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Abstract— This paper presents a method to determine the
stability of off-road vehicles moving on rough terrain. The
measures of stability are defined as the maximum speed and
acceleration under which the vehicle does not slide or tip
over. To compute these stability measures, we propose a quasi
3D analysis by decomposing the vehicle dynamics into three
separate planes: the yaw, pitch, and roll planes. In each plane,
we compute the set of admissible speeds and acceleration for
the planar vehicle model, contact model, and ground force
constraints. The intersection of the admissible sets provides
the total range of feasible speeds and accelerations along the
vehicle’s path, from which we obtain the stability margins.
Numerical results for a vehicle traversing a simulated terrain
demonstrate the effectiveness of the approach.

I. INTRODUCTION

Many current missions require an autonomous robot to
traverse rough terrain in minimum time, such as the DARPA’s
Grand Challenge [1]. The risk of instability becomes a cru-
cial factor in its motion planning when both speed and terrain
roughness are significantly high. The robot’s susceptibility
to slide, tip over, or lose contact with the ground increase
with its speed and unevenness of the ground. Analyzing
and ensuring the stability of the robot or vehicle at nonzero
speeds is the goal of this work.

The success of a motion planner demonstrably depends on
keeping the velocities and accelerations of the vehicle within
their admissible range. Our goal is to compute the range
of feasible speeds and accelerations for off road vehicles
and present it as a unified measure of dynamic stability.
Although various stability margins have been proposed over
the years, [9] [3], none of them consider vehicle dynamics,
friction constraints, and terrain surface characteristics, and
hence are not suitable to evaluate vehicle stability during
high speed motion on rough terrain. A few motion planners
take into account only the geometry of the terrain [5], and
of the vehicle [13][14] [4]. These planners, however, assume
quasistatic motion, where the vehicle’s speed is considered
negligible.

The first dynamic motion planner for off road vehicles was
developed in [10]. It calculates the global optimal trajectory
for a point mass vehicle on general three dimensional terrain.
This paper extends [10] and [8] to a 3D vehicle model. The
approach consists of projecting the vehicle’s motion onto
three planes: the yaw, pitch, and roll planes, and then ana-
lyzing each plane separately. The velocity and acceleration
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limits are computed for each plane using a vector-algebraic
procedure, and are then combined to yield the total dynamic
stability margins.

II. THREE DIMENSIONAL TERRAIN AND VEHICLE MODEL

A. Coordinate systems

Figure 1 shows the global and vehicle fixed coordinate
frames. The vehicle travels along a path parameterized by
its arc length s, such that its center of mass along the path is
a parametric function of s. The vehicle’s orientation along the
path relative to the global frame is described by the rotation
matrix R0

B. The vehicle’s angular velocity is expressed by
rotations around the vehicle fixed frame, as shown in Figure
1.
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Fig. 1. World and body fixed coordinate frames

B. Angular velocities

The vehicle’s angular velocity ω is computed by differen-
tiating the rotation matrix of its body fixed frame relative to
the inertial frame ([15]):

S(ω) = R0
B

T
Ṙ0

B (1)

where S(ω) is a skew symmetric matrix, consisting of
the elements of ω , and Ṙ0

B is approximated by the finite
differences of two successive rotation matrices along the
path.

C. Path coordinates

To facilitate the analysis of the vehicle’s stability, the
acceleration of its center of mass, ẍ, is best described in
terms of its speed ṡ and acceleration s̈ along the path:

ẍ = s̈t+(ṡ2/ρ)n (2)

where t is a unit vector tangent to the path, n is a unit
vector normal to the path and pointing towards the center
of path curvature, as shown in Figure 1, and ρ is the radius
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of curvature. The vehicle’s angular speed and acceleration
are expressed as:

ω = Θsṡ (3)

ω̇ = Θss̈+Θssṡ
2 (4)

where Θs is obtained by differentiating R0
B with respect to s:

S(Θs) = R0
B

T
(R0

B)s (5)

and Θss is its partial derivative with respect to the arc length
s.

D. Inverse kinematics

Given the terrain map and vehicle’s location and orienta-
tion in the the inertial coordinate system, we wish to calculate
the vehicle’s orientation and the direction of the ground
normals. To this end, we model the vehicle as a tricycle by
lumping the two front wheels into one center wheel, located
at x f . We leave the radius of the wheels out of the inverse
kinematics problem since the equations are highly nonlinear
when the normals at the three contact points are not parallel
to each other. Once the contact points are calculated, we add
the average height of the wheels to the vehicle to obtain
an approximation of its actual position. This is a reasonable
approximation for relatively smooth terrain.

Thus, given xc and yc of the vehicle’s center and its yaw
angle ψ , we solve for seven unknowns (x f ,y f ,xl ,yl ,xr,yr,zc),
using three equations for the location of the center of mass
in world coordinates:

 xc

yc

zc


 =


 x f

y f

z f


+R0

B


 0

−d
h


 , (6)

three kinematic chains

‖x f −xl‖ =
√

4d2 + l2 (7)

‖x f −xr‖ =
√

4d2 + l2 (8)

‖xl −xr‖ = 2l, (9)

and the yaw angle relation [2]

sin(ψ)R0
B(2,2) + cos(ψ)R0

B(3,1) = 0, (10)

where d, l, and h are the vehicle half length, width, and
height, respectively, and x f ,xr,xl are the locations of the
front, right, and left wheel axles, respectively.

The steering angle is approximated by projecting the
vehicle at each point along the path onto the previous
vehicle’s x− y plane, then using the approach presented in
[12].

III. PLANAR PROJECTIONS

For the quasi 3D approach, we split the vehicle’s motion
into three separate planes: the yaw (ψ), pitch (θ), and roll
(φ) planes, as shown in Figure 2, where β is the steering
angle. The unit tangent vector t, curvature vector κ , and
gravity vector g, are projected onto all three planes using
the respective projection matrices:

Rψ =
[

eT
x

eT
y

]
, Rθ =

[
eT

y
eT

z

]
, Rφ =

[
eT

z
eT

x

]
(11)

where ex,ey,ez are the unit vectors comprising the vehicle’s
body fixed frame. The projections of the tangent, curvature,

β

Yaw Plane Pitch Plane Roll Plane

gψ
gθ gφ

Fig. 2. Vehicle as seen in the yaw, pitch, and roll planes

and gravity vectors in each plane are computed by pre-
multiplying each vector by the respective projection matrix.

IV. CONTACT MODEL

To maintain contact with the ground, without slip, the
contact force between the wheel and the ground must be
confined to the elliptic friction cone shown in Figure 3:

f2
s

µ2
s

+
f2
r

µ2
r
≤ f 2

n (12)

where µs and µr are the longitudinal and lateral coefficients
of friction, and fn is the normal force applied by the ground.

n

fs
fr

Fig. 3. The ground forces on the wheels are bounded by a conic ellipsoid.

The elliptic cone projects onto the yaw plane as an
ellipsoid, and onto the pitch and roll planes as a friction cone.
The cone is linearly approximated as a pyramid, where the
friction constraints are reduced to:

fs ≤ µs fn (13)

fs ≥ −µs fn (14)

fr ≤ µr fn (15)

fr ≥ −µr fn (16)

This approximation, though not conservative, allows us to
easily solve for the feasible speeds and accelerations.

V. EQUATIONS OF MOTION

Both the vehicle dimensions and the ground forces are
projected onto the pitch, roll, and yaw planes, with the
respective plane indicated by the subscript.
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A. Pitch Plane

The forces acting on the lateral plane of the vehicle
undergoing longitudinal motion are shown in Figure 4. The
equations of motion are:

f1θ + f2θ +mgθ = mtθ s̈+mκθ ṡ2 (17)

r1θ × f1θ + r2θ × f2θ = Iθ (θss̈+θssṡ
2) (18)

where Iθ is the moment of inertia around the pitch plane.

f2θ

mgθ

f1θ

r1θ r2θ

y

z

Fig. 4. The vehicle in the pitch plane.

The friction cones shown represent (15)-(16).

B. Roll Plane

Similarly, for the roll plane shown in Figure 5, we have:

f1φ + f2φ +mgφ = mtφ s̈+mκφ ṡ2 (19)

r1φ × f1φ + r2φ × f2φ = Iφ (φss̈+φssṡ
2) (20)

Note that tφ is rather small, since the path direction is gen-
erally almost perpendicular to the pitch plane. The friction
cones shown represent constraints (13)-(14).

mgφ
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z

f2φ
f1φ

r1φ r2φ

Fig. 5. The vehicle in the roll plane.

C. Yaw Plane

The vehicle is modeled in the yaw plane as a bicycle, as
shown in Figure 6. We make a simplifying assumption that
the normal force in the yaw plane on each wheel is half of
the gravitational force mgk normal to the plane, where:

gk = −g · ez (21)

Constraints (13)-(16) then become:

−µr
1
2

mgk ≤ fr ≤ µr
1
2

mgk (22)

−µs
1
2

mgk ≤ fs ≤ µs
1
2

mgk (23)

These constraints are linear approximations of the projected
friction ellipses shown in Figure 6. The resulting equations

β

x

y
f2ψ f1ψ

r1ψr2ψ

Fig. 6. The vehicle in the yaw plane.

of motion are:

f1ψ +R(β )f2ψ +mgψ = mtψ s̈+mκψ ṡ2 (24)

r1ψ × f1ψ + r2ψ × (R(β )f2ψ) = Iψ(ψss̈+ψssṡ
2) (25)

where

R(β ) =
[

cos(β ) −sin(β )
sin(β ) cos(β )

]
(26)

VI. SOLUTION METHOD

To determine the constraints on the vehicle’s speed and
acceleration, we map the contact force constraints onto
constraints on s̈ and ṡ. Because this problem is indeterminate,
since in each plane we have three equations of motion and
four unknowns, we substitute the proper combination of
ground force constraints into the equations of motion to result
in linear constraints in the s̈− ṡ2 plane. The solution method
in the pitch and roll plane is equivalent to [7], and we review
it here to extend it in a similar manner to the yaw plane. The
graphical approach [6] is another convenient way to solve the
problem.

A. Pitch

A planar friction cone C may be expressed as an inter-
section of two half planes. Any ground force fθ ∈ C can
be expressed as a linear combination of the unit vectors e
parallel and n normal to the boundary of the left and right
half planes, as illustrated in Figure 7:

fθ = klel + clnl (27)

fθ = krer + crnr (28)

For fθ to be in C, the coefficients in (27, 28) must simulta-
neously satisfy the two inequality constraints:

cl ≥ 0 (29)

cr ≥ 0. (30)

Since (29, 30) apply to each contact point, there are a total
of four such constraints for the (planar) vehicle.

We now substitute the ground forces, each represented by
one half plane of its friction cone, (27) or (28), into the
equations of motion (17)-(18) to result in three equations
in four unknowns (k1,c1,k2,c2). Eliminating two unknowns
(k1,k2) produces one equation in two unknowns (c1,c2) of
the form:

a1s̈+a2ṡ2 +(a3c1 +a4c2 +a5) = 0 (31)

where:

[a1 a2] = m[r1θ × e1 r2θ × e2]
− Iθ [θs θss][e1 e2]−1[tθ κθ ] (32)
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Fig. 7. Each friction cones is the intersection of two half planes.

[a3 a4] = [r1θ ×n1 r2θ ×n2]
−[r1θ × e1 r2θ × e2][e1 e2]−1[n1 n2] (33)

a5 = −[r1θ × e1 r2θ × e2][e1e2]−1mg. (34)

Equation (31) represents a straight line in the s̈− ṡ2 plane
for given c1,c2. If a3a4 > 0, then varying c1,c2 from 0 to
∞ would span a half plane in the s̈− ṡ2 space. Thus, (31)
maps the selected force constraints (the two half planes) on
f1θ and f2θ to constraints on s̈− ṡ2. Repeating (31) for all
possible combinations of half planes of the rear and front
friction cones would produce four half planes in the s̈− ṡ2

space. The intersection of these half planes represents the
set of admissible speeds and accelerations that satisfy all the
ground force constraints. This will be further discussed in
Section VII.

B. Roll

The set of admissible speeds and accelerations due to
constraints on the ground forces in the roll plane are obtained
similarly to the procedure outlined for the pitch plane, except
that we now use the friction cones and equations of motion
of the roll plane (17- 18).

C. Yaw

In a similar manner, the rectangular approximation of the
friction ellipsoid in the yaw plane can be visualized as the
intersection of four half planes, whose edges form the right,
top, left, and bottom edges of the friction rectangle R, as
shown in Figure 8, where er and es are the unit vectors in
the respective rolling and lateral directions, and nr and ns

(not shown) are the respective normals. Any force fψ ∈ R
must belong to the following four half planes:

fψ = krer +(
1
2

µsmgk − cr)nr (35)

fψ = ktes +(
1
2

µrmgk − ct)ns (36)

fψ = kler +(−1
2

µsmgk + cl)nr (37)

fψ = kbes +(−1
2

µrmgk + cb)ns (38)

For fψ to be in R, it is necessary that the coefficients in
(35-38) simultaneously satisfy the inequality constraints:

cr ≥ 0 (39)

ct ≥ 0 (40)

cl ≥ 0 (41)

cb ≥ 0 (42)

Substituting one of equations (35-38) for each wheel into the
equations of motion (24,25) and eliminating two unknowns
yields a scalar equation in s̈, ṡ2 similar to (31), with the
coefficients:

[a1 a2] = [r1 × e1 r2 × e2][e1 e2]−1 (43)

− Iψ [ψs ψss]
[a3 a4] = [r1 ×n1 r2 ×n2]

− [r1ψ × e1 r2ψ × e2][e1 e2]−1[n1 n2](44)

a5 = ([r1ψ ×n1 r2ψ ×n2] (45)

− [r1ψ × e1 r2ψ × e2][e1 e2]−1)
[

µ1

µ2

]

− [r1ψ × e1 r2ψ × e2][e1 e2]−1mgψ

where e1,e2,n1,n2,µ1,µ2 are selected for every combination

µsmgk
1
2

µrmgk
1
2

R-es

es

-er er

Fig. 8. The friction rectangle in the yaw plane is the intersection of four
half planes.

of half planes that contain the ground forces on each wheel.

VII. STABILITY MARGINS

Intersecting the half planes in the s̈− ṡ2 space, produced
by all combinations of the ground force constraints in each
of the three planes, results in the set of Feasible Speeds
and Acceleration (FSA), shown schematically in Figure 9
[11]. Any given pair of speed and acceleration that lies
outside of the FSA region is unattainable, i.e. violates at
least one contact constraint. We define the dynamic stability
margin (DSM) as the maximum feasible speed, and the static
stability margin (SSM), as the minimum feasible acceleration
range at zero speed along every point of the path, s, as shown
in Figure 9, where the stability margins are indicated by the
boundaries of the FSA:

DSM(s) =
{

max(ṡ), ṡ2 ∈ FSA if max(ṡ) ≥ 0
0 otherwise

(46)
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SSM(s) =
{

min(|s̈min|, |s̈max|)ṡ=0 if s̈max > 0, s̈min < 0
= 0 otherwise

(47)

s

s2FSA

DSM

Fig. 9. The Feasible range of Speed and Acceleration (FSA) with the
Static Stability Margin(SSM) and the Dynamic Stability Margin (DSM).

The SSM and DSM are important indicators of the stability
of a vehicle traversing a preset trajectory. For example, a
vehicle on a steep incline will have a low SSM, indicating
that slippage is likely to occur if the vehicle accelerates too
rapidly. A vehicle on a convex surface will have a low DSM,
which indicates that a sufficiently high velocity will result in
the vehicle losing contact with the surface.

VIII. EXAMPLES

To demonstrate the utility of the FSA and stability mar-
gins, we simulate a three dimensional vehicle model travers-
ing a serpentine path on a random crater and hill, as shown
in Figure 10. The vehicle is illustrated as a tricycle in
concurrence with its kinematic model. The three separate

Fig. 10. A vehicle traversing a crater and a hill

FSA’s for each pitch, roll, and yaw plane, are shown in
Figure 11 for the point at which the vehicle is at the top
of the hill in Figure 10. One sees from Figure 11 that at this

point the static stability margin in the yaw plane is the most
restrictive, as its FSA is a narrow polygon. The roll plane, on
the other hand, is the least restrictive. The orientations of the

Fig. 11. The FSA’s for each plane

vehicle in each plane are shown in Figure 12. Matching the
configuration in the pitch plane with the corresponding FSA
indicates that the result is in good agreement with previous
two dimensional stability analysis [8], as a vehicle on convex
ground is expected to have a finite velocity limit. The SSM

Yaw PlanePitch PlaneRoll Plane

Fig. 12. The vehicle’s orientation in the pitch, yaw, and roll planes

and DSM for the entire trajectory are shown in Figure 13.
As expected, the yaw motion is the most constraining along
most of the path, and the yaw stability margins are at their
lowest when the vehicle makes a turn in the crater. For the
case shown, the SSM drops to zero along the downward slope
towards the end of the path, indicating a slope too steep to
sustain the vehicle in a static state. The pitch DSM is lowest
at the top of the hill, and the roll SSM is monotonously high
along the entire path.

Figure 14 shows the vehicle over a road bump. The
DSM for this path is shown in Figure 15. The DSM drops
as each wheel passes over the bump. It reaches around 1
m/s as the front wheel moves over the bump. Moving at
any higher speeds would cause the font wheel to loose
contact with the ground. The numerically computed velocity
limit (DSM) was verified with a dynamic simulation of a
vehicle with the same mass properties, moving over the speed
bump at various speeds. Starting at 1m/s, the vehicle moved
over the bump without loosing contact with the ground,
as expected. The degree of contact was determined by the
minimum normal force developed between the front wheel
and ground. Increasing the speed resulted in a lower normal
force, until reaching zero, or separation between the front
wheel and ground. Figure 16 shows the minimum normal
force, normalized by the steady state normal force (roughly
half the vehicle weight), as a function of the vehicle speed.
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Fig. 13. The respective SSM’s and DSM’s for each vehicle model

Fig. 14. A vehicle traversing a road bump

The normal force drops to zero at 1.75m/s. This is slightly
higher than the 1m/s velocity limit predicted by our stability
analysis. This difference is expected since the vehicle used
in the dynamic simulation uses had suspension and inflated
tires, whereas our vehicle model has no suspension and
assumes rigid wheels.

Repeating the simulation for a smoother bump (not
shown), resulted in a closer agreement between the simu-
lated velocity at which separation begins and the computed
velocity limit. Although these results are preliminary, they do
validate the effectiveness of our approach to predicting the
dynamic stability of road and off-road vehicles. Further stud-
ies are required to better understand the effect of suspension
on the velocity limit.

IX. CONCLUSIONS

This paper presented a unified method for computing
the range of feasible speeds and accelerations for an all
terrain vehicle undergoing motion in three dimensions using
the quasi-3D approach. The vehicle’s motion is projected
onto the yaw, pitch, and roll planes. The stability of the
vehicle is analyzed in each separate plane by substituting
the ground force constraints into the equations of motion
for each plane. This produces the set of admissible speeds
and acceleration (FSA) in each plane, which when overlayed
results in the overall FSA. This in turn provides the static
and dynamic stability margins along the path. An example
of a vehicle moving along a curved path over mountainous
terrain demonstrates the approach.
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