

Fig. 1 A setup with a 6-DOF robot arm and a 1-axis positioning table. A tool
is held by the end-effector of robot arm while an object is placed on a
positioning table. The end-effector moves to several goals which are
pre-defined parts of the object while the table positions the object.

object

goals

table

rotation of table

1

Abstract—The minimum-time motion coordination is an
important subject in robotics. In this study, the arrangement of
several goals, which is treated as a traveling salesman problem
(TSP), is incorporated to this subject. Although TSP has been
studied in most previous works; but, solving a TSP that takes
into account collision occurrences has not received much
attention. This instance arises when a robot arm has to plan a
sequence of reaching goals with other moving objects and/or
other robot arms. If goals are also moving, then the problem
becomes more complex since the end configuration of robot arm
is undefined when reaching a goal. In this study, in particular, a
6-DOF robot arm has to reach several goals found in an object
while a 1-axis positioning table simultaneously positions the
object; thereby changing the goal locations and collision
occurrences are inevitable. For the purpose of this study, the
TSP is solved effectively with motion coordination and collision
avoidance. The collision-free configurations of a robot arm
when reaching goals are solved through motion coordination.
Collision is avoided by exploiting the redundancy of the system.
The above-mentioned solution is verified through a simulation
utilizing an object with various numbers of goals and their
positions, and is proven effective.

I. INTRODUCTION
HE minimum-time completion of task done by a single
robot or several robots is very important in

manufacturing to meet the demand for high productivity.
When two or more robots share a common workspace, the
primary concern is the minimum-time and collision-free
motion coordination. When a robot has to reach several goals,
the arrangement of these goals is normally formulated as a
traveling salesman problem (TSP) to obtain minimum-time
motion.

Several previous works studied on trajectory planning of a
single robot with initial and final configurations while
avoiding collision with static obstacles or other robots [1], [2].
In [3], it is shown that planning a collision-free path for a
robot among a set of polyhedral obstacles between two goals
is a PSPACE-hard problem. In other research works [4]-[6],
the trajectory paths of robot arms are given. In [4] and [5], a
robot arm with a positioning table is studied in which the
robot arm is required to follow a continuous path. In [6],
several robots with required trajectories are coordinated
while considering dynamic constraints and collision-free
motion is solved through changing of robot start times.

L.B. Gueta, R. Chiba, J. Ota, and T. Arai are with Department of Precision
Engineering, Graduate School of Engineering, at the University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. (email:{gueta, chiba, ota,
arai-tamio}@robot.t.u-tokyo.ac.jp).

T. Ueyama is with DENSO WAVE INCORPORATED, 1-1, Showa-cho,
Kariya-shi, Aichi, 448-8661, Japan.

A few studies in motion coordination incorporate goal
arrangement. In [7], the motion coordination of two robot
arms with goal arrangement using simulated annealing is
studied; however, no collision avoidance was considered. In
[8], a study was done on a single robot arm with goal
arrangement and collision avoidance on a static obstacle
using probabilistic roadmap planner. In [9], a multi-robotic
assembly system is optimized using genetic algorithm with
coordination of X-Y placement and 2-DOF delivery
machines, ordering of components, and collision detection in
a 2D environment. Independently, a TSP with static goals has
been the topic of most previous works [10]-[14]; however,
only a few studies are done on a TSP with moving goals
[15]-[17].

This study addresses the motion coordination, the
arrangement of moving goals, as well as collision avoidance
while minimizing the working time of a robot arm. A setup
with a robot arm and a positioning table, as shown in Figure 1,
is considered which is commonly used in spot welding,
assembly, and inspection works.

When a robot arm has to reach several goals found in an
object while a positioning table simultaneously positions the
object, the locations of goals also change and collision
occurrences may be inevitable. From the view point of
solving a TSP, a collision occurrence is normally not
considered, which is mainly addressed in this study. In order
to avoid collision, no modification of a straight-line path in
the configuration space of robot arm and table is done; but
instead, the redundancy of the system is utilized to select a
configuration that has a collision-free path among several
possible configurations of robot arm and table.

For the remaining parts, Section II formulates the problem
in this study. Section III describes the proposed method
while Section IV provides the algorithms used in detail. The
experiment and result are discussed in Section IV while a
conclusion and plan is given in Section V.

Coordinated Motion Control of a Robot Arm and
a Positioning Table with Arrangement of Multiple Goals

Lounell B. Gueta, Ryosuke Chiba, Jun Ota, Tsuyoshi Ueyama, and Tamio Arai

T

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2252

Fig. 2 Some possible configurations of Ar and At with 4 goals {pi1 pi4} (Top view). Ao is the rectangular box. The end-effector of Ar is marked as a red dot while
a goal is marked as a blue dot, which signifies its position, and an adjacent arrow, which signifies its orientation. The color of a goal is changed to red when Ar
reaches that goal. The bent arrow denotes the direction of movement of At. Initially, the end-effector is at p0 as shown in (a) and after doing a task, it returns to
p0 as shown in (f). The dashed circle traces the possible position of a goal as At positions Ao.

(a) (b) (c) (d) (e) (f)

Ao Goals
pi1

pi2
pi3

pi4 p0

II. PROBLEM FORMULATION
This section describes the problem considered in this

study. Let Ao, At, and Ar denote the object, table, and robot
arm, respectively. Since At and Ar compose one redundant
system, their configurations at a goal are denoted compactly
as q = {θ 0...θ 6} where θ 0 is the rotation angle of At and
{θ 1...θ 6} are the joint angles of Ar.

A. Input parameters
1) The goals p1...pN where N is the number of goals: A

goal is a vector in which its position is its location relative to
the object and its orientation describes the required
orientation of end-effector when it reaches that goal. Note
that p1...pN are detached from Ao (See Fig. 1).

2) The start and end configurations of both Ar and At
before and after all the goals are reached: For the purpose of
this study, these configurations are just the same which is
referred as q0 or equivalently, where Ar is solely said to be at
goal 0, p0.

B. Assumptions
1) The robot arm has large reduction ratios that its

dynamics can be neglected [10].
2) The object can be bounded by an imaginary

rectangular box that excludes goals; effectively, the goals are
outside the bounding box.

3) The motion of Ar, At, and Ao are sampled at a sufficient
time interval so that no collision occurs during movement
from one goal to another goal.

C. Constraints
1) Kinematic constraints: The joint and velocity limits of

robot arm must be satisfied.
2) Position constraint: The end-effector must satisfy the

required position and orientation when it reaches a goal.
 3) Calculation time constraint: For practicality, the
solution must be obtained at a reasonable amount of time,
which is set at 20 minutes. Several other aspects in
optimization can be considered as future research works (e.g.
base placement, trajectory motion planning); thus,
minimizing the calculation time is desired at this stage of
study.

D. Problem description and definition
Initially, Ar and At are at q0. Then, Ar moves to all goals;

concurrently, At rotates and positions Ao. Afterwards, Ar and
At moves back to q0.

Let tj(a,b) denotes the motion time of joint j∈{0...6} in
moving from goals a to b. In addition, let π=(i1…iN), which is

a permutation of (1…N), denotes the goal order. The problem
is defined as: determine (1) the order π, and (2) the
configuration of Ar and At, qi for every pi∈(pi1… piN) in order
to minimize the working time T such that:

∑
=

+=
−

N

k
iii ppcppcT

Nkk
1

0),(),(
1

 (1)

where pi0=p0 and c(a,b)=)],([max
}6..0{

bat jj∈
 since the slowest

joint in a multi-joint system dictates its motion time. The
motions of Ar and At are coordinated by finding qi for every
goal pi∈(pi1…piN) satisfying the constraints and no collision
occurs among Ao, At, and Ar as Ar moves from one goal to
another goal. The above formulation implicitly imposes a
point-to-point motion of end-effector, which is appropriate
for applications that require the robot arm to stop at every
goal to perform a task.

III. PROBLEM ANALYSIS AND A SUMMARY OF
THE PROPOSED SOLUTION

In this section, the problem is analyzed and the proposed
solution is presented.

A. Problem Analysis
For concreteness, consider Figure 2. The p0, as described

by the position of end-effector in Fig. 2(a), is located above
Ao and is aligned on the rotation axis of At. Fig. 2(b) to Fig.
2(f) shows qi or the configuration of Ar and At for
pi∈{pi1…piN}. From p0, Ar moves to pi1 as shown from Fig.
2(a) to Fig. 2(b). As for At, the direction of motion can either
be clockwise or counter-clockwise resulting into several
possible locations for pi1, which is described by the dotted
circle in Fig. 2(b). Similarly, these locations are the possible
end-effector positions of Ar when it plans to reach pi1. Note
that this has been possible due to the additional DOF in At.
This scenario holds true for the remaining goals.

In this system, the travelling distance of Ar is based on the
joint space of Ar and At. As Ao is rotated by At, the joint
configuration of Ar is also changed to satisfy the position
constraint. For one instance, At moves in one particular
direction while Ar moves to a direction that shortens its
travelling distance between goals. In some possible instance,
At is stationary while Ar moves, or vice versa, depending on
which instance a collision-free motion is possible. In another
instance, the travelling distance of end-effector may be longer
to avoid collision. In summary, there are three unique aspects
of TSP in this study: (a) the travelling distance which is based
on the joint configuration space, (b) the goals can be

2253

positioned by the table resulting into several possible
configurations, and (c) the motion from one goal to another
can result into collision between a robot arm and a table or an
object. Solving this type of TSP is indeed a challenge as there
is no identical work that has been done in the past. The
movement of goals becomes more complex if an additional
DOF is added to At that will allow for additional movement,
rotational or translational, of goals.

In addition, as the number of goals increases, the number
of possible orders increases exponentially and exploring all
possible orders becomes impractical. Another complexity is
the high-dimensionality of possible positions of {pi1…piN},
which heavily loads the calculation together with collision
detection in a 3D environment.

B. Proposed Solution
The problem is divided into three sub-problems. For each

sub-problem, a solution method is proposed and is analyzed
to find opportunities to improve its performance. The three
sub-problems are: (1) TSP or goal arrangement, (2)
coordinated motion control of Ar and At, and (3) collision
detection. The cycle to minimize the working time, as shown
in Figure 3, is as follows: For N input goals, a possible order
is determined in (1). A clustering method is employed in
order to reduce the time spent in testing several possible goal
orders. In (2), given a goal order, the qi for every goal is
solved. Sub-problem (3) detects if there is collision that
occurs in Ar, At and Ao when finding a solution to
sub-problem (2). As a result, the working time T is calculated.
If the calculation time is still within the calculation time
constraint, then a new order is considered and the same cycle
as described above is done. Otherwise, the cycle is terminated
and the solution that has the least working time is considered
as the best solution.

Note that an order is derived first before a coordinated
motion is obtained since qi is very dependent on the goal
order. Ideally, an algorithm that solves simultaneously the
goal order and qi for every goal is desired. However, with the
aforementioned complexity, a practical solution is proposed
in this study.

IV. DETAILS OF THE PROPOSED SOLUTION

This section provides the details of the algorithms
employed in the solving the TSP, the motion coordination,
and the collision detection.

A. TSP: Goal arrangement with clustering
1) Overview: The TSP is a combinatorial problem. With

N goals, there are N! orders and considering all these orders
can take enormous calculation time. For this reason, the goals
are clustered into groups.

For a large scale TSP, a mean vector, which is the average
position of goals in one cluster, is first determined [18]. These
mean vectors are the basis for determining the order of
clusters, the solution of which is referred as a reference TSP.
After deriving a reference TSP, two cities for every cluster is
selected that will serve as the connecting goals between
clusters. Then, the goal order in every cluster is solved. The
direct application of utilizing the mean vectors is, however,
inappropriate in this study since it may lead to impossibility
in deriving a reference TSP due to collision. The succeeding
parts describe the algorithm for solving TSP with clustering.

2) TSP algorithm: With clustering, the TSP algorithm
involves solving the order of clusters and the goal order for
every cluster. In this study, an ad hoc algorithm is proposed
and its steps are discussed below.
 a) Assign a cluster for every goal. The goals are clustered
based on their topological locations on Ao as shown in Figure
4. This employs the assumption that Ao can be modelled as an
approximate box and the box does not enclose any goals.
Every goal is associated to a cluster {g1...g5}; each cluster
corresponds to the face in the geometric shape of Ao. Since the
goals in each cluster are nearer to each other compared to
other goals from different clusters, deriving a goal order from
the same cluster is more practical than with goals from
various clusters. In addition, the motion of Ar between goals
in the same cluster has a greater chance of not encountering
collision than goals from different clusters.

b) Determine the order of clusters. For simplicity, the order
of clusters is determined through 2-opt algorithm which
exchanges the order of two clusters. The stopping condition
for exchanging clusters is when it did not result to an
improvement in the solution or when the calculation time
limit is already reached.

Fig. 4 Clustering of goals. The planar boundaries in (a), represented as
arrows in (b), define the limits in assigning a cluster to every goal. The
clusters {g1..g4} correspond to the sides of Ao while g5 to its top. If the
cluster order is g1, g4, g3 , g2 and g5, then the dotted lines show the links
connecting a goal from one cluster to a goal of a next cluster.

po

g1

g2

g3

g4

g5

Ao

(a) Isometric view (b) Top view

Start

End

TSP: Goal arrangement with clustering

 Coordinated motion control with
collision detection

Is solution improved?

Yes

No

Is design time limit
exceeded?

Yes
No

Fig. 3 The Proposed Solution

2254

c) Connect clusters. After a cluster order is derived, the
clusters are linked by finding their connecting goals. There
are two connecting goals for every cluster. If a cluster is
either the first or the last in a cluster order, then one
connecting goal is connected to p0. This connecting goal is
determined by selecting the nearest goal to p0. For two
consecutive clusters, the connecting goals are determined
based on the mean vector, which is the mean of goal positions
(x, y, and z values) of a cluster. Consider two consecutive
clusters, gfrom and gto, where gfrom precedes gto. First, the mean
vector of gto, mto, is determined. Then, nfrom, the goal in gfrom
that is nearest to mto, is selected. Afterwards, nto, the goal in
gto that is nearest to nfrom is determined. The pair (nfrom, nto) is
the connecting goals for gfrom and gto. Note that these
connecting points depend on the cluster order.

d) Determine the goal order in every cluster. After
connecting clusters, the goal order is determined in each
cluster. As can be seen in Fig. 4, the goals of a cluster that are
the connecting goals of its preceding and succeeding clusters
must be the start and end goals, respectively, when a goal
order within that cluster is determined. Therefore, the goal
order in a cluster is solved as a TSP with the aforementioned
precedence constraints.

In this study, it is conjectured that the goal order that is
based on Euclidean distance is a reasonable estimate of their
order in the configuration space. If the order is based in the
configuration space of Ar and At, deriving the goal order
becomes very complex since as At repositions Ao, the
configuration space is changed. If the order is based on the
Euclidian distance, then it can be derived using an existing
TSP algorithm.

One of the most effective methods in solving a TSP in a
relatively short calculation time is the LK heuristic [14]. In
this study, the implementation of LK heuristic by Helsgaun is
adopted and modified to accommodate the precedence
constraints. The reader is referred to [14] for a detailed
discussion of LK heuristic.

If the goal order in every cluster is obtained, then the order

of goals is completely determined. Note that the goal order is
based on the Euclidean distance but the working time T is
based on the joint configuration space. In essence, the goal
order acts as a guide for At on which goal it will reach and the
T is calculated based on the actual motion time of Ar and At.

B. Coordinated motion control
Given a goal order, the aim is to determine qi for every

pi∈{pi1…piN}. In this study, the possible positions of pi are
determined by θ 0 which is parameterized into discrete values:

θ0(l) = θ 0,min + l*k (2)
 where, l∈{0,1,…lmax}, lmax=int((θ 0,max -θ 0,min)/k + 0.5)},

int() gives the nearest integer value, k is the discrete step size
of θ 0, θ0,min, and θ 0,max∈{-180°…180°} are the minimum and
maximum values of θ 0. By discretization, the solutions are
inherently just approximates. Nonetheless, an approximate
solution that has short calculation time is preferred over a
high-quality solution that demands an enormous amount of
calculation time.

The position of At and pi are defined by a single θ 0 value.
By assigning a value to θ 0, the inverse kinematics of At is
derived, which completely determines qi. For every pi, there
are lmax+1 possible positions and for every order of {p1…pN},
there are N x (lmax+1) positions; hence, with the large size of
possible positions, it is practical to represent them as a graph.
Consequently, the qi for every goal is solved as a graph
search. A detailed discussion is provided below.

1) Generate search space: A directed graph G=(V,E) is
created in which the vertices V are sets of qi. The weighted
edges E are the lines connecting the vertices of pi to pi+1. For
every pi, the possible positions, called candidate positions,
are determined using (2).

2) Check validity of candidate positions: For every
candidate positions, {θ 1…θ 6} are determined through inverse
kinematics (IK) of Ar. If an IK solution exists, then that goal
position is said to be valid; otherwise, invalid.

The validity check ensures that the position of goal is
reachable by Ar but does not guarantee that a collision-free
path exists in moving from a previous goal. By employing
first the validity check, the computational burden of checking
every pair of vertices is avoided. In addition, the goal position
can still be regarded as valid even if a straight line path is not
possible since the path can be modified to avoid collision.

3) Calculate motion time as edge weights: The motion time
in reaching a valid goal position is calculated. For simplicity,
it is assumed that a joint achieves its maximum velocity in a
very short time; thus, the motion time from goal a to goal b,
tj(a,b), is calculated as:

tj(a, b)= |θ j in a - θ j in b |/vj,max (3)
where vj,max is the maximum velocity of joint j.
4) Find shortest collision-free path: A shortest

collision-free path is determined by choosing a valid qi with
the least c(pi, pi+1) and then checking if a path has no
collision. In this study, the trajectory of Ar is based on a
straight-line path in the configuration space of Ar and At. No
modification of a straight-line path is done when collision
exists. The collision is avoided by selecting a valid qi with a
collision-free straight-line path. In a worst-case scenario, no
valid qi that has a collision-free path is possible and therefore,
a modification of straight-line paths like roadmap methods
becomes inevitable.

In finding the shortest collision-free path, there are three
search methods tested and compared in terms of the quality of
solution and the calculation time. The definition of c(pi, pi+1)
in (1) is extended where i is changed to s to mean a stage in a
graph. Let cl

s (ps, ps+1) denotes the motion time at stage
s∈{0…N+1} of a valid qi with collision-free path when
θ 0=θ 0(l) , Cl

s is the motion time from stage 0 to s and Cs
denotes the least motion time at stage s.

a) Greedy Nearest Neighbor method (GM): The selection
of qi is based on only two consecutive goals. At every stage s,
Cs is calculated and hence qi is determined. The calculation
involved in GM is shown below.

)},({min 10
1

}...0{

1

max

ppcC lll∈
= ,

2255

Fig. 5 Search space for the coordinated motion control of Ar and At. For N
goals, there are N+2 stages with the first and last stages corresponding to
po.The objective is to select a set of vertices that results to the shortest
collision-free path in moving from p0 and moving back to it.

Goals

q1 when l=lmax

pi1 pi2 pi3 piN

l v
al

ue
s

p0p0 0

lmax

piN-1 piN-2

1
21

2

}...0{

2)},({min
max

CppcC lll
+=

∈

1
1}...0{
)},({min

max

−
+∈

+= s
ss

s
lll

s CppcC ,

N
N

N CppcT += +),(0
1 .

Fig. 5 shows the graphical representation of GM. The
vertices from where the edges emanate correspond to the goal
positions with the least motion time at their corresponding
stages (i.e. C1...Cs).

b) Dijkstra method (DM): The DM, a widely-used
algorithm, calculates the cost at every vertex with valid qi and
collision-free path. At stage s, the cost of every vertex cl

s is
calculated based on the cost in moving from stage s-1 to s and
on the derived minimum cost from stage 0 to s-1. The
calculation involved in DM is shown below.

),(10
11 ppcC ll = ,

}),({min 1
21

2

}...0{

2

max
nllnl CppcC +=

∈

}),({min 1
1}...0{ max

−
+∈

+= s
nss

s
lln

s
l CppcC ,

}),({min 0
1

}...0{ max

N
nN

N

ln
CppcT += +

∈

After T is calculated, the search graph is backtracked to
find the qi which is part of the solution.

c) Rough-to-smooth method (RS): The RS method, which
is the proposed method, is a dual-stage search method that is
based from the idea of solving an approximate solution at a
short amount of time and then later improving the solution.
An approximate solution is derived using a large k value (i.e.,
rough table motion) in a large search space (i.e. large θ 0,min
and θ 0,max values) and afterwards a solution is improved by
using a small k value(i.e., smooth table motion) at a narrow
search space (i.e. small θ 0,min and θ 0,max values) near the
approximate solution.

One problem with RS is on selecting k values for the two
stages. With a large k value at the approximation stage, the
calculation time is reduced but may result to a low-quality
solution. At the improvement stage, although using a small k
value can improve a solution; but the vertices which are parts
of a good solution may have already been left out at the
approximate stage. In the implementation of RS, GM and DM
are combined: (1) RS_GM and (2) RS_DM. In both
combinations, the GM is utilized at the approximation stage
due to its speed in finding a solution. At the improvement

stage, the GM is utilized in RS_GM while DM is used in
RS_DM.

An exhaustive search method to solve the shortest path has
to consider (l+1)N

max path which makes it impractical. The
GM searches at most Nx(lmax+1) paths while DM searches at
most Nx(lmax+1)2 paths. The DM has relatively longer
calculation time than GM but due to its method of finding
solution, DM is expected to obtain a solution better than GM.

C. Collision detection
The Ar, At, and Ao are modeled as approximate boxes called

oriented bounding boxes (OBBs) [19], which is practical for
modeling their rectangular shapes. The OBBs are defined by
its size and orientation. To detect collision is to check the
overlaps of two OBBs and a naive way of doing it is to
perform 144 edge-face tests (i.e., 12 edges of one box times
12 edges of the other box). The collision detection is done
through the separating axis theorem which states that two
disjoint convex polytopes in 3D-space can always be
separated by a plane which is parallel to the face of either
polytope or orthogonal to an edge from each polytope. By
employing this theorem, there are 15 potential separating axes
for two OBBs (i.e., 3 faces from one box, 3 faces from the
other box, and 9 pair-wise combinations of edges). A test of
being disjointed is to project the two OBBs onto a potential
separating axis. If their projections do not overlap, then OBBs
are not colliding. If their projections do overlap, other
potential separating axes are subsequently used to check if
they again overlap or not. In short, the worst case scenario for
detecting collision is to perform 15 tests when two OBBs are
overlapping. A detailed discussion is given in [19].

V. SIMULATION AND DISCUSSION
This section describes the simulation done as well as the

result and discussion.

A. Parameters
A simulation with different parameter settings is done to

assess empirically the performance of various search
methods. Table I shows the parameters used in the
experiment. The velocities, v1-v6, correspond to joint
velocities of robot arm from its base up to the end-effector.

There are six Ao considered; the goal positions are different
TABLE I

SIMULATION SETTINGS

Parameter Notation Setting

Ar base position(mm) x=-540, y=0, z=300
Initial end-effector
position

p0 x=0, y=0, z= 700

Joint velocity (deg/s) v1~v6 250, 250, 250, 410, 410, 660
At position: x=0, y=0, z= 0

At velocity: (deg/s) v0 3600
At size: lxwxh (mm) 400x400x400
Ao size : lxwxh (mm) 400x400x150
Ao type Obj1 ,Obj2 N= 25
 Obj3, Obj4 N= 50
 Obj5, Obj6 N= 75

2256

in Ao with equal number of goals. The distribution of goals on
the object is randomly generated. The sizes of clusters are
uniform but clusters with non-uniform sizes can be dealt with
by the clustering method employed in this study. In addition,
the number of clusters is 5 for all objects. Since the size of
object is fixed, the distribution of points in each cluster
becomes dense as N is varied from 25 to 75.

In the given positions of Ar and At, some of the goals cannot
be reached by end-effector due to collision; hence, it is
impractical to compare the result of this simulation, which
has coordinated motion control of Ar and At, to a setup with
static At or to a setup which does not consider collision. In
finding the shortest collision-free path, the settings of various
search methods are shown in Table II. There are several
possible settings for RS method by choosing values for k, θ 0,

max, and θ 0, min; although only two settings are chosen as
references that give good solutions with no substantial
amount of time incurred in calculation.

B. Results and Discussion
The results of the simulation for Obj1 to Obj6 are shown in

Figure 6 and Figure 7. Fig. 6 shows the derived best working
time for every search method while Fig. 7 shows the
calculation time spent. For all objects, as shown in Fig. 6, the
DM consistently obtains shorter working time than GM.
However, as shown in Fig. 7, the GM has shorter calculation
time than DM, has the longest calculation time for all objects.
In particular, for Obj1 and Obj2 where N=25, the
improvement of solution (i.e. reduction in the derived
working time) in DM against GM are 10% and 16%,
respectively whereas the calculation times in DM take 30 and
50 times longer than GM. Overall, as shown in Fig. 7, the
GM obtains a solution at a shorter design time. However, the
solution obtained using GM has longer working time due to
its short-sighted search method, which selects configuration
based only on the possible configurations of the next goal. In
effect, the GM misses out vertices in the search graph that
may be part of a good, if not, the optimal solution. In
contrast, the DM considers the incremental updates in every
stage and then selects whichever has the least cost.

The performance of RS is determined by the method used
in the improvement stage. As for RS_GM that uses the GM in

the improvement stage: the RS_GM1 has better working time
than GM for all objects while RS_GM2 has working time that
is worse than GM in Obj5 and Obj6. This scenario can be
explained by a larger k value used in RS_GM2 than in
RS_GM1 which resulted to a longer working time. The
increase in calculation time observed in RS_GM1 and
RS_GM2 with respect to GM is expected: at the
approximation stage of RS_GM1 and RS_GM2, the value of
k1 is large, which means that the number of vertices in a
search graph is fewer that resulted to quicker calculation
time; on the other hand, at the improvement stage, due to
small k2 value and wide rotation limits, the calculation time
still takes a long calculation time. Choosing the value of the
rotation limit is a trade off between the working time and the
calculation time: a narrow rotation limit may results into a
poor solution (i.e. longer working time); on the other hand, a
wider rotation limit may results into a longer calculation time
yet a better solution.

The RS_DM1 and RS_DM2 take advantage of the speed
achieved by employing GM at the approximation stage and of
deriving a good solution by using DM at the improvement
stage. The ideal case for RS_DM1 and RS_DM2 is when the
search space of DM encompassed the vertices that result into
a short working time. Note that in RS_DM1 and RS_DM2,
the search space of DM is determined after a solution of GM
is found at the approximation stage. For RS_DM1 and
RS_DM2, this case holds true for Obj1, Obj2, Obj4, Obj5, and
Obj6 which have solutions comparable to, if not, better than,
DM. In all object, RS_DM1 and RS_DM2 has better solution
that GM. In terms of calculation time, RS_DM1 and
RS_DM2 are faster than DM by a factor of 4. Comparing
RS_DM1 and RS_DM2, the former obtains better solution
than the latter, simply because the k1 value of the former is
smaller - meaning, higher search resolution at approximation
stage, than that of the latter.

Note that RS_DM1 and RS_DM2 have better solution (i.e.
shorter working time) than DM in Obj1, Obj4, and Obj5. This
can be explained by the goal arrangement, which uses 2-opt
exchange. The DM takes a long calculation time just to find a
solution for one goal order; whereas the RS_DM1 and
RS_DM2 have short calculation times such that other
possible orders are searched before the calculation time
constraint is reached.

1 2 3 4 5 6

Series1
Series2
Series3
Series4
Series5
Series6

Obj1 Obj3 Obj4

GM
DM
RS_GM1
RS_DM1
RS_GM2
RS_DM2

Obj5 Obj6 Obj2

1.0

4.5

2.0
1.5

0.5

3.0

4.0
3.5

2.5

W
or

ki
ng

 ti
m

e
(s

)

Object type
Fig. 6 A comparison of the derived working time of various search
methods in Obj1 to Obj6.

TABLE II
SETTINGS FOR VARIOUS SEARCH METHODS

Search
method Table rotation step Table rotation limits

GM k=5° θ 0,max
 =180°, θ 0,min =-180°

DM k=5° θ 0,max
 =180°, θ 0,min =-180°

RS_GM1 k1= 30°, k2= 5° θ1
0,max

=

 180°, θ1
0,min=-180°,

θ2
0,max

= 90°, θ2

0,min =-90°
RS_DM1 k1= 30°, k2= 5° θ1

0,max

=

 180°, θ1
0,min=-180°,

θ2
0,max

= 90°, θ2

0,min =-90°
RS_GM2 k1= 60°, k2= 5° θ1

0,max

=

 180°, θ1
0,min=-180°,

θ2
0,max

= 90°, θ2

0,min =-90°
RS_DM2 k1= 60°, k2= 5° θ1

0,max

=

 180°, θ1
0,min=-180°,

θ2
0,max

= 90°, θ2

0,min =-90°
Note: k1 is the rotation step of a table at the approximation stage while k2 is
the rotation step of a table at the improvement stage in RS method.

2257

Based from the above results, the following can be
concluded about the search methods:
• The GM gives a solution at a short amount of time which is

practical for finding solutions for highly
time-constrained optimizations.

• The DM provides a high-quality solution with a large
demand of calculation time.

• The RS, particularly RS_DM, can potentially give a better
solution than that of GM and DM, with short calculation
time. The performance of RS is however dependent on
the parameter settings of the approximation and
improvement stages.

In regards to the actual motion of robot arm and table, the
joint values selected by the DM, including RS_DM1 and
RS_DM2, allows few joint motions for robot arm. In Obj1, for
instance, (See accompanying video), the robot arm links are
stretched out utilizing, most of the time, the joints near the
end-effector, which are faster than the joints near the robot
arm base. In effect, the robot arm moves to only few regions
in order to reach all goals. While in GM, several robot arm
motions are spent on changing the location of end-effector
making the robot arm links to be initially stretched out and
then bent inward.

VI. CONCLUSION
In this study, a minimum-time and collision-free motion

coordination with arrangement of several goals is described.
A 6-DOF robot arm with a single-axis positioning table is
utilized as the setup. The goal arrangement is determined
through a TSP with clustering based on the geometric shape
of object. The motion of robot arm and table is based on a
straight-line path in the configuration space of robot arm and
table. No modification of this path is done to avoid collision;
instead, the redundancy of the system is utilized to select a
configuration of robot arm and table with a collision-free
path.

In addition, a two-stage search method is proposed and is
shown effective in deriving minimum-time collision-free
configurations of robot arm and table. It employs first the
greedy nearest neighbor method to find an approximate
solution and then the Dijkstra method to improve the solution.
With an imposed calculation time limit, a simulation is done

on objects with various numbers of goals and with different
goal positions.

For the purpose of this study, a simple 2-opt exchange is
utilized to derive the order of clusters. Other algorithms may
be used such as simulated annealing, which can probably
obtain a better solution, but may take considerable amount of
calculation time.

The study can be extended by changing the base placement
of robot arm relative to the table position. Furthermore,
adding more DOF in the positioning table can be a good
venue for future research work.

REFERENCES
[1] J.-C. Latombe, Robot Motion Planning. Norwell, MA: Kluwer

Academic Publishers, 1991.
[2] D. Hsu, J.-C. Latombe, and S. Sorkin, “Placing a robot manipulator

amid obstacles for optimized execution,” in IEEE Intl. Symp. on
assembly and task planning, pp. 280-285, 1999.

[3] J.E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objectd: PSPACE-hardness
of the warehouseman’s problem,” Intl. J. of Robotics Research, vol. 3.,
no. 4, pp. 76-88, 1984.

[4] S. Ahmad and S. Luo, “Coordinated Motion Control of Multiple
Robotics Devices for Welding and Redundancy Coordination through
Constrained Optimization in Cartesian Space”, IEEE Trans. On
Robotics and Automation, vol. 5, no. 4, pp. 409-417, 1989.

[5] L. Wu, K. Cui and S.B. Chen, “Redundancy coordination of multiple
robotic devices for welding through genetic algorithm,” Robotica, vol.
18, pp. 669-676, 1999.

[6] S. Akella and S. Hutchinson, “Coordinating the motions of multiple
robots with specified trajectories,” in Intl. Conf. on Robotics and
Automation, pp. 624-631, 2002.

[7] B. Cao, G. I. Dodds and G. Irwin, “Time-suboptimal inspection task
sequence planning for two cooperative robot arms using mixed
optimization algorithms,” in IEEE Intl. Conf. on Robotics and
Automation, pp. 2103-2107,1997.

[8] M. Saha, T. Roughgarden, and J.-C. Latombe. “Planning tours of
robotic arms among partitioned goals,” The Intl. J. of Robotics
Research, vol. 25, no. 3, pp. 207-224, 2006.

[9] M. Bonert, L.H. Shu, B. Benhabib, Motion planning for multirobot
assembly systems. ASME Design Engineering Technical Conference,
Sept. 1999.

[10] Y. Edan, T. Flash, et. al. “ Near-minimum-time task planning for fruit
picking robots,” Trans. on Automation and Control, vol. 7, no. 1, pp.
48-56, February 1991.

[11] T. L. DeFazio and D. E. Whitney, Simplified generation of all
mechanical sequences,” IEEE Journal of Robotics and Automation, vol.
RA-3, no. 6, 1987.

[12] S.Kirkpatrick, C. D.Gelatt, and M. P.Vecchi, “Optimization by
simulated annealing,” Science, 220, pp. 671-680, 1983.

[13] S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem”, Ops. Res. 21, pp. 498-516, 1973.

[14] K. Helsgaun,"An Effective Implementation of the Lin-Kernighan
Traveling Salesman Heuristic", European J. of Operations Research,
vol. 126, no. 1, pp. 106-130, 2000.

[15] A. Zhou, L. Kang, and Z. Yan, “Solving dynamic TSP with
evolutionary approach in real time,” in Congress on Evolutionary
Computation , pp. 951-957,2003.

[16] C. S. Helvig, G. Robins, and A. Zelikovsky, “Moving-Target TSP and
Related Problems,” Journal of Algorithms, vol. 49, pp 153-174, 2003.

[17] Y. Asahiro, T. Horiyama, K. Makino, et. al. “How to collect balls
moving in the Euclidian plane,” Electronic Notes in Theoretical
Computer Science, vol. 91, pp. 229-245, 2004.

[18] K. Kobayashi, “ Introducing a clustering technique into RNN for
solving large scale TSP,” in Intl. Conf. on Artificial Neural Network,
vol. 2, pp. 935-940, 1998.

[19] S. Gottschalk, “OBB-tree: A hierarchical structure for rapid
interference detection,” Comp. Graphics, pp. 171-180, 1996.

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 2 3 4 5 6

S e rie s 1

S e rie s 2

S e rie s 3

S e rie s 4

S e rie s 5

S e rie s 6

Obj1 Obj3 Obj4

GM
DM
RS_GM1
RS_DM1
RS_GM2
RS_DM2

Obj5 Obj6 Obj2

10

10000

1

1000

100
C

al
cu

la
tio

n
tim

e
(i

n
lo

g,
 s)

Object type
Fig. 7 A comparative performance of various search methods in
Obj1~Obj6.

2258

