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Abstract— This paper presents the dynamic analysis of an
artificial muscle actuator designed for high-bandwidth, power-
law strain amplification. The actuator is based on a nested
cellular architecture of PZT stack actuators. Most smart
material actuators have seen limited use in mobile robotic
applications because of their small strain, low stress capacity,
low bandwidth, and stringent input requirements. The proposed
actuator design overcomes these limitations and can serve as a
high-bandwidth multifunctional artificial muscle. The dynamic
characteristics of the actuator design are derived analytically
and validated experimentally. A test system mimicking flapping
flight is then used to illustrate the actuator dynamics.

I. INTRODUCTION

Animals exploit the multi-functional muscle characteris-
tics for energy efficient running, flying, and swimming as
well as for adaptive negotiation of varying environments [1].
Traditional DC and AC motors do not have compliance in
their inherent physical construction. Rather, external springs
and compliant elements must be attached to the electric
motors in order to store strain energy and exhibit flexible
behavior.

The robotics community has been studying a combina-
tion of rigid actuators and springs for nearly four decades.
For manipulation, elastic fingers with built-in springs were
constructed in the 1970’s [2]; Raibert’s hopping robots [3]
exploited coil springs incorporated into hydraulic cylinders
for stable and energy-efficient dynamic locomotion [4];
Cutkosky’s cockroach robots were equipped with tuned vis-
coelastic legs made from a layered manufacturing process
[5]. For flying with flapping wings, compliance character-
istics of the wing structure or of external springs attached
to the robot structure play an important role [6], [7]. In
particular, resonance between the wings and the actuators
allows for energy efficient flying [7], [15]. A number of
effective design concepts have recently been developed in
biologically inspired robots [8], [9], [10], [11].

Existing muscle actuator materials (e.g. shape memory
alloys, conducting polymers, and dielectric elastomers) are
promising for many applications, but they do not possess
the high bandwidth, high compliance, high reliability, or
high efficiency characteristics required for mimicking bi-
ological systems. Piezoelectric actuators such as lead zir-
conate titanate (PZT) have extremely high bandwidth and
high efficiency, which makes them appropriate for mobile
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robot applications [6]. The most critical drawback of PZT,
however, is its extremely small strain of only 0.1 %. This
has limited its application to micro robots and other small
load applications. Numerous strain amplifying mechanisms
have been presented in the literature, for example [12], [14],
but such PZT amplification mechanisms achieve less than
2% strain. Recently, an effective mechanism for amplifying
strain has been found that achieves an order of magnitude
higher amplification in a compact structure [13]. This new
mechanism also provides the compliance that facilitates
energetically favorable load interaction.

With the use of a layered strain amplification mechanism,
the effective strain of a PZT stack actuator can be expo-
nentially increased, achieving over 20% strain compared to
its original body length. This large strain would allow the
actuators to be used in the same manner as natural skeletal
muscles, which produce approximately 20% strain. Further-
more, the PZT stack actuator has a high bandwidth, large
stress capacity, and stable material properties. Combined
with the compliant layered strain amplification mechanisms,
the high strain actuator has the potential to be used in several
robotic designs. The objective of this paper is to analyze and
quantify the dynamic performance of the high strain PZT
actuator and to explore the possibility of building actuators
that can resonate with the load.

II. LAYERED STRAIN AMPLIFICATION DESIGN

Fig. 1 shows the design concept of a hierarchical strain
amplification mechanism [13]. The displacement created by
PZT stack actuators is increased exponentially with multiple
layers of amplification mechanism. The basic unit creating a
displacement is a PZT stack actuator packed in a rhombus-
shaped strain amplifier. As shown on the top left corner
of Fig. 1, the displacement of the PZT stack actuator in
the horizontal direction is amplified with this mechanism,
resulting in a larger displacement in the vertical direction.
This type of amplification is a standard design found in the
literature [12], [14].

The unique aspect of the layered design is that several of
these PZT units are connected together and then enclosed
with a larger rhombus strain amplification mechanism. Fur-
thermore, several of these larger units are then connected
together and are placed in an even larger rhombus amplifier.
When this process is repeated, the effective strain increases
exponentially. Fig. 1 includes three different sizes of the
rhombus mechanism, creating a three-layer strain amplifier.

The effective strain is the ratio of output displacement to
the original body length in the same output direction. Due
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Fig. 1. Layered architecture of strain amplification devices

to the aspect ratio of the rhombus mechanism, la/lb, shown
in Fig. 1, the effective strain amplification is the product of
the displacement amplification gain and this aspect ratio. The
displacement amplification gain is given by cot θ0, where θ0

is the angle of an oblique edge of the rhombus at a nominal
state as shown in Fig. 1. The resultant gain of effective strain
amplification g is therefore given by

g =
la
lb

cot θ0. (1)

If each layer has the same value of g and the number
of layers is K , then the magnitude and direction of the as-
sembly’s effective strain amplification is (−g)K . Considering
practical design requirements, a typical value of displacement
amplification is cot θ0 = 5, while the aspect ratio is typically
near 3. If two layers of amplification are used, the effective
gain becomes (5 × 3)2 = 225. Although the strain of PZT
is merely 0.1 %, the resultant effective strain of the layered
system is over 20%, which is commensurate with the skeletal
muscle benchmark.

Fig. 2. Application of a cellular PZT actuator to a skeletal structure

Fig. 2 illustrates a possible biological robot application of
this large strain PZT actuator. The artificial muscle shown in
the Fig. 2 consists of five stacks of second-layer units. As
shown, the cellular architecture allows the PZT actuator to be
used in a way similar to the anatomical structure of animal
muscles. The following sections address the dynamic mod-
eling and experimental verification of the proposed system,
followed by an application to a flapping system.

III. MULTILAYER ACTUATOR DYNAMICS

The dynamics of a fully assembled actuator as shown in
Fig. 2 are very complex due to the abundance of closed
kinematic chains and unit interconnections. Moreover, sev-
eral geometric inversions exist within the mechanism that
increase the modeling complexity. The scope of this work is
to address only the most fundamental subsystem dynamics.
This section provides the dynamic analysis of a serial con-
nection of N2 second layer units as shown in Fig. 3, followed
by the analysis of a single unit as a limiting case.

A. Modeling Assumptions

Each rhombus mechanism in the serial connection will
be modeled as shown in Fig. 4 (a). The effects of the
flexures are lumped into two main torsional stiffnesses kJ

and kB . The stiffness kJ captures the resistance of the flexure
joints to rotations in the admissible motion space while
the stiffness kB captures the strain energy storage in the
constrained motion space. Thus, the kB elements allow the
oblique beams to store strain energy even with the output
displacement of a unit constrained to zero. Each of the
stiffnesses can be computed from standard beam theory as

kJ,B =
Ebt3f
12Lf

, (2)

where E is the elastic modulus of the rhombus material, tf is
the flexure thickness, and Lf is the thickness of the flexure.
To further simplify the analysis, the following additional
assumptions are used:

• The serial chain of units is constrained to move along
a single vertical axis.

• The units in the serial chain are rigidly connected.
• The base rhombus mechanism is grounded to an inertial

frame O−XY .
• The motion of the rhombus links is symmetric about

the vertical and horizontal centerlines.
• The units are identically sized with identical equilibrium

configurations quantified by θ0.
• The thick sections of the rhombus are perfectly rigid.
• The oblique rhombus beams have both mass and rota-

tional inertia.
• The inner first layer units will act as a suspended mass

as shown in Fig 4 (b).

The assumption of rhombus symmetry about the cen-
terlines allows each rhombus to be modeled with three
generalized coordinates θJi, θBi, and ypi as shown in Fig
4 (a). The angle θJi denotes the excursion of the ith unit’s
oblique link away from the equilibirium angle θ0, the angle
θBi is measured relative to the previous link’s position,
and the linear distance ypi denotes the position of the ith
unit’s suspended mass with respect to the local horizontal
centerline.

The lumped compliance elements suspending the first
layer mass are shown in Fig 4 (b). Notice that the first layer
force is introduced using a pure force source f0 acting in
parallel with the compliance kx.

762



Fig. 3. Dynamic model for a serial connection of a second layer units

(a) Lumped model of a second layer unit

(b) Detailed view of suspended lumped mass and compliance elements

Fig. 4. Dynamic lumped parameter model of a second layer unit

The PZT acts a pure force source in parallel with a stiff-
ness kpzt. Assuming linear behavior, the PZT actuator output
strain is related to the applied electrical field through the
piezoelectric coefficient d33. Strictly speaking, the piezoele-
cric stiffness and strain coefficent are not constants. However,
for simplicity, the following analysis assumes constant PZT
parameters. Thus, if the force output of the stack is denoted
by fpzt, the output stack displacement is Δxpzt, and the
number of films in the stack is Nfilm, then

fpzt = kpzt(βV − Δxpzt), (3)

where β = Nfilmd33 and V is the applied voltage. From (3),
note that the force is a maximum when the displacement
is set to zero. This is called the blocking force f block

pzt

and it corresponds to placing the stack between perfectly
rigid supports. Assuming the maximum allowable voltage
is applied, then the blocked force is given by kpztβVmax.
Similarly, the displacement under free end conditions is
referred to as the the free displacement Δxfree

pzt and is given

by βVmax. With the foregoing definitions of blocked and
free conditions, the kx lumped stiffness may be defined as
kx = |f block

1 |/|Δxfree
1 | where the subscript 1 refers to the

first layer.

B. Dynamics of Serially Connected Second Layer Units

In the absence of lateral sway, the kinematics of a second
layer chain can be determined in terms of the link unit vectors
êij . The first subscript i = 1, 2, ..., N2 indicates the unit
number as shown in Fig. 3 and the second subscript j =
0, 1, ..., 6 indicates the link number as shown in Fig. 4 (a).
The general link unit vectors can be written more explicitly
as follows:

êij =

⎧⎪⎪⎨
⎪⎪⎩

±êX j = 0, 6
± cos(ϕi)êX + sin(ϕi)êY j = 1, 5

± cos(ϕi + θBi)êX + sin(ϕi + θBi)êY j = 2, 4
êY j = 3

where the ± are applied sequentially with the associated sub-
script, êX,Y are the standard cartesian unit vectors aligned
with the X and Y axes, and ϕi = θ0 + θJi.

Denoting the length of the jth link as lj , the linearized
velocity of the center of mass of the jth link of unit i (i ≥
2, j ≥ 1) with respect to the base inertial frame is then given
by

vCij =
i−1∑
s=1

2l1 cos(θ0)(2θ̇Js + θ̇Bs)êY

+
j∑

r=1

1
2 (lr−1

dêir−1
dt + lr

dêir

dt ). (4)

The three cases not considered in (4) are as follows. When
i = 1 and j ≥ 1, the first term in (4) is not present. For the
case when i = 1 and j = 0, vCij = 0. Finally, for the case
when i ≥ 1 and j = 0, vCij = vCi−1 6.

The rotational kinetic co-energy contained in unit i is

T ∗
rot,i = 2Ii1(2θ̇2

Ji + θ̇2
Bi + 2θ̇Jiθ̇Bi) (5)

where Ii1 is the centroidal mass moment of inertia of link
1, 2, 4, and 5. Given the mass and geometric symmetry
assumptions (i.e. m0 = m6, l1 = l2, etc.), the total kinetic
co-energy of the system can be written

T ∗ =
N2∑
i=1

(∑6

j=0
(mijvCij · vCij)

− 1
2mi0(vCi0 · vCi0 + vCi6 · vCi6)

+T ∗
rot,i + 1

2mpi(ẏpi + vCi2 · êY )2
)
. (6)

The total potential energy contained in the compliant
elements is given by

V =
N2∑
i=1

(
2kJθ2

Ji + 2kBθ2
Bi + 2kB(θJi + θBi)2

+kxl21(2θJi + θBi) sin(θ0) + kyy2
pi

)
. (7)
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The generalized force acting on the ypi coordinate is
identically zero. The generalized forces acting on the angular
coordinates are ΞθJi and ΞθBi:

ΞθJi = −2f0il1 sin(θ0). (8)

and

ΞθBi = −f0il1 sin(θ0). (9)

Defining {ξ} = [θJ1 θB1 yp1...θJN2 θBN2 ypN2]T and
{Ξ} = [ΞJ1 ΞB1 0...ΞJN2 ΞBN2 0]T , the equations of
motion are given by Lagrange’s equations in standard form:

d

dt

(
∂L

∂{ξ̇}

)
− ∂L

∂{ξ} = {Ξ}T , (10)

where L = T ∗ − V is the difference of (6) and (7). The
equations of motion are considered explicitly for the case of
a single second layer unit in the following sub-section.

C. Dynamics of a Single Second Layer Unit

The physical actuator prototype shown in Fig. 5 consists
of a single second layer unit, which is a limiting case of the
dynamics discussed in III-B. Using the second order accurate
Lagrangian L, the dynamics of the system are described by
the following 3 × 3 vibratory system:

[
M3×3

] ⎡
⎣ θ̈J1

θ̈B1

ÿp1

⎤
⎦ +

[
K3×3

]⎡
⎣ θJ1

θB1

yp1

⎤
⎦ =

⎡
⎣ΞθJ1

ΞθB1

0

⎤
⎦ , (11)

where the elements of the mass and stiffness matrices follow
from (10).

IV. IMPLEMENTATION AND EXPERIMENT

A. Prototype Construction

A prototype was constructed for experimental investiga-
tion. The prototype is shown in Fig. 5 and consists of six
first-layer units contained within a bronze outer rhombus,
i.e. the second layer strain amplification. All inter-unit and
inter-layer connections were made using conventional epoxy.

This prototype design uses a commercially available TF-
PZT stack actuator produced by Cedrat, Inc. [18]. This PZT
stack has an approximate blocking force of 460 N, a free
displacement of 12 μm, and a maximum continuous voltage
of 150 V. Along the output axis of the amplification mecha-
nism, this first layer unit produces a free displacement of 80
μm. Thus, when placed in series, the 6 first-layer units have
a free displacement of 480 μm. The fully assembled second
layer unit was found to have a free displacement output of
2.49 mm, giving an effective strain of approximately 20%
compared to the original body length of 13 mm.

Fig. 5. Physical prototype consisting of 6 serially connected first layer
units (Cedrat, Inc.) contained within an outer rhombus

B. Experimental Validation

A frequency response test was performed as a validation
of the linear dynamic equations in (11). The transfer function
between the link 6 vertical displacement ΔY6 and the input
force f0(t), denoted by ΔY6(s)/F0(s), was identified.

The test apparatus shown in Fig. 6 was used to measure
the response of the prototype mechanism under fixed-free
conditions. The overall construction provides a single rigid
constraint that aligns the actuator output axis with the
measuring axis of a Micro-Epsilon ILD 1401-10 laser dis-
placement sensor. All data were acquired using a PCI-6036E
data acquisition card and LabVIEWTM 7.1. Voltages were
applied to the PZT stacks using a Cedrat CA-45 amplifier.
For clarity, the PZT stack leads are shown unconnected in
Fig. 6.

Fig. 6. Test equipment designed for measurement of actuator dynamic
performance

A chirp voltage input Vin(t) was applied in parallel to the
six PZT stacks in the first layer. To assure adequate signal
power within the actuator bandwidth, the chirp frequency
ranged from 0.3 Hz to 500 Hz, with a peak amplitude
value of 30 V and a minimum value of 0 V. The PZT
stack input voltage and actuator output displacement were
measured using the aforementioned equipment. Under free
end conditions, the input stiffness of the 2nd layer rhombus
is approximately 0.04 N/μm. From this stiffness, the input
force f0 is computed to be 3.08 N for an input voltage of
30 V. The force was assumed to vary sinusoidally from 0 to
this maximal value; therefore f0 ≈ 0.103Vin.
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TABLE I

PARAMETERS USED IN THEORETICAL MODEL

Parameter Symbol Value Units
Link 0 Mass m0 0.0851 g
Link 1 and 2 Mass m1 0.173 g
Link 3 Mass m3 0.692 g
First Layer Mass mp 12 g
Total Actuator Mass mT 15 g
Total Length of Oblique Links l1 12.9 mm
Flexure Zone Length Lf 3.51 mm
Flexure Thickness tf 0.1 mm
Rhombus Width b 5.01 mm
Lumped Horizontal Stiffness kx 12 N/mm
Lumped Vertical Stifness ky 4 N/mm
Link 1 and 2 Inertia I1 2.27 × 10−9 kg ·m2

Elastic Modulus E 110 GPa
Initial Link Angle θ0 5 deg

The theoretical transfer function ΔY6(s)/F0(s) was com-
puted using (11), and the parameters in Table I. In Table
I, the lumped vertical stiffness parameter ky was the only
parameter that could not be computed theoretically. It was
therefore set based on a linear finite element analysis of
six first layer units deflected vertically. The response of
the measured system and the theoretical system are plotted
together in Fig. 7.

The theoretical mode shapes and natural frequencies were
readily obtained by solving the standard eigenvalue problem
associated with the matrix M3×3

−1K3×3. The fundamental
mode exhibits in phase motion of the piezo unit and the
rhombus vertical vibration. The second mode exhibits op-
posing phase motion of the piezo units of the rhombus. The
measured frequencies for these modes were 61.1 Hz and 303
Hz respectively. The corresponding theoretical values were
58.8 Hz and 224.0 Hz. The complex zero frequency of the
model resides at 79.4 Hz with the measured value residing
at 84.1 Hz. The highest frequency mode in the model resides
at 1162.7 Hz, but this mode could not be measured because
of the 1 kHz bandwidth of the displacement sensor.

C. Model Competence

The fundamental mode from the model and experiment
agree within 4% while the second mode agrees within
26%. These results are independent of the voltage excitation
amplitude up to the 30 V maximum amplitude used. The
independence of the result from amplitude and the well
behaved phase in Fig. 7 indicate that the linear model
is competent to describe the dynamics of a second layer
unit in the frequency range of interest. Furthermore, the
data indicate that the assumed system order and pole-zero
topologies are fundamentally correct.

A small disparity between the measured and modeled
responses arises due to lack of damping in the model. The
high frequency disparity may be due in part to the unmodeled
dynamics of the wiring. If the wiring acts as increased
stiffness, this would serve to raise the modal frequencies
in the real system over the theoretical case. Also, the axial
stiffness and mass of the flexures were neglected and the
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Fig. 7. Theoretical and measured frequency response of a second layer
unit

torsional spring approximation introduces some error for the
large value of Lf . Another likely cause of high frequency
disparity is the uncertainty in the lumped vertical stiffness
ky and the effective lumped piezo mass mp.

The foregoing validation of the actuator model provides
a basis for establishing the closed loop bandwidth or track-
ing capability. The model can also be readily extended to
accurately determine the fundamental mode of the loaded
actuator system, which is discussed in the following section.

V. FLAPPING SYSTEM DYNAMICS

The second layer actuator unit was coupled to a flapping
system as shown in Fig. 8. Flapping flight involves transient
periods of high frequency wing movement, such as in takeoff
and landing as well as steady state flapping dynamics at an
intermediate frequency. To achieve maximum efficiency, the
system should be capable of resonating at various frequen-
cies. This idea is also dicussed in [7] for a hypothetical
pigeon sized bird and in [15] for microaerial vehicles. A
successful flapping robot requires a design that minimizes
weight and produces the appropriate aerodynamic forces.
Such design issues are beyond the scope of the test system
described here, but complete discussions can be found in [7],
[15], [16], [17].

Fig. 8. Flapping system used to illustrate the resonance capabilities of the
loaded actuator
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A. Extension of the Dynamic Model

The winged system introduces additional vibratory modes
to the actuator system. The dynamic model was extended
to capture only the fundamental vibration mode of the
load. Although it is utilized in most flapping flight robots,
the torsional oscillation mode of wings is not included in
the extended model. For simplicity, drag forces are also
neglected.

Under these assumptions, the dynamic model becomes a
4 × 4 vibratory system by adding in terms represresting the
additional kinetic and potential energy of the wings (mw =
0.45 g, kw = 11 N/m) to (6) and (7) respectively and then
re-applying (10).

B. Experiments with the Winged System

Using the same voltage chirp and measurement system
described in IV-B, the frequency domain response of the
winged system was determined. The results of the experiment
are shown in Fig. 9 along with the theoretical model results.
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Fig. 9. Measured frequency response of the flapping system coupling mass

The measured first mode frequency was 32.0 Hz with
the model predicting 32.8 Hz. The higher frequency modes
are also captured with the extended model and show only
a moderate discrepancy. The fundamental mode wingbeat
frequency is in a reaonable range for dragonfly-sized robots
to achieve sufficient lift for flight [15], however the power
density of the current design is not sufficient for flight.
Overall, the model of the wing dynamics can accurately
predict the behavior of the system resonances, which will be
very useful in later designs and structural resonance control
efforts.

VI. CONCLUSION

This work describes the dynamics of a flexure-based
cellular actuator design. The most unique dynamical feature
of the proposed actuator design is its ability to mechanically
resonate at several frequencies. For N2 units there are 3N2

lightly damped natural frequencies. Maximum power transfer
may be achieved by driving the system to one of the resonant

peaks or by changing the location of the resonant peaks via
configuration changes from the addition of loads.

The specific contributions of this work may be summa-
rized as follows. First, a general cellular PZT design concept
has been presented and a second layer unit prototype was
constructed. A dynamic model suitable for control and load
impedance matching was formulated and analyzed in the
frequency domain. The linearized dynamic model showed
close agreement with experimental frequency response data.
A flapping flight system was constructed to illustrate one
possible application of the actuator.

Future work will focus on further prototype development,
antagonistic actuator arrangements, and control algorithms
for resonance tuning.
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