
  

  

Abstract— This paper presents a time invariant kinematic 
motion controller for wheeled mobile robots. A path manifold 
that considers curvature limitations is used to provide a desired 
path shape and convergence to the reference posture or 
trajectory.  Lyapunov based techniques are then used to derive 
a control law that asymptotically converges the robot to the path 
manifold. Posture regulation, path following, and trajectory 
tracking capability are provided. Allowable initial conditions 
are estimated based upon curvature constraints of the robot. 
Curvature boundaries and asymptotic convergence naturally 
limit allowable initial conditions and are resolved by driving the 
robot to intermediate goal points within regions of allowable 
initial conditions. The proposed controller is evaluated in 
simulation. 

I. INTRODUCTION 
he subject of this research is a kinematic motion control 
law for wheeled mobile robots subject to physical 

constraints. Achievable path curvature is limited by physical 
design and dynamic effects. Most kinematic motion 
controllers have ignored these physical effects, though, and 
have focused solely on control and planning considering 
nonholonomic constraints.  It is, however, important to 
include physical considerations in the kinematic motion 
controller since these commands are typically used as inputs 
to the dynamic controller of the physical system [1]. Thus, the 
goal of this research is to provide a single kinematic motion 
control law capable of all three motion control tasks while 
considering physical constraints. Our controller can provide 
this capability given particular regions of initial conditions 
and references with constrained velocity and curvature. 

In order to satisfy velocity and curvature limitations while 
performing all three motion control tasks, we first embed 
curvature constraints in the controller using a path manifold.  
The path manifold is a geometric tool that defines the shape 
of the path that the robot follows while converging to its 
target or trajectory. In this case a circular path manifold with 
radius satisfying curvature constraints is used.  The robot is 
driven to the path manifold using Lyapunov based control 
design. Once the robot reaches a neighborhood of the path 
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manifold in finite time, velocity and curvature limitations are 
satisfied for posture regulation and for sufficiently 
constrained reference paths and trajectories. However, 
controller commands during convergence to the path 
manifold critically depend upon initial conditions and 
path/trajectory properties. Initial conditions in immediate 
proximity to the target are limited by curvature constraints, 
but this can be easily resolved by providing intermediate 
target configurations within allowable regions. We then 
demonstrate that this time invariant controller provides 
smooth bounded commands for motion control tasks given 
allowable initial conditions and constrained path/trajectory 
properties.   

In previous research [2], a kinematic controller was 
derived in polar representation using the path manifold and 
Lyapunov based techniques. However, this controller 
becomes singular for some particular initial conditions, which 
should be avoided. This research presents a new path 
manifold based controller that resolves this singularity issue. 
Thus, a major contribution of this paper is a nonsingular 
kinematic motion controller that solves all three motion 
control tasks while considering curvature limitations given 
allowable initial conditions.  

In Sec. II we compare our contributions to existing work. 
The general kinematics are derived in Sec. III. The path 
manifold is presented in Sec. IV and combined with 
Lyapunov functions to derive the control law in Sec. V. The 
control strategy is evaluated and discussed in Sec. VI. 
Concluding remarks are in Sec. VIII. 

II. BACKGROUND 
Kinematic control of mobile robotic systems has received a 

great deal of attention in recent years and many motion 
control schemes have been proposed to consider their 
nonholonomic constraints. Traditionally, Cartesian 
coordinates have been used to model and control mobile 
robots [3, 4], but these efforts have resulted in discontinuous 
or time varying control laws. This is because a smooth time 
invariant control law cannot be realized to stabilize 
nonholonomic robots in Cartesian coordinates as proven by 
Brockett [5].  

It is important to note that Brockett’s theorem [5] requires a 
system to be continuous in a neighborhood of the equilibrium 
point. Thus, by introducing discontinuity in the equilibrium 
point with a polar coordinate system, Brockett’s theorem 
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cannot be applied and a smooth time invariant control law is 
allowed [6, 7]. Polar coordinates were applied to derive 
smooth and globally stabilizing state feedback control laws [7, 
8]. Singularity occurs at the origin in the polar coordinate 
system. Singularity issues can be avoided by appropriately 
selecting initial conditions or intermediate points, or by 
applying a simple state feedback control law to make the 
closed loop system nonsingular [8]. Thus, the polar 
representation has been frequently adopted for posture 
regulation. 

Path curvature is generally an issue for mobile robots given 
steering restrictions determined by mechanical design and 
traction limitations [9]. As shown in Fig. 1, it is assumed that 
permissible steering paths are restricted. Actuators likewise 
possess limited capabilities and realizable wheel velocity is 
restricted. Furthermore, excessive velocity commands may 
cause wheel slip, large path curvature, or excessive traction 
forces. Thus, saturation functions have typically been used to 
provide bounded velocity inputs in motion control. However, 
curvature constraints cannot be satisfied by simply saturating 
velocities. Further, velocity and curvature constraints have 
been considered by using saturation and designing control 
gains, respectively, for posture regulation [10]. However, 
aforementioned research does not provide path following or 
trajectory tracking capability.  

In contrast to motion control, appreciable motion planning 
research has considered physical constraints on velocity and 
path curvature to provide feasible references [11]. In 
particular, arcs or circles have popularly been applied to 
construct a path due to their simplicity and bounded curvature 
[12]. Most notably, though, we consider these constraints in 
kinematic motion control as opposed to path planning.  This 
helps to assure that the robot does not violate physical 
constraints while converging to its reference, as opposed to 
motion planning that focuses on assuring that the path itself is 
mindful of constraints.   

The path manifold is a smooth path that a robot posture can 
be regulated along while satisfying curvature constraints. The 
path manifold has similarity to the sliding surface in sliding 
mode control in that the system variables converge to the 
equilibrium point along this manifold using a controller 
derived using Lyapunov based techniques. However, this 
research proposes a smooth and continuous kinematic 
controller based on ideal kinematics without the switching 
characteristic of sliding mode control. Thus, our kinematic 
controller provides smooth velocity references that can be 
used as inputs to a dynamic controller [1]. Sliding mode 
controllers have been used previously in dynamic motion 
controllers, but these have been used to track ideal velocity 
commands provided by kinematic motion controllers [13] and 
to track gradient lines of a potential field for obstacle 
avoidance [14].  

The path manifold also provides uniform coordinates for 
the primary motion control tasks in error coordinates. 

Previously, we demonstrated the path manifold concept in [2] 
to realize bounded path curvature in the primary motion 
control problems with a single control law. However, the 
subsequently derived controller should be modified slightly 
to remove unacceptable singularities. In this research a new 
controller is derived to resolve this singularity issue using a 
new Lyapunov function and the path manifold. As a result, 
the controller presented here eliminates potential singularity 
caused by some particular initial conditions. Further, the 
controller expression is simpler, which reduces required 
computational loads. 

III. KINEMATIC MODEL 
In this section general kinematics of a unicycle type robot 

are presented based upon the polar representation. To 
consider the primary motion control tasks simultaneously, the 
reference posture is denoted using the reference frame R, Fig. 
2. Note that the reference frame R represents a virtual 
reference posture such that it may describe the primary 
motion control tasks simultaneously. For posture regulation, 
the frame R is fixed in the global frame G. For path following, 
the frame R moves along a predefined geometric path 
consisting of the locus of positions and orientations. Arbitrary, 
but bounded, velocities can thus be chosen for the reference. 

 
Fig. 1. Permissible forward paths and convergent paths of a mobile robot with 

respect to the path curvature. 

 
Fig. 2. Kinematics of a unicycle type mobile robot. 
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Further, for trajectory tracking, both trajectories of the frame 
R and the desired path are identically parameterized by time 
such that velocities are specified at each position. Thus, by 
simply modifying reference velocity expressions, the 
trajectory tracking controller may easily solve all primary 
motion control tasks. The reference posture is described using 
a virtual robot that inherits kinematics of the real robot such 
that it provides reference paths or trajectories that the robot 
can follow.  

Using the polar representation relative to posture O, Fig. 2, 
the kinematics can be written in error coordinates, 

 

cos cos
sin sin

sin sin  

r

r r

r

e v v

v v
e e

v v
e e

α θ
α θθ φ

α θα φ

= − +

= − −
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where the angular velocity of point O can be described as a 
function of the path curvature, κ, and the linear velocity, v, 
such that vφ κ= . Likewise, the reference angular velocity is 

expressed as r r rvφ κ= . The error states in polar 
representation are defined as, 
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2 ( ), ( )
r r

r r r
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where x and y are the Cartesian coordinates of a moving 
coordinate frame attached to the point O. A reference position 
(xr, yr) is attached to the moving frame R to describe its 
location relative to the global frame G. The variable v 
represents the velocity of the coordinate frame O moving in a 
heading φ relative to the global frame G. The subscript r 
denotes the reference frame. Thus, vr and φr are the reference 
velocity and the reference heading angle of the coordinate 
frame R, respectively. In this research, we focus on forward 
motion along smooth paths such that vr≥0.  

The path following and trajectory tracking problems can be 
solved by applying traditional nonlinear techniques to (1). 
However, traditional tracking controllers lack the ability to 
stabilize the robot to the desired posture when the reference 
coordinates are fixed (i.e. posture regulation). For this reason, 
posture regulation and reference tracking have traditionally 
been considered as different problems. However, these 
motion control problems can be solved simultaneously by 
using a path manifold that guides robot motion to the posture 
or target along a smooth path while satisfying curvature 
limitations.  

IV. THE PATH MANIFOLD 
The path manifold specifies path shape during 

convergence to a desired posture or trajectory. In this 
research a circular path manifold is defined to satisfy 

curvature constraints. The path manifold is then applied to the 
kinematic equations to derive velocity expressions that assure 
stabilization along the manifold.  

To realize a circular path manifold, Fig. 3, position and 
angle conditions are derived first. Position error in the 
coordinate frame of the reference is determined by, 

 ˆ ˆ ˆ ˆ ˆ ˆsin 2 ,  cos 2e r e rx x x r y y y r rθ θ= − = = − = −  , (3) 

where r is the radius of the circular path manifold. Applying 
(3) to the error definition (2), the position e is defined as, 

2 2( sin 2 ) ( cos 2 )  = 2 1 cos 2e r r r rθ θ θ= + − −  where 
requirements for θ can be deduced from Fig. 3. Note that the 
velocity vector v and reference velocity vector vr are tangent 
to Circles I and II. The position error vector e bisects the 
angle between v and vr such that the angle α  is equal and 
opposite of θ on the manifold. Denoting 1 cos 2 0η θ= − ≥ , 
the circular path manifold is thus,  

 2 ,  e rη α θ= = − . (4) 

Several features of the circular path manifold are noted.  
First, since the path manifold is tangential to the ˆ

rX  axis, this 
results in θ = α = 0 at the reference origin. Second, 
considering curvature constraints, we also have r≥rmin=1/κmax. 
In particular, we choose r=1/κmax in this paper to demonstrate 
steering capability using maximum curvature. Finally, the 
circular path manifold selected depends upon initial 
orientation, θ(0): Circle I for 0 ≤ θ(0) ≤ π and Circle II for −π 
≤ θ(0) < 0, Fig. 3. Thus, paths generated by Circles I and II 
are symmetric with respect to the ˆ

rX axis since Circles I and 
II are so.  

We now show that velocities can be calculated to assure 
convergence of the error state equations (1) along the path 
manifold. Differentiating (4) and comparing with (1), 
velocity expressions are,   

 2 | |,  2r rv v r θ φ θ φ= + = + , (5) 

which provides stabilization along the path manifold given vr 
and rφ . Thus, these velocities drive the robot to the origin 
along a circular path such that (e, θ, α) converge to zero. 

 
Fig. 3. Curvature based approach using a circular path manifold. 
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Once at the origin, (5) gives rv v=  and rφ φ=  such that 

e =θ =α = 0. The origin of the error coordinates is thus an 
equilibrium point for trajectory tracking and path following 
as well as posture regulation. 

V. CONTROL LAW  
We now derive a motion controller that will drive the robot 

to the path manifold, which then steers the error coordinates 
to their origin. As a result, the robot is driven to a small 
neighborhood of the desired posture, path, or trajectory in 
finite time. Initial conditions are then discussed considering 
curvature constraints.   

A. Lyapunov based control design  
Lyapunov based techniques are used in Theorem 1 to 

derive a motion controller driving the robot along the path 
manifold to the origin of the error coordinates. Similar to 
sliding mode control techniques, a state feedback control law 
is derived to steer the system (1) to the path manifold (4) 
where z1=0 and z2=0 by denoting,  

 1 22 ,  z e r zη θ α= − = + . (6) 

Once the robot reaches the path manifold, the path manifold 
guarantees stabilization of the robot to the origin of the error 
coordinates.  

 
Theorem 1 The following control law asymptotically 
converges z1, z2, and states in M={(e,θ, α)∈R3| e>0} to zero,  

 1 1tanh cosrv k z v θ= +  (7) 

 2 2tanh 2  rv k zφ κ θ φ= = + + , (8) 

where k1 and k2 are positive control gains that determine 
maximum convergence rates.  
Proof: First, define quadratic Lyapunov candidate functions, 

 2 2
1 2 1 1 2 2

1 1 ;     ,  
2 2

V V V V z V z= + ≡ ≡ . (9) 

Applying (7) and (8), the time derivatives of V1 and V2 are 
then,  

 1 1 1 1 1 1 1tanh( ) ( , , )V z z k z z z f e θ α= = − +  (10) 

 ( )2 2 2 2 2 2 2(2 ) tanh 0rV z z z k z zθ φ φ= = + − = − ≤ , (11) 

where ( ) 2 sin(2 )1 cos( ) rf v θα θ
η

= − − .  

Since 2V  is negative definite, z2→0 (i.e., α+θ→0) as t→∞. 
Further, α and θ asymptotically converge to zero 
simultaneously by the controller (8) (see Corollary 1 in 
Appendix) such that f →0. Thus, 1V  converges to a negative 
definite function, 1 1 1tanh( )k z z− , which drives z1 to zero. 
Since z1→0, z2→0, and α→-θ →0 as t→∞, we finally have 
e→ 2rη →0 as t→∞ per (6).            ■ 

Further, exponential local convergence is achieved in a 
small neighborhood of the equilibrium point (see Corollary 2 
in Appendix). Notice that tanh functions are implemented to 
resolve the common problem of excessive velocity 
commands given large initial conditions.  

To summarize, by applying the controller (7) and (8) to the 
system (1), we have ( , , )e θ α → (0,0,0), ( , , )e θ α → (0,0,0), 

rv v→ , and rφ φ→  (i.e. κ → κr) as t →∞, which assures 
tracking, regulation, and path following capability.  

B. Dependence on Initial Conditions 
Due to fundamental path geometry constraints, allowable 

initial conditions must be considered to assure that curvature 
bounds are satisfied during convergence to the path manifold. 
Initial conditions are divided into three zones, Fig. 4, based 
upon the path manifold using r=1/κmax.  Zone 3 is the interior 
of the circle defined by κmax and the path must violate 
curvature constraints in order to asymptotically converge to 
the path manifold. Note that the robot cannot compensate for 
distance errors for z1(0)=0 in posture regulation where vr=0 
since we have v=0 per (7). Thus, z1(0)>0 is necessary to 
ensure forward motion and satisfy the curvature constraint of 
the actual robot during convergence to the path manifold. In 
Zone 2, the curvature constraint is violated for certain initial 
orientations due to limited steering space. To be guaranteed to 
satisfy curvature constraints for any initial orientation, the 
robot must start in Zone 1. Further, the issue of initial 
conditions found in Zones 2 and 3 can be resolved easily by 
commanding the robot to move into Zone 1 using 
intermediate goal postures. 

VI. CONTROLLER EVALUATION 

A. Methods and Procedures 
Simulations are used to validate the controller’s capability 

to satisfy curvature and velocity constraints. We use vmax=0.5 
m/s and κmax=3 m-1 for physical constraints. Control gains are 
then determined to satisfy physical constraints similarly to 

 
Fig. 4. Limitation on initial positions of a mobile robot in the error 
coordinates based upon maximum path curvature, r=1/κmax=0.34 m. 
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[2]; k1=vmax-vdes and k2=(vmaxκmax-vdesκdes)tanh(1/z1(0)). Since 
initial values of v and κ specified by (7) and (8) rarely match 
those of the robot, the controller dynamics are extended in a 
cascade fashion per Bacciotti Theorem 19.2 [15].  

Simulation results of posture regulation and trajectory 
tracking are presented here since they are more common and 
difficult problems. Since reference path or trajectory 
generation is not the focus of this research, we implement 
typical simple paths with constant curvature [12] for 
trajectory tracking; rx = vdescos(φr(t)), ry = vdessin(φr(t)), and 

( )r tφ = vdesκdes where xr(0)= yr(0)= 0 m. Note that path 
following uses a time independent reference path whereas a 
path in trajectory tracking is time dependent as mentioned in 
Sec. III. Thus, trajectory tracking can easily solve path 
following modifying references. It is also worth while to note 
that in path following path convergence is typically slower 
and velocity commands are lower compared to trajectory 
tracking.  

B. Results and Discussion 
Posture regulation is shown in Fig. 5 and eight different 

initial orientations with e(0)=2 m are considered. These 
results show that trajectory paths are smooth and only 
forward velocity is required. Note that these trajectory paths 
are symmetric with respect to the x-axis since our path 
manifold is so as mentioned in IV. In order to illustrate states 
and control inputs, we choose a worst case, θ(0)= π, where 
largest control inputs are commanded among given initial 
conditions. Fig. 5 (b) shows that z2 converges to zero 
asymptotically and quickly. As a result, all other states 

simultaneously reach to a small neighborhood of the origin in 
finite time as proven in Theorem 1 and Corollary 1. Fig. 5 (c) 
also verifies that velocity and curvature commands satisfy our 
physical constraints, vmax=0.5 m/s and κmax=3 m-1.  

Similarly, Fig. 6 shows trajectory paths, states, and control 
inputs in trajectory tracking for three different initial 
conditions: Q1, Q2, and Q3.  These results also verify that all 
states converge to zero as designed. Velocity and curvature 
commands are well bounded and track reference commands. 
Similar to [2], the proposed controller can easily be 
implemented on actual robots, and controller performance in 
simulation and experiment is almost similar given a high 
traction surface such as carpet. Further, future work should 
focus on planning reference paths and trajectories in order to 
consider available steering space and obstacles in real 
environments.  

VII. CONCLUSIONS 
A new kinematic motion controller is derived using a 

circular path manifold and Lyapunov based techniques. 
Allowable initial conditions are estimated considering 
curvature limitations. The proposed controller solves primary 
motion control problems while satisfying physical constraints 
given allowable initial conditions. Our simulation results 
verify that control inputs are bounded and paths are smooth.  

APPENDIX 
Corollary 1 The control law (7) and (8) stabilize the closed 
loop system to the origin of the polar error coordinate system 
along the path manifold. 
Proof: Let α=(z3-1)θ where z3∈R1, we have,  

 z2= z3θ . (12) 

Differentiating (12) and substituting into (11), we have,   

-2 -1 0 1 2

-2

-1

0

1

2

x (m)

y 
(m

)

θ(0)>0
θ(0)<=0

Initial Position
Final Position

Path manifold

 
(a) Trajectory paths of posture regulation 

0 10 20 30 40
-2
-1
0
1
2
3
4
5
6
7

S
ta

te
s

Time (sec)

z1
z2
e
θ
α

0 10 20 30 40
-1.5
-1

-0.5
0

0.5
1

1.5
2

C
on

tro
l i

np
ut

s

Time (sec)

Velocity v (m/s)
Curvature κ (m-1)

 
(b) States θ(0)=π rad     (c) Control inputs θ(0)=π rad 

Fig. 5. Posture regulation, IC: e(0)=2 m, θ(0)=α(0)=±nπ/4 rad (n=0,1,2,3,4). 
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Fig. 6. Trajectory Tracking: vdes=0.1 m/s, κdes=1 m-1, IC [e(0), θ(0), α(0)]:Q1= 
[0.5 m, -π/12 rad, 0], Q2 = [0.5 m, 0, 0], Q3= [0.5 m, π/12 rad, 0]. 

2531



  

( )2 2
2 2 3 3 3 3 3 2 2 2( ) tanh 0V z z z z z z k z zθ θ θ θθ= + = + = − ≤ .(13) 

In order to provide a unique equilibrium point, we define 
S={e>0, θ∈[-π,π], α∈[-π,π]} ⊂ M. Then, define Lyapunov 
functions to show the stabilization of θ to zero in S,  

 2 2
3 3 4

1 1, 
2 2

V z V θ= = . (14) 

First, consider Case i) where θ ≠0 in S where t≥0. Note that z2 
and θ are bounded such that z3, 3z , and θ  are bounded 
according to (11) - (13). Also note that z2 asymptotically 
converges to zero by Theorem 1 for any θ and α for t≥0, and 
by (12) z3=0 if and only if z2=0 for all θ ≠0. In order for (13) to 
be true for any non-zero θ , z2, and z3, it must be true that 

3 3 3V z z= <0 and 4V θθ= <0. Further, since z2→0 as t→∞, it 

is easily verified that 3V →0- and 4V →0- such that θ and z3 
asymptotically approach zero.  

Now consider two other cases where θ =0. In Case ii) 
where z3 is bounded (i.e. |z3|<∞), it must be true from (12) that 
z2=0 and boundedness of  3z  is shown by (13). As a results 

we have 2
3 3z zθ  =0. Thus, (13) becomes 

( )2
3 2 2 2tanhz k z zθθ = − , which can be rewritten as, 

 
( ) ( )2

2 2 2 2 2
4 2

23

tanh tanhk z z k z
V

zz
θ

θθ
− −

= = =  (15) 

Applying z2=0 and θ =0 to (15), by L’Hopital’s rule, we have,  

 
( )

22

22 2
04 2 20 000 2

tanh
lim 0
zz

z
V k k

zθ θ θ
θ θ= = =→=

= − ⋅ = − =  (16) 

Further, in Case iii) consider θ =0 and unbounded z3 (i.e. 
z3=±∞), it is verified that 2

3 3z zθ  and 2
3z θθ  must be bounded 

to satisfy (13). As a result, in conjunction with Case ii), 

4V θθ= =0 must always be true when θ =0. Summarizing the 

aforementioned cases, it is shown that 4V <0 for θ ≠0 and 

4V =0 for θ =0.  This proves that θ asymptotically converges 
to zero as t→∞.                 ■ 

 
Corollary 2 The origin of the closed loop system is locally 
exponentially stable by the control law (7) and (8).  
Proof: The controller (8) drives α→-θ by Theorem 1 such 
that the system (1) becomes,   
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( ) cos
sin   .

r

r r

e v v

v v
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= − +

= − = − + −
 (17) 

The following must be true near the equilibrium point per 
(17),  

 
2

,  sinr
r

r

v
v v e θ

φ
→ → − .  (18) 

Applying (18) to the control law (7) and (8), and linearizing 
near the origin, we have, 

 1

2 1

 

( ) 2 .
r

r

v k e v

k kφ θ α α φ

= +

= + + +
 (19) 

Further, applying (19) to (1) and linearizing, we then have,  

 
1

1 1

2 1 2 1( )

e k e

k k
k k k k

θ α θ
α θ α α

= −

= = −
= − − + = −

, (20) 

which proves that the control law provides local exponential 
stability if k1>0.                  ■ 
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