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Abstract—In this paper we model a wheeled UGV in an

elementary manner to determine the effect of obstacle height
on major design parameters, such as wheel size, wheelbase, and

center of mass height. We consider both static and dynamic
modeling approaches and find that consideration of dynamics

allows for more freedom in parameter choice.

I. INTRODUCTION

Specifications for an autonomous wheeled vehicle will

often include a maximum obstacle size which must be

traversed. The obstacle size then affects the design in a

major way, as it determines wheel size and subsequently the

frame size, motor size, etc. One of the UGVs (Unmanned

Ground Vehicles) we are building has a requirement that

it must traverse obstacles up to 10 cm in height. It was

not immediately obvious what wheel size should be chosen

to accomplish this requirement, nor was it clear what the

wheelbase should be. In addition, the UGV is required to

have an arm on top, and this will tend to make a high center

of mass. We felt analysis was necessary to understand how

all these factors would affect each other, and we were not

aware of any previous work on this topic. Figure 1 shows an

early concept and final photo of our robot.

Fig. 1. Early Concept and Final Prototype of the UGV Modeled in This

Paper.

II. BACKGROUND

Historically, the design of wheeled vehicles with obstacle

crossing ability has been largely subjective and based on

experience. In recent years, several tools have been devel-

oped to aid this process, but these are numerical solutions

and involve many parameters. In [1] Apostolopoulos presents

a framework for the synthesis and evaluation of wheeled

vehicle configurations. Configuration equations capture the

relationships between the form and performance of a wheeled
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Fig. 2. Models for Vehicle Obstacle Crossing. Left: Both wheels Below
the Obstacle. Right: One wheel Above the Obstacle.

vehicle. The analysis is quasi-static, and is suitable for

detailed analysis using many parameters including soil and

tire mechanics. Krebs et al. [2] present a quasi-static general

2D solution for multi-body vehicles on arbitrary terrain.

Balasubramanian and Balch [3] present a method of opti-

mizing the energy expenditure of an over-actuated 2D robot

in obstacle crossing. Halme et al. [4] and Webb [5] present

similar methods of obstacle crossing which combine wheel

and vertical suspension actuation. Vertical load is reduced or

eliminated when a wheel encounters an obstacle. The load is

transferred to other wheels, so that the wheel can overcome

a large obstacle without large friction forces. Lauria et al.

[6] present the design of an 8 wheel vehicle with active

suspension and tactile wheels, and a more detailed method of

crossing a large step. Our work provides a method for back-

of-the-envelope estimation of vehicle capabilities based on

few parameters. This allows a vehicle designer to make rapid

assessments of both quasi-static and dynamic step crossing

ability of design concepts early in the design process.

III. MODELING

Notation for the dimensions of the model with both wheels

below the obstacle are shown in Figure 2. r is the radius

of both wheels, and L is the wheelbase. All of the mass

is assumed to be concentrated at the vehicle midpoint, a

distance c above the wheel centers. The height of the obstacle

is h. When one wheel starts out above the obstacle, the

situation is as shown in Figure 2. This adds the variable �,

which is the angle of the connecting bar with the horizontal.

A. Static Analysis

Figure 3 shows the forces which are assumed to act on

the three parts of the model when both wheels begin below

the obstacle. It would have been possible to do the analysis

without breaking up the system into its three parts, and this

would have been simpler. However, knowing the internal

forces can be useful at times. For example, the torque at

each wheel is internal to the system but would be useful for

motor and gearing choices. Formulas for the torque and other
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Fig. 3. Static Forces Acting on the Three Parts of the Model When Both
Wheels Are Below the Obstacle.

Fig. 4. Static Forces Acting on the Three Parts of the Model When One

Wheel Is Above the Obstacle.

internal forces were not included in this paper but could be

derived using the equations that are in the paper.

W is the total weight. Fo and No are the friction and

normal forces from the obstacle (assumed to be tangential

and normal to the wheel respectively) while Fr and Nr

are the same forces at the rear wheel, which is on the

ground. Simple Coulomb friction is assumed, with a friction

coefficient of �. The angle between the ground contact and

the obstacle contact on the wheel is denoted by � . Ground

forces are not included on the front wheel because it was

assumed the front wheel was about the leave the ground. �f
and �r are the torques applied at the front and rear wheels

respectively. Bf x and Bfy are the x and y components of

the forces which constrain the front wheel to the bar, and a

similar statement holds for Brx and Bry. The forces for one

wheel starting up on the obstacle are shown in Figure 4. Ff

and Nf are the front friction and normal forces.

From the geometry of the wheel and its contact point it is

possible to derive the relationship between � and h:

cos � D 1 �
h

r
; 0 < h < r (1)

The following sections cover the two cases where both

wheels are initially below the obstacle and where one wheel

is initially above the obstacle.

1) Both Wheels Below: Referring to Figures 2 and 3, for

the front wheel, the force and moment equations are

�Fo cos � C No sin � � Bf x D 0 (2)

Fo sin � C No cos � C Bfy D 0

�f � For D 0

For the connecting bar we have

Bf x C Brx D 0 (3)

�W � Bfy � Bry D 0

Bfy

L

2
� Bry

L

2
� �f � �r D 0
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Fig. 5. Necessary Friction Coefficient When the Drive Wheel Is Against

the Obstacle.

Finally, for the rear wheel,

�Brx � Fr D 0 (4)

Nr C Bry D 0

�r � Fr r D 0 (5)

For the case of front wheel drive,

�r D 0; Fo D �No

In this case the algebra is fairly simple. We see right away

that Fr D 0 (equation 5). This implies that Brx D 0

(equation 4), which implies that Bf x D 0 (equation 3).

Finally, from equation 2 (with Fo D �No and Bf x D 0)

we arrive at the result

� D tan � (6)

This gives the necessary friction coefficient for a given step

height since � is directly related to h from equation 1. The

result is shown in Figure 5.

For rear wheel drive we assume

�f D 0; Fr D �Nr

The algebra is slightly more complicated this time. The final

result is

� D
L tan �

L C 2r tan �
(7)

In this case the friction needed depends not only on the

contact angle � but also on the wheelbase L. Figure 6 shows

a plot of this result. As L=r gets large this result approaches

the previous one in equation 6. For L=r small, there is a

significant advantage to having the drive wheel push from

behind, rather than being up against the obstacle (equation 6).

The required coefficient in equation 7 is always smaller than

in 6.

2) One Wheel Up: Referring to Figures 2 and 4, for the

front wheel, the force and moment equations on the front

wheel are

�Ff � Bf x D 0

Bfy C Nf D 0

�f � rFf D 0
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Fig. 6. Necessary Friction Coefficient When the Drive Wheel Is Down
and the Passive Wheel Is Against the Obstacle.

For the connecting bar,

Bf x C Brx D 0

�W � Bfy � Bry D 0

BrxL sin � � BryL cos ��

W

�

L

2
cos � C c sin �

�

� �f � �r D 0

Finally, for the rear wheel,

�Brx � Fo cos � C No sin � D 0

Bry C No cos � C Fo sin � D 0

�r � For D 0

For the case of front wheel drive we set

�r D 0; Ff D �Nf

The end result is

� D
.L cos � C 2c sin �/ tan �

L cos � � 2.r tan � C sin �.c � L tan �//
(8)

Also, from the geometry of Figure 2 we can determine that

sin � D
h

L
(9)

By combining equations 1, 8, and 9, we can produce the

plots in Figure 7. Notice that this configuration of the vehicle

model requires much more friction than the others. Also,

equation 8 (out of 6, 7, 8) is the only equation that depends

on the mass height, c. Smaller values of c appear to require

smaller friction coefficients in Figure 7.

For rear wheel drive

�f D 0; Fo D �No

The drive wheel is against the obstacle, and it turns out that

the required friction is identical to case of front wheel drive

with both wheels below the obstacle. The resulting equation

is simply equation 6, which is plotted in Figure 5.

3) Discussion: For one of our vehicles we would like to

use 45 cm diameter wheels, and we need to cross 10 cm

obstacles. This means h=r D 4=9. Table I provides a few

sample values from the formulas for this case. It seems clear

that we should avoid the case where the drive wheel is on top

of the obstacle, and we are trying to pull the passive wheel

up. This seems to require the most friction (up to 162.894!).
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Fig. 7. Required Friction Coefficient When the Front Wheel Is Pulling the
Rear Wheel Up.

Model Coefficient Parameter

Configuration Required Values

Drive-wheel against obstacle 1.500

Drive-wheel back, passive wheel 0.599 (L=r D 2)
against obstacle 0.856 (L=r D 4)

Drive-wheel up, passive wheel 15.401 (L=r D 2, c=r D 0:2)
against obstacle 2.653 (L=r D 4, c=r D 0:2)

162.894 (L=r D 2, c=r D 0:6)
2.822 (L=r D 4, c=r D 0:6)

TABLE I

REQUIRED FRICTION COEFFICIENTS FOR VEHICLE WITH 45 CM

DIAMETER WHEELS AND A 10 CM OBSTACLE.

On the other hand, if we start out by pushing the passive

wheel up, we need a much smaller friction coefficient (0.599

or 0.856). Once the passive wheel is up, the drive wheel will

be against the obstacle, and a coefficient of 1.5 is required

to finish crossing the obstacle. This is quite large but might

be possible. More likely, a small amount of momentum can

be used to reduce the required friction to a more reasonable

amount. An analysis of the effect of momentum is the subject

of the next section.

A short wheelbase helps when pushing the free wheel over

the obstacle, but it hurts when we are trying to pull the free

wheel up over the obstacle. If we plan to avoid the latter

case, then we should try to make the wheelbase as small as

possible.
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Fig. 8. Wheel Impact Model.

B. Dynamic Analysis

1) Single Wheel: We found it helpful to start with just

a simple wheel of mass m and inertia I about its center.

Assume it initially has a speed v to the left in Figure 8, where

the impulsive force No is also shown. After collision with

the obstacle, the wheel center will have velocity components

vxC and vyC as well as angular velocity !C.

The impulse-momentum equations [7] are

�mv C No sin � D mvxC (10)

No cos � D mvyC (11)

I!� D I!C

Here, we have 3 equations and 4 unknowns (No, vxC, vyC,

!C). The remaining equation involves the coefficient of

restitution. The coefficient of restitution relates the relative

speeds of 2 impacting objects just before impact to their

relative speeds just after impact along the line of impact.

The velocity of the contact point just before impact is

v

�

cos � � 1

� sin �

�

Just after impact, the contact point will have velocity
�

vxC

vyC

�

C !Cr

�

cos �

� sin �

�

The line of impact is given by ˙Œsin � cos ��T. Projecting the

velocities along the line of impact gives the final equation:

ev sin � D vxC sin � C vyC cos � (12)

where 0 � e � 1 is the coefficient of restitution. The solution

to equations 10, 11, and 12 is

vxC D v..e C 1/ sin2 � � 1/

vyC D v
e C 1

2
sin 2�

We notice that vyC > 0 for 0 < � < �=2 (provided that

v > 0). So, the wheel is always launched up into the air. On

the other hand, for vxC < 0 (headed over obstacle) we need

sin � <
1

p
e C 1

(13)

This provides a bound on the coefficient of restitution to

allow the traversal of a particular obstacle height since

cos � D 1 � h=r . Figure 9 shows the dependency of the

coefficient of restitution on the obstacle height. This result
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Fig. 9. Maximum Coefficient of Restitution for a Given Obstacle Height.

The case of single wheel impact.
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(since velocity < 0)

Does not go over obstacle

(since velocity > 0)

Velocity of Center

Fig. 10. Velocity of Wheel Center After Impact. The top curves are vyC=v
and the bottom curves are vxC=v. For vxC=v < 0 the wheel can go over
the obstacle. For vxC=v > 0 the wheel cannot.

shows that it is actually better to have soft, nonelastic wheels

with high damping (giving low coefficients of restitution), to

traverse larger obstacles. In particular, for our case where

h=r D 4=9, we should have e < 0:446. Figure 10 shows the

wheel center velocity just after impact.

2) Both Wheels Below: Next, we consider two wheels

joined together by a rigid link as in Figure 2. The impact-

momentum equations are given by

�mw vx� C N0 sin � � Bf x D mw .vxC C c!C/

N0 cos � C Bfy D mw

�

vyC �
L

2
!C

�

Iw!f � D Iw !f C

�mvx� C Bf x C Brx D mvxC

�Bfy � Bry D mvyC

Bfy

L

2
� Bry

L

2
C Bf xc C Brxc D I!C

�mw vx� � Brx D mw .vxC C c!C/

Bry C Nr D mw

�

vyC C
L

2
!C

�

Iw !r� D Iw !rC

In this case, N0, Bf x, etc. are impulsive forces which act

only at the instant of impact. We include Nr > 0 in the

equations because, otherwise, the rear wheel will penetrate

the ground. In addition, we add an equation to enforce the
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Fig. 11. Illustration of How COM Position Affects Obstacle Crossing.

non-penetration constraint for the rear wheel:

vxC C
L

2
!C D 0

We simplify the equations slightly by setting Iw D I D 0,

mw D 0. We can solve for the velocity of the contact point

after impact, vxC C c!C. However, the resulting equation

is somewhat complicated and will not be presented here. It

is more useful to instead consider the maximum possible

coefficient of restitution for a given h=r which allows the

vehicle to cross the obstacle. This is obtained by setting

vxC C c!C D 0 and solving for e. The result is

e D
4L cot �.L cos � � c sin �/

�4cL cos � C .4c2 C L2/ sin �
(14)

However, there is a limit to the value of h=r . Whenever

the center of mass lies above the line of impact, the vehicle

will tend to flip over, rather than go over the obstacle. The

condition for the center of mass being above the line of

impact is given by
L

2
cot � > c (15)

Consider Figure 11. For c2 the impact will cause the vehicle

to flip up with the rear wheel leaving the ground (In this

case Nr D 0). For c1 the rear wheel will stay on the ground

(Nr > 0), and it is possible that the vehicle could cross the

obstacle.

Figure 12 shows the result of equation 14. The curves end

when inequality 15 is no longer satisfied.

3) One Wheel Up: We have also modeled the case where

one wheel is on the step while the other impacts the step.

The analysis is similar, and we will not include the derivation

here. One small difference is that it seemed more logical to

use the horizontal velocity of the center of mass just after

impact in this case, rather than the horizontal velocity of the

contact point in the both-wheels-below case. The final result

for the maximum coefficient of restitution is

e D
.2 cos �.c C L cot �/ C L sin �/2

.L cos � C 2c sin �/2

where � is the angle of the link with respect to the ground.

(Note that it is derivable from other variables and parame-

ters but simplifies the equation.) Plots generated from this

equation are shown in Figure 13.
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Fig. 12. Maximum Coefficient of Restitution When Both Wheels Start
Below Obstacle.
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Fig. 13. Maximum Coefficient of Restitution When One Wheel Starts
Above Obstacle.
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Both Wheels One Wheel L=r c=r
Down Up

1.965 2.847 2 0.2

1.885 2.344 4 0.2

1.763 3.625 2 0.6

2.010 2.861 4 0.6

TABLE II

MAXIMUM COEFFICIENT OF RESTITUTION FOR VEHICLE WITH 45 CM

DIAMETER WHEELS AND 10 CM OBSTACLE.

Fig. 14. Wheelchair Wheel Friction Measurement (top) and Wheelchair

Against Step (bottom).

IV. EXPERIMENTS

Experiments were performed to determine the friction

coefficient for a wheelchair wheel. An experiment is shown

in Figure 14. Results ranging from 0.85 to 1.2 were obtained

for the rubber wheel on a cinder block.

Experiments were also performed to test the analysis

contained in the paper. Figure 14 shows one such experiment.

Using 33.75 cm wheels and a cinder-block step, it was found

that a 6.25 cm height (h=r D 0:37) could be traversed, while

a 7.5 cm height (h=r D 0:44) could not. In the first case, the

required friction coefficient from equation 6 is 1.23, which is

similar to the 1.2 maximum value obtained experimentally.

For the second case, the required coefficient is 1.50. This

is significantly greater than the experimental value of 1.2,

so there is apparent agreement between experiments and

analysis. More experiments should be performed, however,

since the scale readings shown in Figure 14 were not very

repeatable.

We also performed experiments where our electric

wheelchair was given a 30 cm running start before impacting

a step. In this case, an 11.9 cm obstacle was traversed,

while a 13.75 cm obstacle was not. Notably, the reason

for the failure was due to the motor stalling, and this

is not modeled in our analysis. In any case, equation 13

indicates that e D 0:096 is the maximum value for the

11.9 cm obstacle, while e D 0:036 is the maximum for

the 13.75 cm obstacle. We experimentally determined e to

be approximately 0.9, so the wheel should not traverse the

obstacle in either case. It is possible that another effect was

responsible for the wheel climbing over the obstacle. This

might include wheel deformation and non-zero contact time

between the wheel and step, which could have made motor

torque non-negligible.

To help resolve this disparity between experiment and

analysis, we performed another set of experiments. This time

we used a single small rubber wheel with a 92 mm diameter.

We determined its coefficient of restitution to be roughly

0.8. We then rolled it toward steps of different heights and

observed whether the wheel bounced backward or forward

after hitting the step. The wheel bounced backward on a step

of height 23.1 mm, it bounced forward on a step of height

18.9 mm, and it seemed to bounce purely vertically on a step

of height 20.8 mm (critical case). Equation 13 predicts the

critical case would occur with a step height of 17 mm. So,

the analysis and experimental results in this case still differ,

but there is much better agreement than with the wheelchair.

Again, the fact that the wheel can traverse a taller step than

the analysis predicts could be due to the non-zero contact

time and wheel deformation. The wheel deformation has the

effect of effectively decreasing � , which decreases the ratio

h=r .

V. CONCLUSIONS

Static and dynamic analyses were performed to determine

the effect of obstacle height requirements on major UGV

parameters, such as wheel size, wheelbase, and center of

mass height. We found that inclusion of dynamic effects

led to a more relaxed set of constraints. Simple experiments

provided rough verification of the analysis with exceptions

noted and explained.
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