
Optimal Trajectory Generation for Nonholonomic Robots in Dynamic

Environments

Yi Guo and Tang Tang

Abstract— We study optimal trajectory generation for non-
holonomic mobile robots in the presence of moving obstacles.
The trajectory is presented by a parameterized higher-order
polynomial and is feasible for car-like robots whose motion
is nonholonomic. An optimal performance index is set up so
that the parameterized trajectory stays close to the shortest
straight-line path. Combining with the collision avoidance
criterion, optimal collision-free trajectory can be generated real
time as the solution is expressed in its closed-form. We show
Matlab simulation results to demonstrate the performance of
the trajectories.

I. INTRODUCTION

Motion planning for car-like robots in dynamic environ-

ments is an inherently difficult problem. First, the paths

have to be physically feasible and meet the nonholonomic

constraint; and second, the generation of the path has to be

real time to avoid moving obstacles. Trajectory generation

for nonholonomic systems are discussed in many references

including [1], [2], where trajectories are represented by

sinusoidal, polynomial, or piecewise constant functions. In

[3], quintic G2 splines (splines with second-order geomet-

ric continuity) are constructed. Obstacle avoidance is not

considered in the above work. On the other hand, many

collision avoidance work (for example, [4], [5], [6], [7]) uses

computational methods (such as A∗ or D∗) whose real time

performance may be constrained. More recently, analytic

solutions of trajectory generation with moving obstacles are

presented in [8], where parameterized polynomial trajectory

is generated and collision avoidance criterion is developed

based on it. The results of [8] meet the requirement of real

time performance and apply to nonholonomic robots. Our

paper is along the same line of the work [8] with a different

sets of parameterized polynomial trajectories that are easier

to incorporate into a global motion planning framework [9].

In our early paper [9], we presented a global trajectory

generation method for nonholonomic robots in environments

with moving obstacles. The method combines global path

planning which generates global way-points with regional

trajectory generation. Regional polynomial trajectories are

feasible and represented in analytic solutions satisfying col-

lision avoidance criterion. The polynomial trajectories pre-

sented are parameterized and have the flexibility for detour to

avoid potential collisions. The current paper is a sequential

work of [9], and we discuss the optimization problem for

the parameterized polynomial trajectories. We minimize a

Yi Guo and Tang Tang are with the Department of Electrical and Com-
puter Engineering, Stevens Institute of Technology, Hoboken, NJ 07030.
yguo1@stevens.edu, ttang1@stevens.edu

performance index that is related to the area between our

parametric trajectory and the shortest straight-line path, so

that the long and unnecessary detour is avoided. We present

optimal trajectory generation with and without obstacles.

Collision avoidance criterion is incorporated so that moving

obstacles can be avoided. Since closed-form solutions are

developed, the trajectories can be generated real time without

expensive computational cost. We show simulation results

that verify the efficiency of the method.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a car-like mobile robot shown in Figure 1. The

front wheels of the mobile robot are steering wheels and

the rear wheels are driving wheels with a fixed forward

orientation. The kinematic model of the mobile robot can

be written as

ẋ
ẏ

θ̇

φ̇

=

cos θ
sin θ

tan φ/l
0

u1 +

0
0
0
1

u2 (1)

where q = [x, y, θ, φ]T is the system state, (x, y) represents

the Cartesian coordinates of the middle point of the rear

wheel axle, θ is the orientation of the robot body with

respect to the X-axis, φ is the steering angle; l is the

distance between the front and rear wheel-axle centers, u 1

is the driving velocity, and u2 is the steering velocity. φ ∈
(−π/2, π/2) due to the structure constraint of the robot.

X

Y

θ

φ

l

x

y

real wheels

front wheels

Fig. 1. A car-like robot.

We make the following assumptions on the robots and its

environment.

Assumption 1: The robot is represented by a circle with

the center at O(t) = (x(t), y(t)) and of radius R. Corre-

sponding to the physical model shown in Figure 1, O(t) is

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2552

the reference point of the robot, and R is the radius of the

minimum circle to bound the robot. The robot can locate

itself.

Assumption 2: The robot has onboard sensors that detect

the positions and velocities of obstacles. Specifically, at each

sensor sampling time, kTs (k = 1, 2, . . .), the robot detects

the ith object centered at Oi(t) = (xo
i (t), y

o
i (t)) and of radius

ri with velocity vector vi(t)within its sensor range.

An illustration of the configuration of the robot and

obstacles is shown in Figure 2.

Fig. 2. Robot and obstacle configuration.

The problem we are going to solve is presented as below:

Given Assumptions 1 and 2, find a feasible optimal trajec-

tory between two points O0 = (x0, y0) and Of = (xf , yf)
from the initial time t0 to the final time tf , so that moving

obstacles detected by the robot are avoided.

In the above statement, “feasible trajectories” are defined

to be smooth trajectories satisfying a given set of boundary

conditions. We will discuss optimal trajectory generation

(without obstacles) in the next section. Then, we will present

optimal trajectory generation with obstacles in the following

section.

III. OPTIMAL TRAJECTORY GENERATION

A. Parameterized Trajectory Generation

In [9], we proposed a parametric trajectory generation

method that uses a sixth-order polynomial to represent the

trajectory between two points O0 = (x0, y0) and Of =
(xf , yf). Designating t0, tf as the initial and final time to

get from O0 to Of , the trajectory is described as a function

of t:

x(t) =
[

c0 c1 c2 c3 c4 c5 c6

]

f(t)

y(t) =
[

d0 d1 d2 d3 d4 d5 d6

]

f(t) (2)

where

f(t) =
[

1 t t2 t3 t4 t5 t6
]T

, (3)

and c0, c1, . . . , c6, d0, . . . , d6 are constants.

For a set of given boundary conditions (with the initial

time, t0, and the final time, tf , both given):
(

x0, y0,
dx

dt

∣

∣

∣

∣

t0

,
dy

dt

∣

∣

∣

∣

t0

,
d2x

dt2

∣

∣

∣

∣

t0

,
d2y

dt2

∣

∣

∣

∣

t0

,

xf , yf ,
dx

dt

∣

∣

∣

∣

tf

,
dy

dt

∣

∣

∣

∣

tf

,
d2x

dt2

∣

∣

∣

∣

tf

,
d2y

dt2

∣

∣

∣

∣

tf

)

, (4)

if we represent the constant parameters c0, . . . , c5 and

d0, . . . , d5 using c6, d6 respectively, we get the trajectory as

a function of design parameters c6, d6:

x(t) =

[

G−1(E − Hc6)
c6

]T

f(t)

y(t) =

[

G−1(F − Hd6)
d6

]T

f(t) (5)

where

G =

1 t0 t20 t30 t40 t50
1 tf t2f t3f t4f t5f
0 1 2t0 3t20 4t30 5t40
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6t0 12t20 20t30
0 0 2 6tf 12t2f 20t3f

E =

[

x0 xf

dx

dt

∣

∣

∣

∣

t0

dx

dt

∣

∣

∣

∣

tf

d2x

dt2

∣

∣

∣

∣

t0

d2x

dt2

∣

∣

∣

∣

tf

]T

F =

[

y0 yf

dy

dt

∣

∣

∣

∣

t0

dy

dt

∣

∣

∣

∣

tf

d2y

dt2

∣

∣

∣

∣

t0

d2y

dt2

∣

∣

∣

∣

tf

]T

H =
[

t60 t6f 6t50 6t5f 30t40 30t4f
]T

(6)

The parametric trajectory (5) provides flexibility in de-

signing optimal and collision-avoidance paths by changing

the values of c6 and d6, and the steering control u1 and

u2 are explicitly constructed in [9]. In the next subsection,

we design optimal trajectory generation based on the above

framework, and then in Section IV, we discuss obstacle-

avoidance trajectories.

B. Optimal Trajectory Generation Without Obstacles

The strategy to avoid the long detour of paths is to obtain

the shortest path between start point and end point [10].

The shortest path without constraints is the beeline between

them, called ‘initial straight line’.We can treat the straight

line as reference line, and make the robot trajectories to be

close to the reference line. For this purpose, we choose the

performance index as :

Jk =

∫ tf

t0+kTs

∣

∣

∣

∣

y(t) −
yf − y0

xf − x0
(x(t) − xk) − yk

∣

∣

∣

∣

dx

(7)

where Ts is the sensor sampling time and k = 1, 2, The

optimization problem is to make smallest the closure area

enclosed by the feasible trajectories and the initial straight

line, which makes sure the trajectory stays close to the initial

2553

straight line. Due to the difficulty in determining the sign of

[y −
yf−y0

xf−x0

(x(t) − xk) − yk], an optimal analytic solution

based on (7) is difficult to obtain.

Motivated by the way of least square used in linear

regression and variance analysis in statistics, we formulate

the performance index as:

Jk =

∫ tf

t0+kTs

[y(t) −
yf − y0

xf − x0
(x(t) − xk) − yk]2dx

(8)

The performance index is an integration to the square of the

vertical coordinate difference between the class of parameter-

ized trajectories and the initial straight line. Then the optimal

problem is to minimize (8) subject to boundary conditions.

This performance index can make the trajectory stay close

to the initial straight line. In the following, we provide an

analytical solution to the optimal trajectory.

Define

f̄(t) =
[

1 t t2 t3 t4 t5
]T

, (9)

then

f̄
′

(t) = [0 1 2t 3t2 4t3 5t4]T . (10)

From (5), we get:

dx(t) = {(G−1E)T f̄
′

(t) + [−(G−1H)T f̄
′

(t) + 6t5] c6}

dt (11)

Rewrite x(t) and y(t) as

x(t) = h1f̄(t) + h3c6

y(t) = h2f̄(t) + h3d6 (12)

where

h1 = (G−1E)T

h2 = (G−1F)T

h3 = [−(G−1H)T 1]

[

f̄(t)
t6

]

(13)

Let d6 be a free-chosen variable, we have:

Jk =

∫ tf

t0+kTs

[h3d6 + h4]
2h5dt (14)

where

h4 = −vh3c6 + h2f̄(t) − vh1f̄(t) + vxk − yk

h5 = h1f̄
′

(t) + dh3c6

v =
yf − y0

xf − x0

dh3 = [−(G−1H)T 1]

[

f̄
′

(t)
6t5

]

(15)

Let

f1 =

∫ tf

t0+kTs

h2
3h5dt

f2 = 2

∫ tf

t0+kTs

h3h4h5dt

f3 =

∫ tf

t0+kTs

h2
4h5dt (16)

If c6 is known, Jk is a second order polynomial of d6:

Jk = f1d
2
6 + f2d6 + f3, (17)

whose minimal value is achieved when:

d6 = −
f2

2f1
(18)

Similarly, if d6 is known and c6 is free-chosen, we obtain

Jk =

∫ tf

t0+kTs

[h6c6 + h7]
2(h8c6 + h9)dt (19)

where

h6 = −vh3

h7 = h3d6 + h2f̄(t) − vh1f̄(t) + vxk − yk

h8 = dh3

h9 = h1f̄
′

(t) (20)

Let

I1 =

∫ tf

t0+kTs

h2
6h8dt

I2 = 2

∫ tf

t0+kTs

(h2
6h9 + 2h6h7h8)dt

I3 = 2

∫ tf

t0+kTs

(h2
7h8 + 2h6h7h9)dt

I4 =

∫ tf

t0+kTs

h2
7h9dt (21)

we obtain:

Jk = I1c
3
6 + I2c

2
6 + I3c6 + I4 (22)

After integration from t0 to tf , we get I1 = 0. So if we know

the value of d6, we can also get a second order polynomial

of c6, whose minimal value is achieved when:

c6 = −
I3

2I2
(23)

IV. OPTIMAL COLLISION AVOIDANCE WITH

MOVING OBSTACLES

In [9], we developed collision avoidance criterion for

moving obstacles. To make the paper self-contained, we first

present the collision avoidance criterion, and then discuss its

optimization.

A. Collision Avoidance Criterion

Assume that the robot detects moving obstacles at time

t0 + kTs centered at Ok
i = [xk

i , yk
i] with velocity vk

i =
[vk

ix, vk
iy], where Ts is the sampling time of robot sensors.

The collision avoidance criterion is to ensure that the future

trajectory x(t), y(t) for t ∈ [t0 + kTs, tf] does not collide

with the obstacle. Note that the relative velocity between

the robot and the obstacle is [ẋ − vk
ix, ẏ − vk

iy]. Taking

the obstacle as “static”, to avoid collision, whenever x ′ ∈
[xk

i − ri −R, xk
i + ri + R], the distance between the centers

of the robot and the obstacle must satisfy:

(

x′(t) − xk
i

)2
+

(

y′(t) − yk
i

)2
≥ (ri + R)2 (24)

2554

where x′(t) = x(t) − vk
ixτ, y′(t) = y(t) − vk

iyτ (relative

position of the robot with respect to the “static” obstacle),

τ = t − (t0 + kTs), and t ∈ [t0 + kTs, tf]. Note that if

x′ /∈ [xk
i − ri − R, xk

i + ri + R], there won’t be a collision.

An illustration of the collision avoidance scheme is shown

in Figure 3.

Fig. 3. Relative distance between the robot and the moving obstacle.

Substituting the trajectory expression (5) into (24), sim-

plifying and reorganizing it, we obtain a second-order poly-

nomial inequality in terms of c6, d6 as follows:

min
t∈[t0+kTs,tf]

g2(t)c
2
6 + g1(t, τ)c6 + g0(t, τ) + h2(t)d

2
6

+h1(t, τ)d6 + h0(t, τ)|τ=t−(t0+kTs)

−(ri + R)2 ≥ 0 (25)

where

g2(t) = (t6 − f̄G−1H)2

g1(t, τ) = 2(t6 − f̄G−1H)(f̄G−1E − vk
ixτ − xk

i)

g0(t, τ) = (f̄G−1E − vk
ixτ − xk

i)2

f̄ =
[

1 t t2 t3 t4 t5
]

,

h2(t) = g2(t) = (t6 − f̄G−1H)2

h1(t, τ) = 2(t6 − f̄G−1H)(f̄G−1F − vk
iyτ − yk

i)

h0(t, τ) = (f̄G−1F − vk
iyτ − yk

i)2 (26)

We can now choose the design parameters c6, d6 to satisfy

(25). Let c6 = 0, since h2 is positive, the following second-

order polynomial in terms of d6 has always solutions:

min
t∈[t0+kTs,tf]

h2(t)d
2
6 + h1(t, τ)d6

+[g0(t, τ) + h0(t, τ) − (ri + R)2]
∣

∣

τ=t−(t0+kTs)
≥ 0.

(27)

Similarly, let d6 = 0, we can get a set of values for c6 to

satisfy the collision avoidance criterion by solving

min
t∈[t0+kTs,tf]

g2(t)c
2
6 + g1(t, τ)c6

+[g0(t, τ) + h0(t, τ) − (ri + R)2]
∣

∣

τ=t−(t0+kTs)
≥ 0.

(28)

Since (27) and (28) are second-order inequalities with co-

efficients of the second-order term positive, solutions always

exist and are obtainable analytically. Note that the above

process is iterated at every sampling time for k = 1, 2, . . .
within (t0+kTs, tf), so that all sensed obstacles are avoided.

B. Optimal Collision Avoidance

Based on the collision avoidance criterion presented above,

we apply the optimal trajectory framework in Section III-B.

We choose the values of c6 or d6 that are closest to the

optimal values and also in the range for collision avoidance.

That is, if the collision avoidance criterion generates a range

of values for c6 to be A = {(−∞, c6) ∪ (c6,∞)}, then we

choose the c6 ∈ A to yield min ‖c6−copt
6 ‖, where copt

6 is the

optimal c6 generated using the optimal trajectory generation

method presented in Section III-B. The reason for this choice

is due to the parabolic function of c6 in (22), which implies

that closer c6 is to copt
6 , smaller Jk is.

The procedure to obtain the optimal trajectory with colli-

sion avoidance is summarized in the following:

• For the given boundary condition (4) and the initial time

t0 and the final time tf , represent the trajectory by (5);

• Set d6 = 0, use the optimal trajectory generation

method of Section III-B (the equation (23)) to generate

the optimal value copt
6 ;

• Use the collision avoidance criterion (28) to find the

range of values for c6: A = {(−∞, c6) ∪ (c6,∞)};

• Find the optimal c∗6 with collision avoidance to yield

min ‖c6 − copt
6 ‖;

• Set c6 = 0, use the optimal trajectory generation method

of Section III-B (the equation (18)) to generate the

optimal value dopt
6 ;

• Use the collision avoidance criterion (27) to find the

range of values for d6: B = {(−∞, d6) ∪ (d6,∞)};

• Find the optimal d∗

6 with collision avoidance to yield

min ‖d6 − dopt
6 ‖;

• Substitute c∗6 into (22) to get Jk(c∗6), and substitute

d∗6 into (17) to get Jk(d∗6); if Jk(c∗6) < Jk(d∗6), use

(c6, d6) = (c∗6, 0) to compute the optimal collision-free

trajectory (5); otherwise, use (c6, d6) = (0, d∗6).

Note that the optimal criterion we use is to minimize a

performance index that is related to the area between the

trajectory and the straight-line connecting the start and the

goal points. The optimal trajectory may have more turns.

Also, since we optimize one parameter while fixing the other,

the method does not provide a global optimized solution,

which is computational expensive and may not be practically

applicable.

2555

V. SIMULATION RESULTS

We have performed Matlab simulations to generate op-

timal collision-free trajectory. Figure 4 shows an optimal

collision-free trajectory with two obstacles moving with con-

stant velocities. The parameters we used are: R = 0.3, r =
0.1, l = 0.2, and the sensor range is 15. The starting positions

of two obstacles O1 and O2 are (2, 8.5), (5.5, 14), and their

velocities are Vx = 0.3, Vy = −0.4. Both of Obstacle 1

and Obstacle 2 have potential collision with the nominal

trajectory corresponding to (c6, d6) = (0, 0) (Path1 in the

figure). Using the collision avoidance criterion, we get the

range of values for c6 is (−∞,−3.8346×10−5)∪(2.9074×
10−5,∞). Using c6 = 2.9074 × 10−5, the collision-free

path is shown as Path2, the dashdotted line in the figure.

Using the optimal trajectory generation method, we obtain

copt
6 = −1.797 × 10−5. The optimal trajectory is shown as

Path3, the solid line in the figure. But Path3 collides with

the obstacles. Following the procedure presented in Section

IV-B, we choose c∗6 = −3.8346×10−5, which generates the

optimal collision-free trajectory Path4, the solid line with

circles in the figure. We can see that Path4 has short detour

than the non-optimal collision-free path Path2.

In Figure 5, we show the paths generated using two sets

of parameters (c6, d
∗

6) = (0,−2.946 × 10−5) (Path1) and

(c∗6, d6) = (−3.8346 × 10−5, 0) (Path2). We can see that

Path2 has shorter detour than Path1, which is confirmed

by smaller Jk (Jk(c∗6) = 25.47, Jk(d
∗

6) = 124.2). It indicates

that the path generated using c∗6 is optimal.

Note that the method applies to the cases where obstacles

changes their velocities since the trajectory is expressed for

each sensor sampling period in the optimal criterion (7)

and the collision avoidance criterion (25). To illustrate it,

Figure 6 shows an optimal collision avoidance path (the solid

line Path1) that avoids moving obstacles that changes their

velocities. To make a comparison, Path2 and Path3 (the

dashdotted lines in the figure) are collision-free trajectories

without optimization. The parameters used are: when the

robot is at (16, 18.9), its sensor detects the obstacles at

O1 = (2, 8.5) with velocity (vx, vy) = (−0.2, 0.32), and

O2 = (5.5, 14) with velocity (vx, vy) = (−0.1, 0.2); after

three sampling time, the robot detects that O2 changes its

velocity to (vx, vy) = (0.55, 0.12). The trajectory parameter

for Path2 (the non-optimal collision-free path) is (c6, d6) =
(0, 0) and then (0, 5.0895×10−5) after detecting the chang-

ing velocity of O2. The parameter for Path1 (the optimal

collision-free path) is (c6, d6) = (0,−1.512 × 10−6) and

then (0, 6.7359 × 10−6). When the robot is at (33, 19), its

sensor detects the obstacles at O3 = (36, 17) with velocity

(vx, vy) = (0.6,−0.1), and O4 = (38, 18.25) with velocity

(vx, vy) = (0.1, 0.1); and then after three sampling time,

the robot detects that O3 changes its velocity to (0.5, 0.08);
after another two sampling time, the robot detects that O4

changes its velocity to (0.35, 0.15). The trajectory parameter

for Path3 (the non-optimal collision-free path) is (c6, d6) =
(0, 0) and (0,−2.5966× 10−5) after detecting the changing

velocity of O3 and then (0,−2.5966× 10−5) after detecting

the changing velocity of O4. The parameter for Path1 (the

optimal collision-free path) is (c6, d6) = (0,−2.1077×10−7)
and (5.0668× 10−5, 0) after detecting the changing velocity

of O3 and then (0,−2.6096 × 10−5) after detecting the

changing velocity of O4. We can see that the optimal

trajectory is more efficient.

−2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

Path
1

Path
2

Path
3

Path
4

O
1

O
2

Fig. 4. Optimal collision-free trajectory Path4 with comparisons to
optimal path Path3 and collision-free path Path2. O1 and O2 denote
obstacles with constant velocities. Circles are drawn with the same time
interval.

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

O
1

O
2

Path
1

Path
2

Fig. 5. Optimal collision-free trajectories: Path1 is generated by using the
optimal criterion on the parameter d6, and Path2 is by using the optimal
criterion on the parameter c6. Circles are drawn with the same time interval.

VI. CONCLUSIONS

We have studied optimal trajectory generation for car-

like robots in the paper. The robot is assumed to have

onboard sensors that detect the positions and velocities of

moving obstacles within its sensor range. Optimal trajectory

generation methods are presented for both obstacle-free and

2556

0 10 20 30 40 50
0

5

10

15

20

25

Path
1

Path
3

Path
2

O
1

O
2

O
3

O
4

Fig. 6. Global optimal collision-free trajectories. Rectangular blocks denote stationary obstacles. Circles are drawn with the same time interval. Path1

is the optimal collision-free path, and Path2 and Path3 are the non-optimal collision-free paths.

moving-obstacle cases. The optimal trajectory minimizes a

performance index that is related to the area between the

trajectory and the shortest straight-line path. Through the

parameterized polynomial representation, closed-form solu-

tions are found for optimal collision avoidance trajectories.

Simulation results verify our claim.

REFERENCES

[1] R. M. Murray and S. S. Sastry. Nonholonomic motion planning:
steering using sinusoids. IEEE Trans. Automat. Contr., 38:700–716,
1993.

[2] D. Tilbury, R. M. Murray, and S. S. Sastry. Trajectory generation
for the N-trailer problem using goursat normal form. IEEE Trans.

Automat. Contr., 40(5):802–819, 1995.
[3] A. Piazzi, C. G. L. Bianco, M. Bertozzi, A. Fascioli, and A. Broggi.

Quintic G2-splines for the iterative steering of vision-based au-
tonomous vehicles. IEEE Transactions on Intelligent Transportation

Systems, 3(2):27–36, 2002.
[4] M. Erdmann and T. Lozano-Perez. On multiple moving objects.

In Proceedings of IEEE International Conference on Robotics and

Automation, pages 1419–1424, 1986.
[5] K. Kant and S. W. Zucker. Toward efficient trajectory planning: the

path-velocity decomposition. The International Journal of Robotics

Research, 5(3):72–89, 1986.
[6] L. E. Parker. A robot navigation algorithm for moving obstacles.

Master’s thesis, The University of Tennessee, Knoxville, 1988.
[7] Y. Guo and L. E. Parker. A distributed and optimal motion planning

approach for multiple mobile robots. In Proceedings of IEEE Inter-

national Conference on Robotics and Automation, pages 2612–2619,
May 2002.

[8] Z. Qu, J. Wang, and C. E. Plaisted. A new analytical solution to mobile
robot trajectory generation in the presence of moving obstacles. IEEE

Transactions on Robotics, 20(6):978–993, 2004.
[9] Y. Guo, Y. Long, and W. Sheng. Global trajectory generation for

nonholonomic robots in dynamic environments. In Proceedings of

IEEE International Conference on Robotics and Automation, pages
1324–1329, April 2007.

[10] J. Yang, A. Daoui, Z. Qu, J. Wang, and R. A. Hull. An optimal and
real-time solution to parameterized mobile robot trajectories in the
presence of moving obstacles. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 4412–4417, April
2005.

2557

