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Abstract— This paper is concerned with the stability of
planar mechanisms supported by multiple frictional contacts
against gravity. Stability of equilibrium postures is investigated
under initial perturbations which may involve sliding or separa-
tion at the contacts. The frictional dynamics is formulated using
the notion of contact modes, and the related problems of solution
ambiguity and inconsistency are reviewed. The paper then uses
the condition of strong equilibrium to eliminate ambiguities,
and defines a new condition of kinematic-strong equilibrium
which additionally eliminates frictional inconsistencies. It is
then proven that strong equilibrium is necessary for stability of
frictional equilibrium postures, and that kinematic-strong equi-
librium guarantees finite-time recovery of an initially perturbed
contact. The results are demonstrated on a reduced model of
a rigid body having a variable center-of-mass and supported
by two frictional contacts. A companion paper completes the
analysis of this reduced problem by investigating the overall
hybrid dynamics and deriving sufficient conditions for its
stability.

I. INTRODUCTION

Performing quasistatic manipulation and locomotion robotic

tasks requires transition through a sequence of equilibrium

postures with multiple contacts. In order to execute these

tasks reliably and successfully, the selected equilibrium pos-

tures must possess dynamic stability with respect to small

position-and-velocity perturbations. In many cases, the per-

turbations may involve separation, sliding, or rolling of the

contacts. Such perturbations may originate from external

disturbances, localized surface irregularities, or inaccuracies

in the coordinated (possibly over-constrained) motion of in-

ternal links of the robotic mechanism. The goal of this work

is to analyze the dynamic response of a planar mechanism

supported by multiple frictional contacts under any small

perturbation about an equilibrium posture, and to derive

conditions for posture’s stability. The underlying dynamical

system is essentially a hybrid system, consisting of multiple

modes of contacts, each associated with its own constrained

dynamics. The transitions between contact modes may either

be smooth, as in switching from rolling to sliding contact, or

nonsmooth, as in the case of contact recovery via a collision.

This paper, which is the first of two parts, analyzes the

constrained dynamics associated with each contact mode,

derives necessary conditions for stability, and then estab-

lishes a sufficient condition for finite-time contact recovery.

The second part, which appears in the companion paper

[15], focuses on the reduced problem of a single rigid body

supported by two frictional contacts, analyzes the hybrid

dynamical system governed by collisions at the contacts, and

derives sufficient conditions for its stability.

Previous works on quasistatic legged locomotion such

as [2] only consider the static equilibrium constraints, but

do not account for dynamic stability. The classical notion

of dynamic stability requires convergence or boundedness

of the dynamical system response to any small perturba-

tion about an equilibrium point (e.g. [10]). In the robotics

literature discussing the stability of multi-contact grasps,

some works analyze the stability of force closure grasps

under the assumption that the contact forces are actively

controlled [4], [13]. Other works investigate the stability

of force-closure grasps with passive fingers by modeling

the natural compliance at the contacts and accounting for

joints’ stiffness [7], [9]. However, all of theses works analyze

stability only with respect to perturbations under which all

contacts are maintained fixed or rolling, but do not consider

fully general perturbations under which the contacts can

also slide or break. In the legged robots literature, several

papers use the ZMP criterion as a stability condition for tasks

involving quasistatic or dynamic motion [23]. This condition

amounts to checking if the contact reaction forces required

to constrain the dynamics of fixed contacts are feasible,

but do not account for the possibility of initially sliding

or breaking contacts and their recovery. Related stability

measures for robotic vehicles focus on the energy required to

generate tipover motion on rough terrains [21], again without

explicitly considering the vehicle’s full dynamics.

The dynamics of mechanical systems with multiple fric-

tional contacts has been investigated in the context of

dynamic simulations [22] and assembly planning [1]. The

instantaneous dynamics can be formulated as a linear com-

plementarity problem [20], which accounts for all possible

contact modes in a unified framework. This formulation

highlights some problems regarding solution existence and

uniqueness. The first to identify paradoxical existence results

related to frictional rigid-body dynamics was Painlevé [18],

with his sliding rod example. For certain choices of physical

parameters and initial conditions, the instantaneous solution

of the rod’s constrained dynamics is inconsistent. This para-

dox has been subsequently resolved in terms of impulsive

contact forces causing a tangential impact event of discon-

tinuous velocity jump followed by contact separation [5],

[11]. This phenomenon has been recently demonstrated

experimentally in [12], where a mechanism that mimics

Painlevé’s rod experiences a dynamic jamming event [3]. An-
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other fundamental problem of frictional dynamics is dynamic

ambiguity, at which the instantaneous dynamics has multiple

solutions associated with different contact modes. Some

attempts to address this problem use contact compliance

in order to predict the dynamic response and thus resolve

the ambiguity [8]. In order to retain the simplicity of the

rigid-body paradigm and yet avoid the frictional dynamic

ambiguity, Pang and Trinkle [19] introduced the condition

of strong equilibrium, requiring that static equilibrium would

be the only possible dynamic solution. This principle was

subsequently used in applications such as sensorless manip-

ulation [1] and climbing [6].

The main contributions of this paper are as follows. First,

it proves that strong equilibrium is necessary for dynamic

stability of frictional equilibrium postures. Second, it de-

fines a new criterion, called kinematic-strong equilibrium,

which additionally eliminates frictional inconsistencies. The

kinematic-strong equilibrium criterion is proven to serve as

a key component in stability, by guaranteeing finite-time

recovery of an initially perturbed contact.

The structure of the paper is as follows. Section II formu-

lates the dynamics of planar frictional systems, and defines

the notions of frictional equilibrium postures and frictional

stability. Section III defines the criteria of strong equilibrium

and kinematic-strong equilibrium, and establishes their rela-

tion to frictional stability and finite-time contact recovery.

Section IV demonstrates the results on a reduced model of

a planar rigid body having a variable center-of-mass and

supported by two frictional contacts. Finally, the concluding

section discusses possible extensions of this work.

II. PLANAR FRICTIONAL DYNAMICS AND STABILITY

This section formulates the dynamics of a planar mechanism

supported by frictional contacts against gravity, then defines

the notion of frictional stability of an equilibrium posture.

A. Basic Terminology

Consider a planar mechanism M supported via k frictional

contacts by a static piecewise-linear terrain. Let q∈IRn de-

note the mechanism’s configuration,1 and let q̇ and q̈ denote

its generalized velocity and acceleration. The mechanism is

subject to k unilateral constraints of the form hi(q) ≥ 0,

representing the contacts. We assume that all contacts occur

between linear segments of the terrain and vertex points of

the mechanism’s links. Let ti and ni denote the unit tangent

and unit normal at the i-th contact, such that ni points away

from the terrain segment. Then ni is locally constant, and

the contact constraints are:

hi(q) = (xi(q) − xo
i ) · ni ≥ 0 for i = 1 . . . k, (1)

where xi(q) is the position of the link’s vertex associated

with the i-th contact and xo
i is a fixed point on the i-th linear

terrain segment. Let Ji(q) = ∂xi(q)
∂q

be the Jacobian matrix

associated with the i-th contact, and let vi(q, q̇) = Ji(q)q̇

1Since this paper focuses on small neighborhoods about equilibrium
points, we may use a local coordinate chart on IRn

be the velocity of the i-th contact. The state of M, (q, q̇),
is constrained to lie within the collision-free region in state

space, defined by

F =

{

(q, q̇) :
hi(q) ≥ 0 for i = 1 . . . k s. t.

if hi(q)=0 then ni ·vi(q, q̇)≥0

}

. (2)

The dynamics of M is governed by the equation of motion,

M(q)q̈ + B(q, q̇)q̇ + G(q) =
k

∑

i=1

JT
i (q)fi (3)

where M(q) is the mechanism’s inertia matrix, B(q, q̇) is the

matrix of velocity-dependent generalized forces, and G(q) is

the vector of generalized gravitational forces. On the right

hand side of (3), fi ∈ IR2 is the i-th contact reaction force

acting at xi. Assuming Coulomb’s friction law, each contact

force fi must lie in a friction cone, denoted Ci, which is

given by

Ci = {fi : |ti ·fi| ≤ µ(ni ·fi)}, (4)

where µ is the coefficient of friction. This paper focuses on

analyzing frictional equilibrium postures, defined as follows:

Definition 1. A k-contact configuration q0 of M is a

frictional equilibrium posture if there exist contact forces

fi∈Ci for i = 1 . . . k such that (3) is satisfied with q = q0,

q̇ = 0, and q̈ = 0.

B. Planar Frictional Dynamics

In order to investigate the stability of a frictional equilibrium

posture, one needs to analyze the solution of (3) in response

to small perturbations about the equilibrium. Since (q, q̇)
are known quantities, hi(q) and vi(q, q̇) are known at every

time instant. In order to obtain an instantaneous solution for

the unknowns q̈ and f1, . . . , fk in (3), one needs to invoke

additional relations between the contact forces and contact

velocities. Each active contact which satisfies hi(q(t)) = 0
is governed by one of four distinct modes. The four modes,

denoted S, F, R, and L, correspond to contact separation,

fixed (or rolling) contact, right-sliding and left-sliding, re-

spectively. For a k-contact arrangement, a contact mode is

encoded by a k-letter word from the alphabet {S, F, R, L}.

For example, the contact mode SR of a 2-contact arrange-

ment means that the contact x1 is instantaneously separating,

while the contact x2 is sliding to the right. Each contact mode

is associated with linear equality and inequality constraints

in fi and vi as summarized in Table I.

When a particular contact mode is active, its equality

constraint on velocities are differentiated with respect to

TABLE I

THE POSSIBLE CONTACT MODES AT A PLANAR FRICTIONAL CONTACT.

contact physical kinematic force

mode meaning constraints constraints

S Separation vi · ni > 0 fi = 0
F Fixed/rolling vi = 0 |fi · ti| ≤ µ(fi · ni)
R Right sliding vi · ni = 0 fi · ti = −µ(fi · ni)

vi · ti > 0 fi · ni ≥ 0
L Left sliding vi · ni = 0 fi · ti = µ(fi · ni)

vi · ti < 0 fi · ni ≥ 0
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time, giving similar constraints on the contact accelera-

tions, denoted ai for i = 1 . . . k. Using the relation ai =
Ji(q)q̈ + J̇i(q)q̇ yields equality constraints in q̈. When the q̈

constraints are augmented with the force constraints and the

equation of motion (3), one obtains a square linear system

in q̈ and f1, . . . , fk. This system is generically full rank,

and has a unique solution for the instantaneous dynamics

under the given contact mode. Thus for a given initial state

of M, one identifies the active contact mode, computes its

instantaneous dynamic solution, then integrates eq. (3) for

some finite time interval in order to obtain the dynamic

solution q(t). Note, however, that each contact mode is also

associated with inequality constraints which must be satisfied

in order for the dynamic solution to be consistent. In some

cases, a consistent solution may not exist, or might be non-

unique. These well-known problems are addressed in the next

section. Nevertheless, this definition of dynamic solution is

sufficient for introducing the notion of frictional stability.

C. Definition of Frictional Stability

We now define the notion of frictional stability of an equi-

librium posture. Let Nǫ(q0) denote an ǫ-neighborhood about

an equilibrium point (q0, 0): Nǫ(q0) = {(q, q̇) : ‖q − q0‖<

ǫ and ‖q̇‖ < ǫ}.

Definition 2. Let q0 be a k-contact frictional equilibrium

posture of M. Then q0 is frictionally stable if for any small

ǫ> 0 there exists a sufficiently small δ > 0 such that for all

perturbations (q(0), q̇(0))∈Nδ(q0)∩F the dynamic solution

q(t) is consistent and converges to some equilibrium posture

while staying within Nǫ(q0).

The definition is an adaptation of the classical Lyapunov sta-

bility [10] to hybrid systems. It combines stability of invari-

ant sets with Lagrange Stability which requires boundedness

within an arbitrarily small neighborhood [24]. The definition

captures the inherent neutrality of frictional equilibrium pos-

tures which commonly lie within a continuum of equilibria.

Note that the definition considers only perturbations within F
i.e., no interpenetrations are allowed.

III. NECESSARY CONDITIONS FOR FRICTIONAL STABILITY

This section derives necessary conditions for the frictional

stability of an equilibrium posture. Focusing on the dynamics

under zero-velocity initial conditions, we first review the

strong equilibrium condition which eliminates frictional am-

biguity. This criterion is proven to be necessary for frictional

stability. Then we define a more restrictive kinematic-strong

equilibrium condition, which additionally eliminates fric-

tional inconsistency. Finally, kinematic-strong equilibrium

is proven to guarantee finite-time recovery of an initially

perturbed contact.

A. The Strong Equilibrium Criterion

Consider the frictional dynamics (3)-(4) under zero-velocity

initial conditions, (q(0), q̇(0)) = (q0, 0), where q0 is a

k-contact equilibrium posture. Since the contact velocities

are initially zero, they do not determine a unique contact

mode. Hence one must consider each contact mode, compute

its associated instantaneous dynamic solution, then check

its consistency. The consistency of each contact mode is

checked according to its contact force inequalities, as well

as its kinematic inequalities in which contact velocities are

replaced by contact accelerations. For instance, in a single-

contact posture consistency of contact separation is checked

by the inequality n1 · a1 > 0, while consistency of right-

sliding is checked by the inequalities n1·f1 >0 and t1·a1 >0.

Since q0 is an equilibrium configuration, the contact mode

F k (all k contacts are fixed) is consistent. Hence if some

non-static contact mode is also consistent at (q0, 0), the

dynamic solution is ambiguous and the Coulomb’s friction

model cannot determine which contact mode is actually

evolving. In order to avoid this intricate phenomenon, Trinkle

and Pang [19] introduced the following notion of strong

equilibrium.

Definition 3. A k-contact frictional equilibrium posture q0

of M is a strong equilibrium if the dynamic solution of

all non-static modes under the initial condition (q0, 0) is

inconsistent.

The strong equilibrium condition was originally called strong

stability [19]. However, its relation to the classical notion of

dynamic stability justifies the strong equilibrium terminol-

ogy. The following theorem establishes the relation between

strong equilibrium and frictional stability.

Theorem 1 ([14]). Let q0 be a k-contact frictional equi-

librium posture of a planar mechanism M. Then strong

equilibrium is necessary for the posture’s frictional stability.

Proof sketch: Assume that q0 is not a strong equilibrium.

In this case there exists a non-static contact mode, MODE,

which is consistent under initial conditions (q0, 0). In partic-

ular, it is associated with some consistent kinematic inequali-

ties involving contact accelerations. For instance, if MODE is

associated with contact separation at xi, its dynamic solution

satisfies ni · ai >0 according to Table I. Since the dynamic

solution under MODE is continuous with respect to (q, q̇),
there exists an open set of initial conditions about (q0, 0)
under which ni ·ai is still positive, and the contact xi initially

accelerates away from its nominal position. Similarly, if

MODE is associated with a right-sliding at xi, its dynamic

solution at (q0, 0) satisfies ti·ai >0, and for sufficiently small

perturbations the initial sliding accelerates xi away from its

nominal position. The trajectory (q(t), q̇(t)) therefore cannot

be bounded in an arbitrarily small neighborhood of (q0, 0),
contradicting the definition of frictional stability. ¤

The intuition behind the theorem is as follows. Generic

position-and-velocity perturbations incur nonzero initial con-

tact velocities. Such perturbations uniquely determine some

initial non-static contact mode. If the initial non-static mode

is consistent, then strong equilibrium guarantees that the

mechanism will accelerate in such a way as to recover the

perturbed contacts. This behavior is necessary for frictional

stability of the unperturbed equilibrium posture.
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B. The Kinematic-Strong Equilibrium Criterion

While strong equilibrium eliminates dynamic ambiguities,

a contact mode dictated by an initial perturbation about

(q0, 0) may be initially inconsistent. This scenario, known as

Painlevé’s paradox [11], [18], is characterized by a sliding

motion under which the instantaneous dynamic solution

violates one or more inequality constraints on the contact

forces. Another problematic scenario occurs when an initially

consistent motion carries the trajectory (q(t), q̇(t)) into a

point of inconsistency. This event, known as dynamic jam-

ming [3], [12], is characterized by a sliding motion under

which the contact forces and accelerations at one or more

sliding contact diverge to infinity in finite time. In both

cases the solution inconsistency can be resolved in terms

of impulsive forces which cause a non-smooth transition to

a contact separation mode [5], [11]. In order to guarantee

contact recovery as a first step toward frictional stability, one

needs to avoid such cases of inconsistency. This requirement

is captured by the condition of kinematic-strong equilibrium,

whose definition is based on the distinction between kine-

matic constraints and force constraints (see Table I).

Definition 4. A k-contact frictional equilibrium posture q0

of a mechanism M is a kinematic-strong equilibrium if the

dynamic solution of each non-static mode under the initial

condition (q0, 0) satisfies all force constraints but violates at

least one of the kinematic constraints.

Note that kinematic-strong equilibrium is more restrictive

than strong equilibrium, which only requires that the dy-

namic solution of each non-static contact mode would violate

one constraint, without specifying which type. The following

theorem establishes the relation between kinematic-strong

equilibrium and finite-time recovery of an initially perturbed

contact.

Theorem 2 ([14]). Let q0 be a k-contact frictional equi-

librium posture of a planar mechanism M. Then for any

arbitrarily small t0 > 0 and ǫ > 0, there exists δ > 0
such that for all (q(0), q̇(0)) ∈ Nδ(q0) ∩ F , there exists a

finite time t′ < t0 such that the initial contact mode is

consistent during the time interval [0, t′), and stays within

Nǫ(q0). Moreover, at t= t′ either an initially sliding contact

becomes stationary (or rolling), or an initially separated

contact recovers contact.

Proof sketch: Consider a perturbation which imposes a non-

static contact mode MODE. The kinematic-strong equilibrium

condition implies that at the state (q0, 0), all force constraint

associated with MODE are satisfied, and at least one kine-

matic constraints is violated in the acceleration level. For

instance, if MODE is associated with contact separation at

xi, then its dynamic solution at (q0, 0) may satisfy ni ·ai <0.

Since the dynamic solution under MODE is continuous with

respect to (q, q̇), there exist an open set of initial conditions

about (q0, 0) under which the force constraints are still

satisfied, and MODE is initially consistent. Moreover, for

sufficiently small initial velocity, ni · ai is still negative,

and xi accelerates towards contact recovery via a collision.

Similarly, if MODE is associated with a right-sliding at xi, its

dynamic solution may satisfy ti · ai <0, and for sufficiently

small perturbations, MODE is initially consistent, and the

sliding of xi decelerates to a full stop in finite time. ¤

The kinematic-strong equilibrium is a key component of

frictional stability, since it guarantees that the initial response

under small perturbations is bounbded and contacts are re-

coverred in finite time. However, note that it only guarantees

recovery of a single contact, and not convergence to an

equilibrium point. Moreover, recovery an initially seperated

contact reults in an impact event. Analysis of the hybrid

dynamics associated with a sequence of impacts is relegated

to the companion paper [15].

IV. TWO-CONTACT RIGID BODY POSTURES

This section demonstrates the computation of kinematic-

strong equilibrium postures for a rigid body B supported

by two frictional contacts in a planar gravitational field. The

rigid body model serves as a simplification of a two-legged

mechanism whose complex kinematic structure is lumped

into B’s center-of-mass, denoted x, which varies as a free

parameter. The mass of B is denoted m and its radius of

gyration is denoted ρ. The contact points are x1 and x2 and

the contact reaction forces are f1 and f2, where fi ∈ Ci for

i = 1, 2. The equation of motion of B is given by

f1 + f2 + fg = ma

(x1−x)T Jf1 + (x2−x)T Jf2 = mρ2α,
(5)

where a ∈ IR2 is B’s center-of-mass linear acceleration,

α ∈ IR is B’s angular acceleration, fg is the gravitational

force acting at x, and J =
ů

0 −1

1 0

ÿ

. For given contacts

and friction cones, a posture is fully characterized by the

center-of-mass location x and the radius of gyration ρ. We

first review the computation of the region of center-of-mass

positions achieving frictional equilibrium postures. Then

we demonstrate the phenomena of dynamic ambiguity and

inconsistency in terms of center-of-mass position. Finally, for

a given ρ we compute the center-of-mass region achieving

kinematic-strong equilibrium postures.

A. Center-of-Mass Feasible Equilibrium Region

We first review the computation of the center-of-mass region

which results in frictional equilibrium postures [17]. Given

two contacts, the feasible equilibrium region, denoted REQ,

is defined as the region of center-of-mass positions x for

which there exist contact forces fi ∈ Ci (i = 1, 2) satisfy-

ing (5) with zero accelerations a = α = 0. Note that the

equilibrium condition (5) and the frictional constraints (4)

are linear in f1, f2 and x. Hence the boundaries of REQ

are computable as linear programming problems. It can be

easily shown that REQ, if nonempty, is a single connected

vertical strip [17].

Graphical Examples: We briefly show computation results

of REQ for several 2-contact postures. First consider the

special case where the two contacts lie on a flat horizontal
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Fig. 1. Graphical characterization of REQ in two cases

floor. In this case REQ is precisely the vertical strip spanned

by the two contacts. Examples of REQ in 2-contact arrange-

ments of more complex geometry are shown in Fig. 1. Fig.

1(a) shows a V-shaped terrain with µ=0.3. In this case REQ

is the vertical strip spanned by the intersection of the two

friction cones emanating from the contacts. Fig. 1(b) shows

a terrain consisting of a high step with µ = 0.5, and the

resulting region REQ. Note that in this case REQ exceeds

horizontally beyond the contacts.

B. Frictional Dynamics of Variable Center-of-Mass Postures

We now consider the contact modes governing the dynamics

of B under initial conditions (q0, 0), where q0 is a frictional

equilibrium posture. Enumerating all 42 = 16 possible 2-

contact modes, then disregarding the order of contacts and

direction of sliding, gives five representative modes: FF, SS,

FS, RS, and RR. For each particular contact mode, the

instantaneous dynamic solution for f1, f2 and a, α in (5)

depends on the center-of-mass position x and the radius

of gyration ρ. Assuming that ρ is a known constant, the

inequality constraints associated with a particular contact

mode define a feasible region of center-of-mass locations

for which this contact mode is consistent. These regions are

denoted RSS ,RFS ,RRS , and so on. Note that the feasible

region of the static contact mode FF is precisely the feasible

equilibrium region REQ. The feasible regions of all non-

static contact modes are bounded by curves which are linear

and quadratic in x, and their computation is detailed in [14].

In the following examples we use the feasible regions

in order to demonstrate the phenomena of frictional am-

biguity and frictional inconsistency. Fig. 2(a) depicts the

feasible equilibrium region REQ for the 2-contact posture of

Fig. 1(b). The figure also plots, in shaded regions, the feasible

region of the contact modes FS, RS, and LS, associated

with pure rolling, right sliding, and left sliding at x1, and

separation at x2. Note that the portion of REQ lying to

the left of x1 overlaps with the regions RFS ,RRS , or

RLS . This overlap corresponds to frictional ambiguity of

the static equilibrium with these non-static contact modes.

When x is positioned in the overlap region, B can be in static

equilibrium, but small perturbations of rolling or sliding will

result in non-recoverable motion. Therefore, such postures

violate the strong equilibrium condition, and are essentially

unstable, as stated in Theorem 1. The phenomenon of

frictional inconsistency is demonstrated in Fig. 2(b) for a

Fig. 2. Examples of (a) frictional ambiguity and (b) frictional inconsistency
for 2-contact rigid body stances

2-contact posture with µ = 0.5. Consider a small velocity

perturbation imposing the contact mode RS (right sliding at

x1 and separation at x2). The associated dynamic solution

for f1 depends of the center-of-mass x, and the region

of x satisfying n1 · f1(x) < 0 is depicted in Fig. 2(b)

(shaded region). When x lies in this region, no finite-force

consistent solution exists under such perturbations, and the

only consistent solution is tangential impact followed by

immediate contact separation. Thus, such postures violate

the kinematic-strong equilibrium condition.

Finally, we demonstrate the computation of the kinematic-

strong equilibrium postures for a rigid body B supported by

two contacts having a coefficient of friction µ. For a known

radius of gyration ρ, the region of center-of-mass locations

x of kinematic-strong equilibrium postures is denoted K.

Fig. 3 shows two postures with µ = 0.5, along with the

kinematic-strong equilibrium regions K1 (dashed) and K2

(shaded), associated with radii of gyration ρ1 and ρ2, such

that ρ2 = 2ρ1. The true lengths of ρ1 and ρ2 relative to

the contacts’ geometry are shown on the figures. While the

feasible equilibrium region REQ (also shown on the figures)

does not depend on ρ, the kinematic-strong equilibrium re-

gion is significantly affected by ρ as follows. The hyperbolic

curves bounding the region K have fixed asymptotes, and

become “sharper” as ρ decreases, removing a larger portion

of REQ. Hence when ρ increases i.e., when B’s mass is

distributed farther from its center, K becomes larger. For

postures satisfying x∈K, finite-time recovery of a perturbed

contact is guaranteed by Theorem 2.

Fig. 3. Kinematic-strong equilibrium regions K1 (dashed) and K2 (shaded)
for radii of gyration ρ1 and ρ2 on (a) a flat terrain (b) a V-shaped terrain.
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V. CONCLUDING DISCUSSION

This paper discussed the stability of planar mechanisms

supported by multiple frictional contacts against gravity. We

reviewed the notion of strong equilibrium which eliminates

dynamic ambiguity, and defined the notion of kinematic-

strong equilibrium which additionally eliminates dynamic in-

consistency. We established that strong equilibrium is neces-

sary for frictional stability, and that kinematic-strong equilib-

rium guarantees finite-time recovery of an initially perturbed

contact. The results were demonstrated on a simplified mech-

anism model of a rigid body having a variable center of mass

and supported by two frictional contacts. The results indicate

that the criterion of kinematic-strong equilibrium is a key

frictional stability component. It provides a significant step

toward incorporating dynamic stability considerations into

automated planning of robotic locomotion and manipulation

supported by multiple frictional contacts against gravity.

We now discuss two generalizations of the results. First

consider a planar legged robot moving quasistatically on

a frictional terrain. While the kinematic structure of the

robot can be lumped into a single rigid body B having

a variable center-of-mass, the inertial forces generated by

motion of internal limbs can be lumped as an additional

wrench (i.e. force and torque) acting on B’s center-of-

mass. Thus, accounting for this internal motion can be

reduced to computation of equilibrium postures which are

robust with respect to a given neighborhood of external

wrenches surrounding the nominal gravitational wrench. A

posture q0 is robust with respect to a wrench neighborhood

W if it forms a kinematic-strong equilibrium posture for

any external wrench in W . While robustness of frictional

equilibrium postures is analyzed in [17] and robustness of

strong equilibrium postures is analyzed in [16], computation

of robust kinematic-strong equilibrium postures is an open

problem. Next consider the generalization of the results

to three dimensions. Under Coulomb’s friction law, each

contact force fi ∈ IR3 must satisfy the quadratic constraint

‖f t
i ‖≤µ(ni ·fi), where f t

i ∈ IR2 is the tangential projection

of fi. Thus, under a given contact mode, the dynamics

yields a system of quadratic equations in the unknowns fi

and q̈, whose solution cannot be obtained in closed form.

A possible approach for computing approximate solutions

is to replace the quadratic friction cones with polyhedral

cones, and formulate the instantaneous dynamics as a linear

complementarity problem (e.g. [20]). The extension of this

approach for computation of strong and kinematic-strong

equilibrium postures is a future challenge.

Finally, this paper provided only necessary conditions for

frictional stability. This is because it focused on the solution

boundedness of the constrained dynamics associated with the

initial contact mode until it switches, either by sliding halt or

by collision. The companion paper [15] analyzes the hybrid

dynamics associated with a sequence of collisions, and con-

catenates the constrained dynamics phases with the hybrid

dynamics phases. The companion paper derives sufficient

conditions for frictional stability of equilibrium postures for

the simplified problem of a planar rigid body supported by

two frictional contacts.
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