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Abstract— We present a novel way of modeling wheeled
vehicles on outdoor terrains. Adapting concepts from dextrous
manipulation, we precisely model the way that three dimen-
sional wheels roll over uneven ground. The techniques used are
easily adaptable to other vehicle designs of arbitrary complexity.
Our modeling method is used to validate a new concept for
design of off-road vehicle wheel suspensions, called Passive
Variable Camber (PVC). Simulation results of a three-wheeled
vehicle with PVC demonstrate that the vehicle can negotiate an
extreme terrain without kinematic slip, thus improving vehicle
efficiency and performance.

I. INTRODUCTION

In recent years there has been increased interest in robots
operating outdoors in unstructured environments [16],[6].
Despite this, the methods used to model mobile robots have
not changed much. Traditional wheeled mobile robot (WMR)
kinematic modeling (for example, [1]) assumes the robot
moves on a planar surface. The wheels are modeled as thin
disks and the velocity of each wheel center calculated by
v = ωR. As a result of these assumptions, non-holonomic
constraints (such as enforcing rolling without slip at the
wheel/ground contacts) are simple trigonometric relation-
ships.

For outdoor WMRs the kinematic modeling process be-
comes very complex, mainly because the robot is now
moving in a three-dimensional world instead of a two-
dimensional one. On uneven terrain the contact point can
vary along the surface of the wheel in both lateral and longi-
tudinal directions. Therefore the motion of the wheel/ground
contact points becomes complex. There is a need for an
accurate model of this motion in order to properly study
outdoor robots.

A. Previous Work

There have been several recent efforts to model the kine-
matic motion of WMRs on uneven terrains. However, none
of them provide a complete model for the motion of the
wheel/ground contact point due to rolling over the uneven
ground. Capturing this motion precisely is of utmost impor-
tance when studying wheel slip, power efficiency, climbing
ability, and path planning for outdoor robots.

Tarokh et al [15] provide a detailed kinematic model
for the Rocky 7 Mars rover, but assume a 2-D wheel and
do not provide a model for how the contact point moves
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along the surface of the wheel as it rolls on an uneven
ground. Meghdari et al [9] develop a similar kinematic model
for their CEDRA robot. However, they assume that certain
characteristics of the wheel motion on the terrain are known
without providing any equations describing the motion. The
kinematic model of Tai [14] places a coordinate frame at the
wheel/ground contact point, but no explanation is provided as
to where the contact point is or how the motion is influenced
by the terrain shape. Grand et al [3] perform a velocity
analysis on their hybrid wheel-legged robot Hylos. They
identify the contact point for each wheel and an associated
frame, but make no mention of how these frames evolve as
the vehicle moves.

B. Kinematic Slip

One of the problems associated with outdoor vehicles is
wheel slip. In addition to dynamic slippage due to terrain
deformation or insufficient friction, a WMR is affected by
kinematic slip [2],[16]. Kinematic slip occurs when there
is no instantaneous axis of rotation compatible with all
of the robot’s wheels. This is the general case on uneven
terrain because the wheel/ground contact points vary along
the surface of the wheel depending on the terrain shape and
robot configuration. Ackermann steering geometry, designed
to avoid such slip, works properly only on flat ground.

Wheel slip causes several problems. First, power is wasted
[16],[2]. Second, wheel slip reduces the ability of the robot to
self-localize because position estimates from wheel encoder
data accumulate unbounded error over time [5]. Accurate
kinematic models are needed to test robot designs which
will potentially reduce this costly kinematic slip.

Sreenivasan and Nanua [13] used screw theory to explore
the phenomenon of kinematic slip in wheeled vehicle sys-
tems moving on uneven terrain. Modeling two wheels joined
by a rigid axle, their analysis showed that kinematic slip can
be avoided if the distance between the wheel/ground contact
points is allowed to vary. The authors of that work suggest
the use of a Variable Length Axle (VLA) with a prismatic
joint to achieve the necessary motion. The VLA is difficult to
implement because it requires a complex wheel axle design.

As a more practical alternative to the VLA, Chakraborty
and Ghosal [2] introduced the idea of adding an extra degree
of freedom (DOF) at the wheel/axle joint, allowing the wheel
to tilt laterally relative to the axle. This new capability, herein
named Passive Variable Camber (PVC), permits the distance
between the wheel/ground contact points to change without
any prismatic joints. Figure 1 shows an example of an axle
and two wheels equipped with PVC.
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Fig. 1. Two tires on uneven ground attached to an axle equipped
with Passive Variable Camber. The axis of rotation of each PVC joint is
perpendicular to the page.

C. Contribution of this work

Traditional methods are not suitable for kinematic mod-
eling of outdoor WMRs due to the complex nature of the
terrain/robot system. More recent efforts to model outdoor
vehicle motion lack convincing descriptions of how a realis-
tic wheel rolls over an arbitrary uneven terrain.

In order to precisely model the way that three dimen-
sional wheels roll over uneven ground, we adapt concepts
developed for modeling dextrous robot manipulators. To our
knowledge, the union of the worlds of WMR modeling and
dextrous manipulator modeling is novel and does not suffer
from many of the assumptions inherent in other modeling
techniques. Also, our method is easily adaptable to other
vehicle designs of arbitrary complexity.

This document introduces a kinematic simulation of a
3-wheeled mobile robot equipped with Passive Variable
Camber and operating on uneven terrain. The purpose of the
simulation is to verify that a WMR equipped with PVC can
traverse uneven terrain without kinematic slip. Based on the
results, PVC has the potential to improve the performance
of robots moving on rough terrains.

II. ANALOGY BETWEEN WMRS AND DEXTROUS
MANIPULATORS

In this work a kinematic model of the WMR/ground
system is developed using techniques from the field of dex-
trous robot hands. The kinematics of dextrous manipulation
provide an ideal description of the way wheels roll over
uneven terrain.

A WMR in contact with uneven ground is analogous
to a multi-fingered robotic “hand” (the WMR) grasping an
“object” (the ground). The theories relating to manipulator
contact and grasping are well-suited to modeling of outdoor
vehicles. Table I summarizes the analogies between robotic
hands and WMRs.

TABLE I
RELATIONSHIPS BETWEEN MANIPULATORS AND WMRS

Manipulators Mobile Robots
Multi-fingered hand Wheeled mobile robot

Grasped object Ground
Fingers Wheels
Palm Robot platform

III. WHEELED MOBILE ROBOT SYSTEM WITH PVC

The modeling techniques described in this paper can be
applied to any wheeled vehicle. In this section we illustrate
our modeling techniques by using a representative example: a
three-wheeled mobile robot (one front and two rear wheels).
The front wheel is steerable, and the two rear wheels have
PVC joints. The wheels are torus-shaped, which is more
realistic than the typical thin-disk model [13].

A. Wheel/Ground Contact Model

Montana [10] was the first to develop kinematic contact
equations which describe how two arbitrarily-shaped smooth
surfaces roll/slide against each other. In our case the two
surfaces are the wheel and ground. In this section we will
develop the tools that we need in order to make use of
the contact equations. For a good overview of dextrous
manipulation and the associated mathematics, see [11].

The surface of each wheel is parameterized relative to its
frame {W} by ui and vi. This means that a unique point
on the surface of the wheel (in the cartesian coordinates
of {Wi}) is f(ui, vi). Similarly, ground surface is param-
eterized relative to its frame {G} by x and y. This means
a unique point on the ground surface is (x, y, g(x, y)) =
(x, y, z).

Montana’s equations describe the motion of the point of
contact across the surfaces in response to a relative motion
between the wheel and the ground. This motion has five
degrees of freedom (DOFs). The only constraint is that
contact must be maintained: no translational component of
motion along their common surface normal is allowed. These
five DOFs have the following interpretation: two DOFs each
for the position of the contact point on the two surfaces
(wheel and ground), and one DOF for rotation about the
surface normal. The parameters that describe these five DOFs
for wheel i are

ηi = [ui vi xi yi ψi]
T
, i = 1, 2, 3

where ψi is the angle of rotation about the common surface
normal. They are grouped for all three wheels as: η =
[ηT1 ηT2 ηT3 ]T .

Figures 2 and 3 show the coordinate frames which will
be used to develop the kinematic equations. The frame
definitions and other conventions follow [10]; see that work
for more details. Frame {G} is the ground reference frame.
Frame {contGi} is the ground contact frame for wheel i.
The z-axis of {contGi} is the outward normal to the ground
surface at the contact point. Frame {P} is the robot platform
reference frame. {Ai} is the frame at the point of attachment
of the wheel i to the platform. {Wi} is the reference frame
of wheel i. {contWi} is the contact frame relative to wheel
i. Its z-axis is the outward pointing normal from the torus-
shaped wheel, which is collinear with the z-axis of {contGi}.
ψi is the angle between the x-axes of frames {contGi} and
{contWi}.

Also important are the velocities of the wheel relative to
the ground:
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Fig. 2. Coordinate frames of the wheel and ground.

Fig. 3. Coordinate frames of the robot platform.

contWVGW = Vc = [vx vy vz ωx ωy ωz]
T (1)

The leading superscript indicates that the vector is resolved in
the {contW} frame. The trailing subscripts {GW} indicate
that the velocity is of frame {W} relative to frame {G}.
Since we are interested in enforcing rolling contact (no
sliding), we define the “allowable contact velocities” as a
subset of Vc:

Ṽc = [ωx ωy ωz]
T
. (2)

Montana [10] developed kinematic equations which de-
scribe how two arbitrarily-shaped smooth surfaces roll/slide
against each other. In our case the two surfaces are the wheel
and ground. Metric (M ), curvature (K), and torsion (T )
forms from differential geometry are used to describe the
ground and wheel surfaces. The equations for rolling contact
are:

(u̇, v̇)T = M−1
w (Kw +K∗)−1 (−ωy, ωx)T

(ẋ, ẏ)T = M−1
g Rψ (Kw +K∗)−1 (−ωy, ωx)T

ψ̇ = ωz + TwMw (u̇, v̇)T + TgMg (ẋ, ẏ)T .
(3)

where subscript w indicates the wheel and g indicates the
ground. See [10] for more details about these equations
and their derivation. The inputs to these equations are the
allowable contact velocities Ṽc, and the outputs are η̇, so we
abbreviate them by:

η̇ = [CK] Ṽc, (4)

where [CK] stands for “Contact Kinematics”. These are the
non-holonomic constraints of the robot/ground system.

B. Robot Configuration Variables

In this section we introduce the position and velocity
variables which describe the state of the robot. The vector
of joint velocities is:

θ̇ =
[
φ̇1 α̇1 γ̇2 α̇2 γ̇3 α̇3

]T
where α̇i is the driving rate of wheel i, φ̇1 is the steering
rate of wheel 1, γ̇i is the rate of tilt of the wheel about the
PVC joint of wheel i (for i = 2, 3).

The relative velocity between the ground and platform
is VPG. The vectors of configuration and velocity variables
which define the state of the robot/ground system are grouped
together as:

q =


θ
η

PPG
P̃c

 , q̇ =


θ̇
η̇

VPG
Ṽc

 , (5)

where PPG and P̃c are the position equivalents of VPG and
Ṽc, respectively.

IV. KINEMATIC MODELING METHOD

In this section, our method for kinematic modeling of the
three-wheeled mobile robot is introduced. Table II shows the
desired inputs and outputs for the forward kinematics.

TABLE II
FORWARD KINEMATICS INPUTS AND OUTPUTS

Inputs Outputs
Desired wheel Platform

joint velocities θ̇ velocities VPG

A. Choice of Inputs θ̇

Following [4], we group the platform/ground relative
velocities VPG and contact velocities Ṽc together in VGC =[
V TPG Ṽ Tc

]T
. Jacobian matrices can be formed such that:

JGC VGC = JR θ̇. (6)

Equations (6) are constraints which relate the joint veloc-
ities θ̇ to the relative ground/platform and contact velocities
VGC . In the general case neither JGC nor JR are square and
thus are not invertible.

Because of the constraints (6) we cannot freely choose our
inputs θ̇. However, we can calculate inputs consistent with
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(6) which are as close as possible (in the least-squares sense)
to a vector of desired inputs. This is done as follows. Let c
be the number of columns of JGC . The QR decomposition
[7] of matrix JGC is:

JGC = QR.

Let r = rank(JGC). Split Q into [Q1 Q2], where Q2 ∈
<c×(c−r). Q2 forms a orthonormal basis for the null space of
JTGC , meaning JTGC Q2 = 0 or QT2 JGC = 0. Pre-multiplying
both sides of 6 by QT2 yields:

QT2 JGC VGC = QT2 JR θ̇,

or
QT2 JR θ̇ = 0. (7)

Equation (7) is a set of constraint equations for the inputs
θ̇. To make use of these equations, let Cθ = (QT2 JR) ∈
<p×q and rank(Cθ) = p. The QR decomposition of CTθ is:

CTθ = [QC1 QC2] RC ,

where QC2 ∈ <q×p. Then Cθ QC2 = 0, meaning QC2 is an
orthonormal basis for the null space of Cθ. At this point, we
can choose independent generalized velocity inputs θ̇g such
that

θ̇ = QC2 θ̇g. (8)

However, since neither Cθ nor QC2 are unique and both
change as the robot configuration changes, the generalized
inputs θ̇g have no physical interpretation and their relation-
ship with the actual joint velocities θ̇ is unclear.

Since (8) is of limited use, we take another step. We want
our actual joint velocities θ̇ to match some desired joint
velocities θ̇d, or θ̇ ≈ θ̇d. Combining this with (8), we have:

QC2 θ̇g ≈ θ̇d.

To get as close as possible in the least squares sense to θ̇d,
use the pseudo-inverse [12] of QC2:

θ̇g = Q+
C2 θ̇d = (QTC2QC2)−1QTC2 θ̇d. (9)

Since the columns of QC2 are orthonormal, Q+
C2 reduces to

QTC2. Noticing that θ̇ = QC2 θ̇g , we can pre-multiply both
sides of (9) by QC2 to get:

QC2θ̇g = QC2Q
T
C2θ̇d,

or

θ̇ = QC2Q
T
C2θ̇d = Jinθ̇d. (10)

Jin can be thought of as a transformation that takes the
desired velocities θ̇d, which can be arbitrary, and transforms
them such that θ̇ satisfy the constraints (6) while remaining
as close as possible to θ̇d.

Equation (10) is a highly useful result for our simulation.
First, it eliminates the need to deal with independent gen-
eralized velocities θ̇g , which have no physical meaning. We

can instead directly specify a desired set of joint velocity
inputs θ̇d and get a set of actual inputs θ̇ which satisfies
the constraints (6) of the robot/ground system. Second, θ̇
is guaranteed to be as close as possible to θ̇d in the least
squares sense. Third, (10) gives us control over the type
of motion we want: for instance, if we want a motion
trajectory that minimizes the PVC joint angles γ2,3 then we
set γ̇2d = γ̇3d = 0. The actual γ values will then remain as
close to 0 as the system constraints permit.

B. Holonomic Closure Constraints

The robot/ground system is modeled as a hybrid series-
parallel mechanism. Each wheel is itself a kinematic chain
between the platform and the ground, and there are three
such chains in parallel. The closure constraints [11] for the
parallel mechanism specify that each kinematic chain must
end at the same frame (in this case, {P}). Let TAB be the
4× 4 homogeneous rigid body transform between frames A
and B. Then the closure constraints for the robot are

TGP,wheel1 = TGP,wheel2 = TGP,wheel3. (11)

These can be interpreted as ensuring that the robot platform
remains rigid: proper relative lengths and orientations are
preserved. Equations (11) can be written as

TGP,wheel1 − TGP,wheel2 = 0
TGP,wheel1 − TGP,wheel3 = 0, (12)

which are algebraic equations of the form C(q) = 0. To
avoid having to solve a mixture of differential and algebraic
equations, C(q) is differentiated to obtain:

Ċ(q) =
∂C

∂q
q̇ = J(q) q̇ = 0. (13)

C. Forward Kinematics Equations

We now have all of the tools that we need to make a
complete set of ordinary differential equations (ODEs) to
model the robot/ground system.

Equations (10) relate the desired and actual joint velocities
of the system. The rolling contact equations (4) are the non-
holonomic system constraints. The holonomic constraints
(13) ensure that the wheels remain in the proper position and
orientation relative to one another. As all of these ODEs are
linear in the velocity terms, they can be collectively written
in the form:

M(q) q̇ = f(q) (14)

Equations (14) are a complete model of the system, in-
corporating enforcement of the rolling contact equations.
Solving these equations given desired joint velocity inputs
θ̇d yields the motion of the entire system, including precise
information about how the wheels roll over the uneven
terrain.
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Fig. 4. The wheeled mobile robot on the plateau terrain.

D. Adaptability of the Modeling Method

Our formulation is adaptable to other vehicle designs of
arbitrary complexity: one simply has to create new coordi-
nate transforms TGP which reflect the geometry of the new
system. All other equations will remain identical in structure
to those presented here. This makes our modeling method
versatile and powerful for realistic kinematic simulations of
outdoor vehicles operating on rough terrains.

V. RESULTS AND DISCUSSION

The kinematic simulation was run on several different
surfaces and for various inputs. MATLAB’s ODE suite was
used to solve (14) and the Spline Toolbox was used to
generate the ground surfaces. We present results for two
surfaces: a high plateau and a randomly-generated hilly
terrain.

A. Climbing a Hill

As a demonstration of the usefulness of our modeling
method, here we present a simulation of the 3-wheeled mo-
bile robot climbing a steep hill onto a plateau. To the authors’
knowledge, this simulation, which precisely represents the
rolling motion of the wheels on a complex ground surface,
is not possible with other existing methods. Fig. 4 shows the
3-wheeled robot climbing the hill.

The hill climbing simulation was run for 20 seconds with
the following desired inputs:
• Steering rate φ̇1 = 0
• Driving rates α̇1,2,3 = 1 rad/sec ≈ 57.3 deg/sec
• PVC joint rates γ̇2,3 = 0.

Fig. 5 plots the θ̇ inputs and the steering and PVC angles
along with their desired values θ̇d.

B. Random Terrain

Our simulation also works for more general and complex
surfaces. Fig. 6 shows the 3-wheeled robot negotiating a
randomly-generated ground surface.

The inputs for this simulation were the same as for the hill
climbing simulation in the previous section. Fig. 7 plots the
paths of the 3 wheel/ground contact points in the ground x-y

Fig. 5. Joint angles and rates: wheel drive rates, steering angle, and PVC
angles.

Fig. 6. The wheeled mobile robot on the random terrain.

plane. It also shows the projections of the wheel centers in
that plane, to show that the wheels tilt as the robot traverses
the uneven terrain. The platform velocities Vp are plotted in
fig. 8.

Fig. 9 plots the L2 error in satisfaction of the holonomic
constraints (12) and the rolling contact kinematic equations
(4). Fig. 9 shows that the constraint equations are well
satisfied during the course of the simulation. This means
that the PVC-equipped vehicle is able to move over the
difficult terrain with negligible wheel slip. Had we not used
dextrous manipulation kinematics to precisely model the
wheel motion, it would not have been possible to verify
PVC’s performance in this way.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel way of modeling
wheeled vehicles on outdoor terrains. In order to precisely
model the way that three dimensional wheels roll over
uneven terrain, we adapted concepts developed for modeling
dextrous robot manipulators. Our method provides a concise
and meaningful set of ordinary differential equations which
completely describe the kinematics of the robot/ground sys-
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Fig. 7. The wheel/ground contact points (dotted) and wheel centers (solid)
in the xG-yG plane.

Fig. 8. The platform linear and angular velocities Vp.

Fig. 9. The L2 error in satisfaction of the holonomic and non-holonomic
constraints.

tem. Also, our method is easily adaptable to other vehicle
designs of arbitrary complexity.

The purpose of the simulation is to validate a new concept
for design of off-road vehicle wheel suspensions. We used
our modeling techniques to simulate the motion of a three-
wheeled vehicle with two Passive Variable Camber joints.
The results demonstrate that the vehicle can negotiate an ex-
treme terrain without kinematic slip, thus improving vehicle
efficiency and performance.

Our next step will be a dynamic simulation of the PVC-
equipped robot. This will allow a comparison of dynamic slip
and power consumption with and without PVC. We are also
designing an experimental set-up by which we can verify
that a real wheel and axle with a PVC joint can negotiate an
uneven surface with reduced or eliminated kinematic and
dynamic slip and less power consumption than a regular
wheel/axle combination.
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