
 
 

 

  

Abstract— This paper introduces a novel approach to control 
a wheeled inverted pendulum when a disturbance is applied by 
a human. The interaction between a human and a wheeled 
inverted pendulum involves a pulling or pushing force. This 
type of action is a severe disturbance for a wheeled inverted 
pendulum, as the wheeled inverted pendulum tends to maintain 
its initial position if there is no desired input. Thus, there are 
many possibilities for the wheeled inverted pendulum to be 
unstable as a result of interactions with humans.  

To solve this problem, the control algorithm of a wheeled 
inverted pendulum was designed to move in coordination with 
the external force of a human. This control algorithm is termed 
human-friendly motion control. It contains an optimal 
controller using a full-state feedback and a reduce-order 
disturbance observer. The disturbance torque from a human 
was estimated, and the estimated disturbance torque was used 
to generate a position reference for the human-friendly motion. 
This control algorithm keeps the wheeled inverted pendulum 
stable even when a severe disturbance is applied.  
 

I. INTRODUCTION 
N THE PAST, the humanoid robots used a three or four stable 
wheel system. In the case of Hadaly-2 [7], two driving 

wheels and two passive wheels were used as a caster. The 
mobility of such a stable wheel system was worse than that of 
a two-wheeled self-balancing system. A two-wheeled system 
is essentially unstable but can be stabilized independently in 
the same manner as a human. Therefore, a two-wheel system 
has mobility that is more natural, which allows it to interact 
with humans. When a two-wheeled humanoid robot interacts 
with a human, the stability of the robot can be disturbed by 
the pulling and pushing forces from the human. The robot can 
fall down due to these disturbances. A human can even be 
hurt by the falling robot. To prevent this type of dangerous 
situation, a novel control algorithm is designed here for 
human safety issues. This control method is termed the 
human-friendly motion control [8], [9]. 

Thus far, a number of studies concerning two-wheeled 
self-balancing mechanisms have been conducted [1]-[5]. 
These studies deal with a control method for balancing. 
However, they did not consider the problem of maintaining 
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the stability after an external force is applied to the 
mechanism. Another study considered cooperative 
transportation [6]. An observer was used to estimate 
disturbance forces and a designed force and position 
controller was utilized for object transportation after an 
external force from a human or a robot. However, they 
assumed that the external force would be applied to the body 
of the wheeled inverted pendulum at the axle height 
horizontally. In this case, the stability of the system is not 
affected from external force as much as when the force is 
applied to the upper part of the center of gravity (CG) of the 
pendulum. In such a case, serious stability problems arise.   

In this paper, a wheeled inverted pendulum was chosen as a 
simplified model of a two-wheeled humanoid robot. A case in 
which an external force from a human was applied to the 
upper part of a wheeled inverted pendulum is considered. To 
stabilize the wheeled inverted pendulum even when a severe 
external force is applied, a human-friendly motion control 
algorithm was developed. This algorithm allows the 
pendulum to move naturally coordinated with the external 
force and maintains a safety environment for the human. For 
the construction of this algorithm, a position controller for a 
wheeled inverted pendulum was designed using a LQR 
method for self-balancing and tracking desired position. In 
addition, a reduced-order disturbance observer was designed 
to estimate disturbances by external forces. The estimated 
external force is used to generate position references. 
Experiments were conducted to test the human-friendly 
motion control. 

II. SYSTEM DESIGN 
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Figure 1. The structure of the wheeled inverted pendulum 
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The structure of the wheeled inverted pendulum used in 
this research is shown in Figure 1. It was assumed that a 
wheeled inverted pendulum could be used as a service robot 
in a public area. Accordingly, it was designed to be one meter 
in height. At the upper part of the pendulum, an adjustable 
weight was added. This makes testing the various mass and 
inertia conditions easier. At the lower part of the pendulum, 
two dc-motors, two encoders, two 24V-7Ah batteries, a 
micro-controller, a two-channel motor amplifier, a rate gyro 
and an accelerometer were added. A two-stage pulley-belt 
system with a 14:1 reduction ratio and a quiet drive without 
backlash were also added to the device. For control of the 
motor, a micro-controller and a two-channel motor amplifier 
were developed. For the micro-controller, a TI 
TMS320F2808 digital signal controller was used. A 
custom-made motor amplifier handled two high-power 
dc-motors (1kW) in a single board despite its relatively small 
size (100x100x40mm3). A rate gyro and an accelerometer 
were used to measure the tilt angle in the pitch direction. 
These two sensors were combined with complementary filters 
to provide more accurate tilt information. The accelerometer 
provides accurate static tilt information when the robot is not 
accelerating. The rate gyro can be integrated to provide 
accurate dynamic tilt information, but the integration tends to 
drift over time. By combining two sensors, it was possible to 
measure robust inertial information.  

 

III. MODELING 
A mathematical model of the developed control system of 

the wheeled inverted pendulum is described in Figure 2.  
 

 
The wheeled inverted pendulum can be decoupled in two 

different subsystems [1]. The first of these is a pendulum 
system and the second is a rotation system. The pendulum 
system is an unstable system and the rotation system is a 
neutrally stable system. Effort here was focused on the 

problem of controlling the pendulum system, as it was 
unstable. Therefore, it was assumed that no yaw motion exists 
in the pendulum system. Additionally, it was assumed that the 
wheels of the inverted pendulum are always in contact with 
the ground and that no slip exists at the contact patches. 
Therefore, no roll motion exists. Finally, only the 
longitudinal motion along the x-axis and the pitch motion are 
considered. The longitudinal movement of the pendulum is 
characterized by the angular displacement of the wheel φ  
and the pitch motion is characterized by the tilt angle of the 
pendulum θ . 

For an efficient analysis, a free body diagram of a 
simplified model is shown in Figure 3. This simplified model 
can be considered two divided parts: a pendulum part and a 
wheel part.  
 

 

 
 

In the pendulum part, there is an upper mass and a lower 
mass. The CG of the pendulum is located near the middle of 
these two masses. The total mass of the pendulum part is 
characterized as M. It was assumed that external force Fd is 
applied to the upper mass of the pendulum part as a 

 
 
 

Figure 2. A simplified diagram of the wheeled inverted pendulum 

        
                     (a) The pendulum part                  (b) The wheel part 

 
Figure 3. Free body diagram of the wheeled inverted pendulum 

TABLE I 
PARAMETERS OF THE WHEELED INVERTED PENDULUM 

Symbol Quantity 
M The total mass of the pendulum part 
lCG Length between the CG and the wheel axis  
d Length between the point of application of 

external force Fd and the wheel axis 
ICG Moment of inertia of the pendulum
m Mass of a wheel and a pulley 
r Radius of a wheel 
J Moment of inertia of a wheel and a pulley 
g The constant of acceleration of gravity 
Jm Moment of inertia of a motor rotor 
Bm Viscous friction coefficient of a motor 
Kt Torque constant of a motor 
Ke Electrical constant of a motor 
Rm The armature resistance of a motor 
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disturbance from a human. Counter torque from two motors 
2Tw is applied in the pendulum in the other direction 
compared to the torque of wheel part. In addition, the reaction 
forces between the pendulum part and the wheel part Rx, Ry 
are applied on the axle.  

 The wheel part contains two wheels and two second-stage 
pulleys. As there is no yaw motion, two wheels always rotate 
identically. Therefore, the two wheels and the two pulleys are 
considered as one body. The friction forces between the 
wheels and the ground is denoted as Fr.  

In an actual control system, the control variable is the 
voltage of the motor V instead of the motor torque Tw. 
Therefore, a dynamic equation for the motor and was derived, 
and that relationship is contained in the equation of motion. 
Moreover, it is assumed that it is possible to linearize the 
equations of motion around the operating point ( 0θ = ). The 
equations of motion of this model are as follows:  
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where the parameters are defined in Table I. 
 

IV. CONTROL SYSTEM DEVELOPMENT 
In this section, the development of control system is 

discussed. The equations of motion for the system (1), (2) can 
be written in state-space form, as follows: 

 

dx Ax Bu W F= + + ⋅                            (3) 
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where a1, a2, a3, a4, a5, a6, b1, b2, d1, and d2 are defined as 
functions of the parameters of the wheeled inverted 
pendulum.  

With this state-space equation, the following control 
strategies were designed to maintain the pendulum in 
equilibrium and to maintain a stable posture even when a 
disturbance is applied. 

A. Position controller using LQR method 
Before the position controller was designed, it was 

assumed that there was no external force (Fd = 0). In order to 
control the position and posture of the wheeled inverted 
pendulum, it was necessary to control the rotation of the 
wheels as a control output V which is the voltage of the wheel. 

For the wheeled inverted pendulum used here, the pitch 
angle of the pendulum θ  was measured from a combination 
of two sensors: a rate gyro and an accelerometer. Also from 
the rate gyro, the angular velocity of the pitch motion of the 
pendulum θ  was obtained. The angular displacement and 
angular velocity of the wheel ,  φ φ  were measured with the 
rotary encoder. Therefore, all of the state-variables from the 
sensor signal were used as feedback. Using this full-state 
feedback, it was possible to construct control input u, as 
follows: 

 

( )refu K x x= − −                              (4) 
 

where x is the state variable vector, xref is the reference vector, 
and K is the feedback gain vector K= [K1  K2  K3  K4]. 

The feedback gain K was obtained using LQR method, 
which results in some balance between system errors and 
control efforts. To use this LQR method, it was necessary to 
determine three parameters: the performance index R, the 
state-cost matrix Q, and the weight factors. For simplicity, the 
performance index matrix was defined as equal to 1. The 
weighting factors in the state-cost matrix were chosen by trial 
and error. If the weighting factors of ,  φ φ  are increased, the 
pendulum becomes very sensitive to the disturbance, but 
more accurate position tracking performance is given. On the 
other hand, if these factors are decreased, the pendulum is 
less sensitive to the disturbance but weak to track desired 
position. In the control strategy, the high weighting factors of 

,  φ φ  were chosen for better position tracking performance. 
For the disturbance problem, a position reference to offset 
disturbance was planned using the observer described in the 
next section.  

B. Reduced-order Disturbance Observer 
In this system, it was possible to obtain the state vector, x 

using the sensor signal. However, it was not possible to 
measure the external force directly. The purpose of the 
reduced-order disturbance observer is to make estimations of 
the external force Fd. The estimated external force will be 
used in the human-friendly motion control. 

The reduced-order observer reduces the order of the 
estimator by the number of measurable outputs. In this system, 
the external force is the only unmeasured variable. Therefore, 
the state vector can be divided into two parts: xa, which is 
directly measurable by sensors as x, and xb, which must be 
estimated as Fd. By assuming that the derivative of the 
external force equals zero ( 0dF = ), it was possible to modify 
the state-space form, as follows: 
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With this state-space form, the reduced-order disturbance 

observer was constructed. The block diagram of the observer 
is described in Figure 4. A detailed design of the observer 
[12] is straightforward and is not presented here.  

 

 
In the above diagram, the observer gain L was obtained 

using a pole placement method by trial and error by changing 
the settling time of the observer to balance between a good 
transient response and a sufficiently low sensor noise. Using 
this observer, the external force could be estimated.  

C. Human-friendly Motion Control 
The position controller maintains its original position well 

against disturbances. If a severe disturbance is applied, it can 
break its controllable range. To solve this problem, a control 
algorithm was formulated to generate position reference to 
prevent falls as a result of an external force. This implies that 
if the pendulum is pushed or pulled, it moves the way it is 
commended. But if no external force exists, it maintains its 
original position. For the generation of the position reference, 
the following equations were developed: 

 
( )ref dH F dtφ ′= ⋅ ∫                             (7) 

( )ref refu K x x V φ= − − − ⋅                       (8) 

 
where H is a gain obtained experimentally to make the best 

position reference under various conditions.  
No matter how well the observer is designed, it is not 

possible to estimate the exact external force owing to sensor 
noise and model mismatch. In some cases, the position 
reference can be generated by an erroneous estimation, even 
when an external force is not applied. To prevent this 
undesired case, the threshold was set so that it ignores 
estimated external forces that are less than the limit value. By 
adding the position reference to the feedback system, the 
pendulum was made coordinate its movement with the 
external force from a human. A block diagram of the 
human-friendly motion control system is shown in Figure 5. 

 

 

V. EXPERIMENTS 

A. Estimation of the external force with position control 
Using the control law shown in Figure 5, the pendulum was 

made to stand stably and the external force was estimated. As 
shown in Figure 6, a static external force was applied. As the 
external force increased, the pendulum inclined gradually to 
sustain the force. If the weight was too heavy, the pendulum 
was not able to maintain a stable range of the pitch angle of 

20≤ ± . Hence, the weight was increased by 0.5kg stepwise 
within the limit of the pitch angle every 6~7 seconds. 

The human-friendly motion control was deactivated for the 
test of the estimation of the external force in this experiment.  

 

 

 
 

Figure 6. Experiment of estimation of the external force 

 

Figure 5. A block diagram of the human-friendly motion control system

Figure 4. A block diagram of reduced-order disturbance observer 
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As the external force is applied horizontally, the estimated 
external force was converted as the torque using following 
relationship: 

 
cos

d d
T F d θ=                                 (9) 

 
where d is the height from the axle which is the point of 
application of the external force and θ  is the pitch angle of 
the pendulum. 

B. Experiment of Human-friendly motion control 
The purpose of human-friendly motion control is to 

guarantee human safety when a human pulls or pushes the 
wheeled inverted pendulum. In Figure 7, a human is shown 
pushing the upper part of the pendulum. Under a condition in 
which the human-friendly motion control was deactivated, 
the pushing force was strong enough to cause the pendulum 
to topple over. However, the pendulum pushed away stably 
due to the generated position reference in an integrated 
manner. Detailed motion data is presented in the next chapter. 

 

 

VI. EXPERIMENTAL RESULTS 
In Experiment A, the estimation of the external force while 

the pendulum stood stably by the control system was tested. 
The result of Experiment A is presented in Figure 8. It shows 
the estimated disturbance torque, its mean value, and the 
actual applied torque.  

 

 
In this figure, it is clear that there is strong vibration in the 

estimated disturbance torque. However, the average of the 
estimated value is fairly close to the real value. For a more 
detailed analysis, the true value, mean value, and the standard 
deviation of the disturbance torque are shown in Figure 9. 

 

 
Figure 9 shows that the standard deviation of the 

estimated value is within the true value, although a vibration 
exists. Thus, it is confirmed that the external force can be 
estimated using the reduced-order disturbance observer. 

Using this observer, Experiment B was conducted. The 
result of the human-friendly motion control is presented in 
Figure 10.  

 

 
 

Figure 7. The pendulum coordinating with  
an external force applied by a human  

 
Figure 9. The result of the estimation of the external force 
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Figure 8. The result of the estimation of the external force 
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After the disturbance had started for approximately 1 

second, the angular displacement of the wheel φ  increased 
due to the generation of the position reference. It stopped at 
approximately -10 rad. In the same time, the pitch angle was 
inclined to its maximum of nearly 0.3 rad ( 17 ). This value 
is within the safe tilt angle range of the pendulum. This 
implies the pendulum offsets the disturbance by moving 
smoothly in the direction from which the external force is 
applied. Experiments were conducted regarding the 
performance of the human-friendly motion control. 

 

VII. CONCLUSION 
In this research, it was considered that a stability problem 

may occur with a wheeled inverted pendulum when it 
interacts with a human. To address this issue, a 
human-friendly motion control was constructed. This control 
strategy allows the pendulum to offset the disturbance from 
the human safely using an integrated control system.   

To realize this control strategy, a position control system 
was built using full-state feedback to guarantee the stability 
of the pendulum, and a reduced-order disturbance observer 
was utilized to estimate the external force. Through the use of 
the estimated external force, a control algorithm was 
designed to make proper position references to offset the 
disturbance. 

 Experiments showed that the human-friendly motion 
control was able to estimate the external force while standing 
safely and that the pendulum can be stabilized even when a 
severe disturbance is applied. 

In the future, the authors aim to adopt the human-friendly 
motion control to an actual two-wheeled humanoid robot for 
an evaluation of the control system designed in this research.  
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Figure 10. The result of the experiment of human-friendly motion control

θ
θ

dT
φ
φ

2526


