
 
 

 

Fig. 1 A setup with a 6-DOF robot arm and a 1-axis positioning table. A tool
is held by the end-effector of robot arm while an object is placed on a
positioning table. The end-effector moves to several goals which are 
pre-defined parts of the object while the table positions the object.  
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Abstract—The minimum-time motion coordination is an 
important subject in robotics. In this study, the arrangement of 
several goals, which is treated as a traveling salesman problem 
(TSP), is incorporated to this subject. Although TSP has been 
studied in most previous works; but, solving a TSP that takes 
into account collision occurrences has not received much 
attention. This instance arises when a robot arm has to plan a 
sequence of reaching goals with other moving objects and/or 
other robot arms. If goals are also moving, then the problem 
becomes more complex since the end configuration of robot arm 
is undefined when reaching a goal. In this study, in particular, a 
6-DOF robot arm has to reach several goals found in an object 
while a 1-axis positioning table simultaneously positions the 
object; thereby changing the goal locations and collision 
occurrences are inevitable. For the purpose of this study, the 
TSP is solved effectively with motion coordination and collision 
avoidance. The collision-free configurations of a robot arm 
when reaching goals are solved through motion coordination. 
Collision is avoided by exploiting the redundancy of the system. 
The above-mentioned solution is verified through a simulation 
utilizing an object with various numbers of goals and their 
positions, and is proven effective.      

I. INTRODUCTION 
HE minimum-time completion of task done by a single 
robot or several robots is very important in 

manufacturing to meet the demand for high productivity. 
When two or more robots share a common workspace, the 
primary concern is the minimum-time and collision-free 
motion coordination. When a robot has to reach several goals, 
the arrangement of these goals is normally formulated as a 
traveling salesman problem (TSP) to obtain minimum-time 
motion.  

Several previous works studied on trajectory planning of a 
single robot with initial and final configurations while 
avoiding collision with static obstacles or other robots [1], [2]. 
In [3], it is shown that planning a collision-free path for a 
robot among a set of polyhedral obstacles between two goals 
is a PSPACE-hard problem. In other research works [4]-[6], 
the trajectory paths of robot arms are given. In [4] and [5], a 
robot arm with a positioning table is studied in which the 
robot arm is required to follow a continuous path. In [6], 
several robots with required trajectories are coordinated 
while considering dynamic constraints and collision-free 
motion is solved through changing of robot start times.  
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A few studies in motion coordination incorporate goal 
arrangement. In [7], the motion coordination of two robot 
arms with goal arrangement using simulated annealing is 
studied; however, no collision avoidance was considered. In 
[8], a study was done on a single robot arm with goal 
arrangement and collision avoidance on a static obstacle 
using probabilistic roadmap planner. In [9], a multi-robotic 
assembly system is optimized using genetic algorithm with 
coordination of X-Y placement and 2-DOF delivery 
machines, ordering of components, and collision detection in 
a 2D environment. Independently, a TSP with static goals has 
been the topic of most previous works [10]-[14]; however, 
only a few studies are done on a TSP with moving goals 
[15]-[17].  

This study addresses the motion coordination, the 
arrangement of moving goals, as well as collision avoidance 
while minimizing the working time of a robot arm. A setup 
with a robot arm and a positioning table, as shown in Figure 1, 
is considered which is commonly used in spot welding, 
assembly, and inspection works.  

When a robot arm has to reach several goals found in an 
object while a positioning table simultaneously positions the 
object, the locations of goals also change and collision 
occurrences may be inevitable. From the view point of 
solving a TSP, a collision occurrence is normally not 
considered, which is mainly addressed in this study. In order 
to avoid collision, no modification of a straight-line path in 
the configuration space of robot arm and table is done; but 
instead, the redundancy of the system is utilized to select a 
configuration that has a collision-free path among several 
possible configurations of robot arm and table.  

For the remaining parts, Section II formulates the problem 
in this study.  Section III describes the proposed method 
while Section IV provides the algorithms used in detail. The 
experiment and result are discussed in Section IV while a 
conclusion and plan is given in Section V. 

Coordinated Motion Control of a Robot Arm and  
a Positioning Table with Arrangement of Multiple Goals 

Lounell B. Gueta, Ryosuke Chiba, Jun Ota, Tsuyoshi Ueyama, and Tamio Arai 

T 

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2252



 
 

 

Fig. 2 Some possible configurations of Ar and At with 4 goals {pi1 pi4} (Top view). Ao is the rectangular box. The end-effector of Ar is marked as a red dot while 
a goal is marked as a blue dot, which signifies its position, and an adjacent arrow, which signifies its orientation. The color of a goal is changed to red when Ar 
reaches that goal. The bent arrow denotes the direction of movement of At. Initially, the end-effector is at p0 as shown in (a) and after doing a task, it returns to 
p0 as shown in (f).  The dashed circle traces the possible position of a goal as At positions Ao.
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II. PROBLEM FORMULATION  
This section describes the problem considered in this 

study. Let Ao, At, and Ar denote the object, table, and robot 
arm, respectively. Since At and Ar compose one redundant 
system, their configurations at a goal are denoted compactly 
as              q = {θ 0...θ 6} where θ 0 is the rotation angle of At and                
{θ 1...θ 6} are the joint angles of Ar.  

A. Input parameters 
1) The goals p1...pN where N is the number of goals: A 

goal is a vector in which its position is its location relative to 
the object and its orientation describes the required 
orientation of end-effector when it reaches that goal. Note 
that p1...pN are detached from Ao (See Fig. 1). 

2) The start and end configurations of both Ar and At 
before and after all the goals are reached: For the purpose of 
this study, these configurations are just the same which is 
referred as q0 or equivalently, where Ar is solely said to be at 
goal 0, p0. 

B. Assumptions 
1) The robot arm has large reduction ratios that its 

dynamics can be neglected [10]. 
2)  The object can be bounded by an imaginary 

rectangular box that excludes goals; effectively, the goals are 
outside the bounding box.  

3) The motion of Ar, At, and Ao are sampled at a sufficient 
time interval so that no collision occurs during movement 
from one goal to another goal.  

C. Constraints 
1) Kinematic constraints: The joint and velocity limits of 

robot arm must be satisfied. 
2) Position constraint: The end-effector must satisfy the 

required position and orientation when it reaches a goal. 
      3) Calculation time constraint: For practicality, the 
solution must be obtained at a reasonable amount of time, 
which is set at 20 minutes. Several other aspects in 
optimization can be considered as future research works (e.g. 
base placement, trajectory motion planning); thus, 
minimizing the calculation time is desired at this stage of 
study. 

D. Problem description and definition 
Initially, Ar and At are at q0. Then, Ar moves to all goals; 

concurrently, At rotates and positions Ao. Afterwards, Ar and 
At moves back to q0.  

Let tj(a,b) denotes the motion time of joint j∈{0...6} in 
moving from goals a to b. In addition, let π=(i1…iN), which is 

a permutation of (1…N), denotes the goal order. The problem 
is defined as: determine (1) the order π, and (2) the 
configuration of Ar and At, qi  for every pi∈(pi1… piN) in order 
to minimize the working time T such that: 
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where pi0=p0 and c(a,b)= )],([max
}6..0{

bat jj∈
 since the slowest 

joint in a multi-joint system dictates its motion time. The 
motions of Ar and At are coordinated by finding qi for every 
goal pi∈(pi1…piN) satisfying the constraints and no collision 
occurs among Ao, At, and Ar as Ar moves from one goal to 
another goal. The above formulation implicitly imposes a 
point-to-point motion of end-effector, which is appropriate 
for applications that require the robot arm to stop at every 
goal to perform a task.  

III. PROBLEM ANALYSIS AND A SUMMARY OF  
THE PROPOSED SOLUTION 

In this section, the problem is analyzed and the proposed 
solution is presented. 

A. Problem Analysis 
For concreteness, consider Figure 2. The p0, as described 

by the position of end-effector in Fig. 2(a), is located above 
Ao and is aligned on the rotation axis of At. Fig. 2(b) to Fig. 
2(f) shows qi or the configuration of Ar and At for 
pi∈{pi1…piN}. From p0, Ar moves to pi1 as shown from Fig. 
2(a) to Fig. 2(b). As for At, the direction of motion can either 
be clockwise or counter-clockwise resulting into several 
possible locations for pi1, which is described by the dotted 
circle in Fig. 2(b). Similarly, these locations are the possible 
end-effector positions of Ar when it plans to reach pi1. Note 
that this has been possible due to the additional DOF in At. 
This scenario holds true for the remaining goals.  

In this system, the travelling distance of Ar is based on the 
joint space of Ar and At. As Ao is rotated by At, the joint 
configuration of Ar is also changed to satisfy the position 
constraint. For one instance, At moves in one particular 
direction while Ar moves to a direction that shortens its 
travelling distance between goals. In some possible instance, 
At is stationary while Ar moves, or vice versa, depending on 
which instance a collision-free motion is possible. In another 
instance, the travelling distance of end-effector may be longer 
to avoid collision. In summary, there are three unique aspects 
of TSP in this study: (a) the travelling distance which is based 
on the joint configuration space, (b) the goals can be 
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positioned by the table resulting into several possible 
configurations, and (c) the motion from one goal to another 
can result into collision between a robot arm and a table or an 
object. Solving this type of TSP is indeed a challenge as there 
is no identical work that has been done in the past. The 
movement of goals becomes more complex if an additional 
DOF is added to At that will allow for additional movement, 
rotational or translational, of goals.  

In addition, as the number of goals increases, the number 
of possible orders increases exponentially and exploring all 
possible orders becomes impractical. Another complexity is 
the high-dimensionality of possible positions of {pi1…piN}, 
which heavily loads the calculation together with collision 
detection in a 3D environment.   

B. Proposed Solution 
The problem is divided into three sub-problems. For each 

sub-problem, a solution method is proposed and is analyzed 
to find opportunities to improve its performance. The three 
sub-problems are: (1) TSP or goal arrangement, (2) 
coordinated motion control of Ar and At, and (3) collision 
detection. The cycle to minimize the working time, as shown 
in Figure 3, is as follows: For N input goals, a possible order 
is determined in (1). A clustering method is employed in 
order to reduce the time spent in testing several possible goal 
orders. In (2), given a goal order, the qi for every goal is 
solved. Sub-problem (3) detects if there is collision that 
occurs in Ar, At and Ao when finding a solution to 
sub-problem (2). As a result, the working time T is calculated. 
If the calculation time is still within the calculation time 
constraint, then a new order is considered and the same cycle 
as described above is done. Otherwise, the cycle is terminated 
and the solution that has the least working time is considered 
as the best solution.  

Note that an order is derived first before a coordinated 
motion is obtained since qi is very dependent on the goal 
order. Ideally, an algorithm that solves simultaneously the 
goal order and qi for every goal is desired. However, with the 
aforementioned complexity, a practical solution is proposed 
in this study.  

IV. DETAILS OF THE PROPOSED SOLUTION 

This section provides the details of the algorithms 
employed in the solving the TSP, the motion coordination, 
and the collision detection. 

A. TSP: Goal arrangement with clustering 
1) Overview:  The TSP is a combinatorial problem. With 

N goals, there are N! orders and considering all these orders 
can take enormous calculation time. For this reason, the goals 
are clustered into groups.  

For a large scale TSP, a mean vector, which is the average 
position of goals in one cluster, is first determined [18]. These 
mean vectors are the basis for determining the order of 
clusters, the solution of which is referred as a reference TSP. 
After deriving a reference TSP, two cities for every cluster is 
selected that will serve as the connecting goals between 
clusters. Then, the goal order in every cluster is solved. The 
direct application of utilizing the mean vectors is, however, 
inappropriate in this study since it may lead to impossibility 
in deriving a reference TSP due to collision. The succeeding 
parts describe the algorithm for solving TSP with clustering. 
 

2)  TSP algorithm: With clustering, the TSP algorithm 
involves solving the order of clusters and the goal order for 
every cluster. In this study, an ad hoc algorithm is proposed 
and its steps are discussed below.  
    a) Assign a cluster for every goal. The goals are clustered 
based on their topological locations on Ao as shown in Figure 
4. This employs the assumption that Ao can be modelled as an 
approximate box and the box does not enclose any goals. 
Every goal is associated to a cluster {g1...g5}; each cluster 
corresponds to the face in the geometric shape of Ao. Since the 
goals in each cluster are nearer to each other compared to 
other goals from different clusters, deriving a goal order from 
the same cluster is more practical than with goals from 
various clusters. In addition, the motion of Ar between goals 
in the same cluster has a greater chance of not encountering 
collision than goals from different clusters.  

b) Determine the order of clusters. For simplicity, the order 
of clusters is determined through 2-opt algorithm which 
exchanges the order of two clusters. The stopping condition 
for exchanging clusters is when it did not result to an 
improvement in the solution or when the calculation time 
limit is already reached. 

Fig. 4 Clustering of goals. The planar boundaries in (a), represented as
arrows in (b), define the limits in assigning a cluster to every goal. The 
clusters {g1..g4} correspond to the sides of Ao while g5 to its top.  If the 
cluster order is g1, g4,  g3 , g2 and g5, then the dotted lines show the links
connecting a goal from one cluster to a goal of  a next cluster.    
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Fig. 3 The Proposed Solution 

2254



 
 

 

c) Connect clusters. After a cluster order is derived, the 
clusters are linked by finding their connecting goals. There 
are two connecting goals for every cluster. If a cluster is 
either the first or the last in a cluster order, then one 
connecting goal is connected to p0. This connecting goal is 
determined by selecting the nearest goal to p0. For two 
consecutive clusters, the connecting goals are determined 
based on the mean vector, which is the mean of goal positions 
(x, y, and z values) of a cluster. Consider two consecutive 
clusters, gfrom and gto, where gfrom precedes gto. First, the mean 
vector of gto, mto, is determined. Then, nfrom, the goal in gfrom 
that is nearest to mto, is selected. Afterwards, nto, the goal in 
gto that is nearest to nfrom is determined. The pair (nfrom, nto) is 
the connecting goals for gfrom and gto. Note that these 
connecting points depend on the cluster order.   

d) Determine the goal order in every cluster. After 
connecting clusters, the goal order is determined in each 
cluster. As can be seen in Fig. 4, the goals of a cluster that are 
the connecting goals of its preceding and succeeding clusters 
must be the start and end goals, respectively, when a goal 
order within that cluster is determined. Therefore, the goal 
order in a cluster is solved as a TSP with the aforementioned 
precedence constraints.  

In this study, it is conjectured that the goal order that is 
based on Euclidean distance is a reasonable estimate of their 
order in the configuration space. If the order is based in the 
configuration space of Ar and At, deriving the goal order 
becomes very complex since as At repositions Ao, the 
configuration space is changed. If the order is based on the 
Euclidian distance, then it can be derived using an existing 
TSP algorithm.  

One of the most effective methods in solving a TSP in a 
relatively short calculation time is the LK heuristic [14]. In 
this study, the implementation of LK heuristic by Helsgaun is 
adopted and modified to accommodate the precedence 
constraints. The reader is referred to [14] for a detailed 
discussion of LK heuristic.   

 
If the goal order in every cluster is obtained, then the order 

of goals is completely determined. Note that the goal order is 
based on the Euclidean distance but the working time T is 
based on the joint configuration space. In essence, the goal 
order acts as a guide for At on which goal it will reach and the 
T is calculated based on the actual motion time of Ar and At.  

B. Coordinated motion control 
Given a goal order, the aim is to determine qi for every 

pi∈{pi1…piN}. In this study, the possible positions of pi are 
determined by θ 0 which is parameterized into discrete values:  

θ0(l) = θ 0,min  + l*k                                                (2) 
 where,  l∈{0,1,…lmax}, lmax=int( (θ 0,max -θ 0,min)/k + 0.5)}, 

int() gives the nearest integer value, k is the discrete step size 
of θ 0, θ0,min, and θ 0,max∈{-180°…180°} are the minimum and 
maximum values of θ 0. By discretization, the solutions are 
inherently just approximates. Nonetheless, an approximate 
solution that has short calculation time is preferred over a 
high-quality solution that demands an enormous amount of 
calculation time.  

The position of At and pi are defined by a single θ 0 value. 
By assigning a value to θ 0, the inverse kinematics of At is 
derived, which completely determines qi. For every pi, there 
are lmax+1 possible positions and for every order of {p1…pN}, 
there are N x (lmax+1) positions; hence, with the large size of 
possible positions, it is practical to represent them as a graph. 
Consequently, the qi for every goal is solved as a graph 
search. A detailed discussion is provided below. 

1) Generate search space: A directed graph G=(V,E) is 
created in which the vertices V are sets of qi. The weighted 
edges E are the lines connecting the vertices of pi to pi+1. For 
every pi, the possible positions, called candidate positions, 
are determined using (2).  

2) Check validity of candidate positions: For every 
candidate positions, {θ 1…θ 6} are determined through inverse 
kinematics (IK) of Ar. If an IK solution exists, then that goal 
position is said to be valid; otherwise, invalid.  

The validity check ensures that the position of goal is 
reachable by Ar but does not guarantee that a collision-free 
path exists in moving from a previous goal. By employing 
first the validity check, the computational burden of checking 
every pair of vertices is avoided. In addition, the goal position 
can still be regarded as valid even if a straight line path is not 
possible since the path can be modified to avoid collision.  

3) Calculate motion time as edge weights: The motion time 
in reaching a valid goal position is calculated. For simplicity, 
it is assumed that a joint achieves its maximum velocity in a 
very short time; thus, the motion time from goal a to goal b, 
tj(a,b), is calculated as: 

tj(a, b)= |θ j in a - θ j in b |/vj,max             (3) 
where vj,max is the maximum velocity of joint j. 
4) Find shortest collision-free path: A shortest 

collision-free path is determined by choosing a valid qi with 
the least c(pi, pi+1)  and then checking if a path has no 
collision. In this study, the trajectory of Ar is based on a 
straight-line path in the configuration space of Ar and At. No 
modification of a straight-line path is done when collision 
exists. The collision is avoided by selecting a valid qi with a 
collision-free straight-line path. In a worst-case scenario, no 
valid qi that has a collision-free path is possible and therefore, 
a modification of straight-line paths like roadmap methods 
becomes inevitable.  

In finding the shortest collision-free path, there are three 
search methods tested and compared in terms of the quality of 
solution and the calculation time. The definition of c(pi, pi+1) 
in (1) is extended where i is changed to s to mean a stage in a 
graph. Let cl

s (ps, ps+1) denotes the motion time at stage 
s∈{0…N+1} of a valid qi with collision-free path when              
θ 0=θ 0(l) , Cl

s  is the motion time from stage 0 to s and Cs 
denotes the least motion time at stage s. 

a) Greedy Nearest Neighbor method (GM): The selection 
of qi is based on only two consecutive goals. At every stage s, 
Cs is calculated and hence qi is determined. The calculation 
involved in GM is shown below.  
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Fig. 5 Search space for the coordinated motion control of Ar and At. For N
goals, there are N+2 stages with the first and last stages corresponding to
po.The objective is to select a set of vertices that results to the shortest 
collision-free path in moving from p0 and moving back to it. 
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Fig. 5 shows the graphical representation of GM. The 
vertices from where the edges emanate correspond to the goal 
positions with the least motion time at their corresponding 
stages (i.e. C1...Cs). 

b) Dijkstra method (DM): The DM, a widely-used 
algorithm, calculates the cost at every vertex with valid qi and 
collision-free path. At stage s, the cost of every vertex cl

s is 
calculated based on the cost in moving from stage s-1 to s and 
on the derived minimum cost from stage 0 to s-1. The 
calculation involved in DM is shown below.  
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After T is calculated, the search graph is backtracked to 
find the qi which is part of the solution.   

c) Rough-to-smooth method (RS): The RS method, which 
is the proposed method, is a dual-stage search method that is 
based from the idea of solving an approximate solution at a 
short amount of time and then later improving the solution. 
An approximate solution is derived using a large k value (i.e., 
rough table motion) in a large search space (i.e. large θ 0,min 
and θ 0,max values) and afterwards a solution is improved by 
using a small k value(i.e., smooth table motion) at a narrow 
search space (i.e. small θ 0,min and θ 0,max values) near the 
approximate solution.  

One problem with RS is on selecting k values for the two 
stages. With a large k value at the approximation stage, the 
calculation time is reduced but may result to a low-quality 
solution. At the improvement stage, although using a small k 
value can improve a solution; but the vertices which are parts 
of a good solution may have already been left out at the 
approximate stage. In the implementation of RS, GM and DM 
are combined: (1) RS_GM and (2) RS_DM. In both 
combinations, the GM is utilized at the approximation stage 
due to its speed in finding a solution. At the improvement 

stage, the GM is utilized in RS_GM while DM is used in 
RS_DM.  

An exhaustive search method to solve the shortest path has 
to consider (l+1)N

max path which makes it impractical. The 
GM searches at most Nx(lmax+1) paths while DM searches at 
most Nx(lmax+1)2 paths. The DM has relatively longer 
calculation time than GM but due to its method of finding 
solution, DM is expected to obtain a solution better than GM. 

C. Collision detection  
The Ar, At, and Ao are modeled as approximate boxes called 

oriented bounding boxes (OBBs) [19], which is practical for 
modeling their rectangular shapes. The OBBs are defined by 
its size and orientation. To detect collision is to check the 
overlaps of two OBBs and a naive way of doing it is to 
perform 144 edge-face tests (i.e., 12 edges of one box times 
12 edges of the other box). The collision detection is done 
through the separating axis theorem which states that two 
disjoint convex polytopes in 3D-space can always be 
separated by a plane which is parallel to the face of either 
polytope or orthogonal to an edge from each polytope. By 
employing this theorem, there are 15 potential separating axes 
for two OBBs (i.e., 3 faces from one box, 3 faces from the 
other box, and 9 pair-wise combinations of edges). A test of 
being disjointed is to project the two OBBs onto a potential 
separating axis. If their projections do not overlap, then OBBs 
are not colliding. If their projections do overlap, other 
potential separating axes are subsequently used to check if 
they again overlap or not. In short, the worst case scenario for 
detecting collision is to perform 15 tests when two OBBs are 
overlapping. A detailed discussion is given in [19]. 

V. SIMULATION AND DISCUSSION 
This section describes the simulation done as well as the 

result and discussion. 

A. Parameters 
A simulation with different parameter settings is done to 

assess empirically the performance of various search 
methods. Table I shows the parameters used in the 
experiment. The velocities, v1-v6, correspond to joint 
velocities of robot arm from its base up to the end-effector.  

There are six Ao considered; the goal positions are different 
TABLE I 

SIMULATION SETTINGS  

Parameter Notation Setting 

Ar  base position(mm)  x=-540,  y=0, z=300 
Initial end-effector 
position 

p0 x=0, y=0, z= 700 

Joint velocity (deg/s) v1~v6 250, 250, 250, 410, 410, 660 
At  position:  x=0, y=0, z= 0 

At velocity: (deg/s) v0 3600 
At size: lxwxh (mm)  400x400x400 
Ao size : lxwxh (mm)   400x400x150 
Ao  type   Obj1 ,Obj2 N= 25 
 Obj3, Obj4 N= 50 
      Obj5, Obj6 N= 75 
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in Ao with equal number of goals. The distribution of goals on 
the object is randomly generated. The sizes of clusters are 
uniform but clusters with non-uniform sizes can be dealt with 
by the clustering method employed in this study. In addition, 
the number of clusters is 5 for all objects. Since the size of 
object is fixed, the distribution of points in each cluster 
becomes dense as N is varied from 25 to 75.  

In the given positions of Ar and At, some of the goals cannot 
be reached by end-effector due to collision; hence, it is 
impractical to compare the result of this simulation, which 
has coordinated motion control of Ar and At, to a setup with 
static At or to a setup which does not consider collision. In 
finding the shortest collision-free path, the settings of various 
search methods are shown in Table II. There are several 
possible settings for RS method by choosing values for k, θ 0, 

max, and    θ 0, min; although only two settings are chosen as 
references that give good solutions with no substantial 
amount of time incurred in calculation.       

B. Results and Discussion 
The results of the simulation for Obj1 to Obj6 are shown in 

Figure 6 and Figure 7. Fig. 6 shows the derived best working 
time for every search method while Fig. 7 shows the 
calculation time spent.  For all objects, as shown in Fig. 6, the 
DM consistently obtains shorter working time than GM.  
However, as shown in Fig. 7, the GM has shorter calculation 
time than DM, has the longest calculation time for all objects. 
In particular, for Obj1 and Obj2 where N=25, the 
improvement of solution (i.e. reduction in the derived 
working time) in DM against GM are 10% and 16%, 
respectively whereas the calculation times in DM take 30 and 
50 times longer than GM.  Overall, as shown in Fig. 7, the 
GM obtains a solution at a shorter design time. However, the 
solution obtained using GM has longer working time due to 
its short-sighted search method, which selects configuration 
based only on the possible configurations of the next goal.  In 
effect, the GM misses out vertices in the search graph that 
may be part of a good, if not, the optimal solution.  In 
contrast, the DM considers the incremental updates in every 
stage and then selects whichever has the least cost.  

The performance of RS is determined by the method used 
in the improvement stage. As for RS_GM that uses the GM in 

the improvement stage: the RS_GM1 has better working time 
than GM for all objects while RS_GM2 has working time that 
is worse than GM in Obj5 and Obj6. This scenario can be 
explained by a larger k value used in RS_GM2 than in 
RS_GM1 which resulted to a longer working time. The 
increase in calculation time observed in RS_GM1 and 
RS_GM2 with respect to GM is expected: at the 
approximation stage of RS_GM1 and RS_GM2, the value of 
k1 is large, which means that the number of vertices in a 
search graph is fewer that resulted to quicker calculation 
time; on the other hand, at the improvement stage, due to 
small k2 value and wide rotation limits, the calculation time 
still takes a long calculation time.  Choosing the value of the 
rotation limit is a trade off between the working time and the 
calculation time: a narrow rotation limit may results into a 
poor solution (i.e. longer working time); on the other hand, a 
wider rotation limit may results into a longer calculation time 
yet a better solution.  

The RS_DM1 and RS_DM2 take advantage of the speed 
achieved by employing GM at the approximation stage and of 
deriving a good solution by using DM at the improvement 
stage.  The ideal case for RS_DM1 and RS_DM2 is when the 
search space of DM encompassed the vertices that result into 
a short working time. Note that in RS_DM1 and RS_DM2, 
the search space of DM is determined after a solution of GM 
is found at the approximation stage.  For RS_DM1 and 
RS_DM2, this case holds true for Obj1, Obj2, Obj4, Obj5, and 
Obj6 which have solutions comparable to, if not, better than, 
DM. In all object, RS_DM1 and RS_DM2 has better solution 
that GM. In terms of calculation time, RS_DM1 and 
RS_DM2 are faster than DM by a factor of 4. Comparing 
RS_DM1 and RS_DM2, the former obtains better solution 
than the latter, simply because the k1 value of the former is 
smaller - meaning, higher search resolution at approximation 
stage, than that of the latter.  

Note that RS_DM1 and RS_DM2 have better solution (i.e. 
shorter working time) than DM in Obj1, Obj4, and Obj5. This 
can be explained by the goal arrangement, which uses 2-opt 
exchange. The DM takes a long calculation time just to find a 
solution for one goal order; whereas the RS_DM1 and 
RS_DM2 have short calculation times such that other 
possible orders are searched before the calculation time 
constraint is reached.  
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Fig. 6 A comparison of the derived working time of various search 
methods in Obj1 to Obj6.  

TABLE II 
SETTINGS FOR VARIOUS SEARCH METHODS 

Search 
method  Table rotation step Table rotation limits 

GM k=5° θ 0,max
 =180°, θ 0,min =-180° 

DM k=5° θ 0,max
 =180°, θ 0,min =-180° 

RS_GM1 k1= 30°, k2= 5° θ1
0,max

 
= 

 180°, θ1
0,min=-180°,  

θ2
0,max

 
= 90°, θ2

0,min =-90° 
RS_DM1 k1= 30°, k2= 5° θ1

0,max
 
= 

 180°, θ1
0,min=-180°,  

θ2
0,max

 
= 90°, θ2

0,min =-90° 
RS_GM2 k1= 60°, k2= 5° θ1

0,max
 
= 

 180°, θ1
0,min=-180°,  

θ2
0,max

 
= 90°, θ2

0,min =-90° 
RS_DM2 k1= 60°, k2= 5° θ1

0,max
 
= 

 180°, θ1
0,min=-180°,  

θ2
0,max

 
= 90°, θ2

0,min =-90° 
Note: k1 is the rotation step of a table at the approximation stage while k2 is 
the rotation step of a table at the improvement stage in RS method.   
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Based from the above results, the following can be 
concluded about the search methods:  
• The GM gives a solution at a short amount of time which is 

practical for finding solutions for highly 
time-constrained optimizations.  

• The DM provides a high-quality solution with a large 
demand of calculation time. 

• The RS, particularly RS_DM, can potentially give a better 
solution than that of GM and DM, with short calculation 
time. The performance of RS is however dependent on 
the parameter settings of the approximation and 
improvement stages. 

In regards to the actual motion of robot arm and table, the 
joint values selected by the DM, including RS_DM1 and 
RS_DM2, allows few joint motions for robot arm. In Obj1, for 
instance, (See accompanying video), the robot arm links are 
stretched out utilizing, most of the time, the joints near the 
end-effector, which are faster than the joints near the robot 
arm base. In effect, the robot arm moves to only few regions 
in order to reach all goals. While in GM, several robot arm 
motions are spent on changing the location of end-effector 
making the robot arm links to be initially stretched out and 
then bent inward.   

VI. CONCLUSION 
In this study, a minimum-time and collision-free motion 

coordination with arrangement of several goals is described. 
A 6-DOF robot arm with a single-axis positioning table is 
utilized as the setup. The goal arrangement is determined 
through a TSP with clustering based on the geometric shape 
of object.  The motion of robot arm and table is based on a 
straight-line path in the configuration space of robot arm and 
table. No modification of this path is done to avoid collision; 
instead, the redundancy of the system is utilized to select a 
configuration of robot arm and table with a collision-free 
path.  

In addition, a two-stage search method is proposed and is 
shown effective in deriving minimum-time collision-free 
configurations of robot arm and table. It employs first the 
greedy nearest neighbor method to find an approximate 
solution and then the Dijkstra method to improve the solution. 
With an imposed calculation time limit, a simulation is done 

on objects with various numbers of goals and with different 
goal positions.     

For the purpose of this study, a simple 2-opt exchange is 
utilized to derive the order of clusters. Other algorithms may 
be used such as simulated annealing, which can probably 
obtain a better solution, but may take considerable amount of 
calculation time.  

The study can be extended by changing the base placement 
of robot arm relative to the table position. Furthermore, 
adding more DOF in the positioning table can be a good 
venue for future research work. 
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Fig. 7 A comparative performance of various search methods in 
Obj1~Obj6.  
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