-strong equilibrium posture, the solution of the

free-flight dynamics must reach a collision in finite time.

Then, the clattering convergence condition implies that the

hybrid dynamics solution converges to a 1- or 2-Zeno point.

In the case of a 2-Zeno point, the dynamics then switches to

constrained motion of two-contact sliding. In the case of a

1-Zeno point, the dynamics switches to constrained motion

of single-contact sliding or rolling. Then again, the solution

must reach a collision event at the free-flying contact, which

results in convergence to a 2-Zeno point via a chattering

Zeno sequence and then switching to constrained two-contact

sliding. Finally, the kinematic-strong equilibrium condition

implies that the two sliding contacts are decelerating, and B
stops at a nearby equilibrium posture in finite time. In case

where the initial perturbation imposes a constrained motion

rather than free-flying, the solution simply starts from an

advanced stage in the process described above, and proceeds

similarly. Note that the solution undergoes a finite number

of stages, each occurring in finite time, and stays within a
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Fig. 3. (a)-(b) Center-of-mass stable equilibrium regions for two stances
with different radii of gyration, (c) Illustration of a stable equilibrium stance.

bounded neighborhood of q0. This neighborhood, as well as

the total time of motion, can be made arbitrarily small by

setting the initial perturbation sufficiently small.

C. The Center-of-Mass Region of Frictional Stability

We now demonstrate computation results of the region

of center-of-mass locations x achieving equilibrium and

frictional stability of B with two given contacts. Figs. 3a-b

shows the center-of-mass stable equilibrium region for two

stances on a symmetric V-shaped terrain with coefficient

of friction µ = 0.5 and coefficient of restitution e = 0.1.

These two stances differ in the value of B’s radius of

gyration ρ, whose lengths are shown on both figures. The

feasible equilibrium region REQ is a vertical strip that

does not depend on ρ. The shaded regions in both figures

are center-of-mass regions satisfying the kinematic-strong

equilibrium condition. The dashed regions are center-of-mass

regions satisfying the clattering convergence condition (10).

The intersection of these two regions gives center-of-mass

locations achieving equilibrium and frictional stability. Note

that there is a tradeoff regarding the radius of gyration of B,

as follows. Increasing ρ results in larger region of kinematic-

strong equilibrium, but smaller region of clattering conver-

gence, as in the example of Fig. 3a, where the intersection

region lies entirely under the terrain. In the example of Fig.

3b, with ρ twice smaller, the kinematic-strong equilibrium

region is smaller, but the clattering convergence region is

enlarged, and the intersection region has a portion above

the terrain, making stable equilibrium postures practically

achievable. Finally, Fig. 3c shows an illustration of a two-

legged mechanism (treated as a single rigid body) positioned

in a stable equilibrium posture by keeping the center-of-

mass location sufficiently low. The small radius of gyration

is achieved by a massive central body and relatively thin

limbs.

VI. CONCLUDING DISCUSSION

This paper analyzed the impact-induced hybrid dynamics

of a planar rigid body with two contacts, and derived a condi-

tion guaranteeing that its solution converges in finite time to

a Zeno point of either one- or two-contact re-establishment.

Using the concept of completed hybrid system, it then

proved that this condition, augmented with the kinematic-

strong equilibrium condition (derived in the companion paper

[12]), are sufficient for stability of a two-contact frictional

equilibrium posture.

We now briefly list the main limitations of the results and

discuss possible extensions. First, note that this paper only

provided sufficient conditions for frictional stability. Though

the component of kinematic-strong equilibrium seems also

necessary, the clattering convergence condition might be too

conservative. When clattering convergence is not satisfied,

the hybrid dynamics results in complex sequences of col-

lisions at the two contacts, which may be periodic, quasi-

periodic, or even chaotic. Analyzing these sequences and

deriving conditions for their convergence to Zeno points is

a challenging open problem. Second, the analysis of the

hybrid dynamics in this paper is limited to two contacts, and

the obvious extension to analysis of three or more contacts

remains as a future challenge. Finally, the hybrid dynamics

was formulated for the simple case of a single rigid-body.

Future extension of the analysis to robotic mechanisms

supported by frictional contacts must account for the control

laws of the actuated joints and their influence on stability.
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