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Abstract— In this paper, we propose an approach to fuse the
color and infrared images for visual tracking. The contribution
of this paper is twofold: First, we use the covariance feature
to construct the likelihood function under the framework of
particle filter. This likelihood captures the spatial and statistical
properties as well as their correlation within representation
of covariance. Secondly, different from the existing fusion
approaches, our approach automatically realizes the fusion
by sequential belief propagation, which uses message passing
scheme to exchange information between color and infrared
image. The performance of the proposed approach is evaluated
using real visual tracking examples.

I. INTRODUCTION

Multiple sensors are able to gather more informa-
tion about the reality especially in varying environmental
conditions[25]. As indicated ed by [20], the rapid develop-
ments of sensor technology, microelectronics, and communi-
cations have led to a great need for image fusion techniques
that can effectively combine multi-sensor images into an
enhanced single view of a scene with extended information
content. The use of color greatly expands the amount of
information that can be conveyed in a single image and
hence presents a natural approach to the representation of
multi-modal data.

For fusion tracking, the choice of visual and infrared
imagery is significant, as each provides disparate, yet com-
plementary information about a scene. Infrared cameras
detect relative differences in the amount of thermal energy
emitted from objects in the scene. These sensors are therefore
independent of illumination, making them more effective
than color cameras under poor lighting conditions. Color
sensors on the other hand, are oblivious to temperature
differences in the scene, and are typically more effective than
thermal cameras when objects are at “thermal crossover”,
provided that the scene is well illuminated and the objects
have color signatures different from the background[7].

Ref.[3] presented a moving object detection and tracking
system that robustly fuses infrared and visible video within
a level set framework. The long-term trajectories for object
clusters are estimated using Kalman filtering and watershed
segmentation. Kalman filtering can obtain optimal solution
in the case of linear dynamics and Gaussian noise. Unfortu-
nately, very few practical visual tracking problems belong
to this case. Using mean-shift approach, [5] proposed a
framework that can efficiently combine features for robust
tracking based on fusing the outputs of multiple spatiogram
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trackers. However, mean-shift is a local deterministic search
strategy, which is easy to be trapped into local minimal, and
difficult to recover from tracking failure.

The particle filter, also known as sequential Monte
Carlo[8], or Condensation[13], is the most popular non-
linear and non-Gaussian filtering approach. It recursively
constructs the posterior probability distribution function of
the state space using Monte Carlo integration. Currently,
the particle filter has been extensively used in the field of
location[10] and SLAM[11][1] for robots. One important
advantage of the particle filtering framework is that it allows
the information from different measurement sources to be
fused in a principled manner[17]. During the past decade,
particle filter is very popular in fusion tracking. Most of the
existing works which used multiple observation information
combined different observation models (or cues) in one
single images[2]. Usually the combination can be realized
by using a simple weighted sum form. The weighting coef-
ficient can be determined by experience[26], or by online
computation[16] and therefore forms a class of adaptive
weighting approach. The approach in [16] is based on an
extension of the covariance-based uncertainty measure.

Recently, using particle filter to fuse the color and infrared
images attracted many attentions. [4] evaluated the appear-
ance tracking performance of multiple fusion schemes that
combine information from color and thermal infrared images
for the tracking of surveillance. In [4], some common fusion
algorithms are summarized and compared, including simple
and weighted averaging, similarity score product, min and
max score fusion and dynamic weighting approaches. [6]
investigates the impact of pixel-level fusion of videos from
visible and infrared surveillance cameras on object tracking
performance, as compared to tracking in single modality
videos. Tracking has been accomplished by means of a
particle filter which fuses a color cue and the structural
similarity measure.

In this paper, we propose a new approach to fuse the color
and infrared images for visual tracking. The contributions of
this paper is twofold: First, we will use the covariance feature
to construct the likelihood function of particle filter. The
covariance feature was first used for tracking in [19], which
adopted the extensive search strategy. The use of this feature
in particle filter has never been reported. Secondly, different
from the existing fusion approaches[4], our approach auto-
matically realizes the fusion by sequential belief propagation,
which uses message passing scheme to exchange information
between color and infrared images.
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Fig. 1. Dynamic graphical model

II. REVIEW OF SEQUENTIAL BELIEF PROPAGATION

Given L observation images, where L is the number of
the information sources, then we can denote the object state
in each observed image as xk,i, where i ∈ {1, 2, · · · , L}.
All of the state variables can be integrated as a new vari-
able Xk = {xk,1,xk,2, · · · ,xk,L}. The image observation
associated with the object state xk,i in the same image
is denoted by zk,i and all of them can be integrated as
Zk = {zk,1, zk,2, · · · , zk,L}.

Fig.1 gives a representative dynamic graphical model.
Assume there are undirected links which describe the mutual
influence of multiple information sources and it is associated
with a potential function ψij(xk,i,xk,j). Each directed link
from xk,i to zk,i is associated with an image likelihood
function p(zk,i|xk,i). In addition, the directed link from
xk−1,i to xk,i represents the prior dynamics and is associated
with a dynamics model p(xk,i|xk−1,i). According to Bayes’
rule, the recursive inference of the posterior distribution of
the state p(Xk|Z1:k), where Z1:k = [Z1,Z2, · · · ,Zk], is
formulated as

p(Xk|Z1:k−1) =

∫

Xk−1

p(Xk|Xk−1)p(Xk−1|Z1:k−1)dXk−1

(1)
p(Xk|Z1:k) ∝ p(Zk|Xk)p(Xk|Z1:k−1) (2)

The inference of the joint multi-source state is difficult. To
tackle it, the sequential belief propagation approach can be
adopted. The semi-parametric sequential belief propagation
was first proposed by [21] and [14]. After then Ref. [12]
proposed the non-parametric sequential belief propagation
for multiple scale tracking. Recently, [9] and [15] used
this approach for multi view tracking and head-face fusion
tracking, respectively. In this section, we will briefly review
this approach, which is based on a basic assumption that the
motions in different images are independent, i.e.,

p(Xk|Xk−1) =

L
∏

i=1

p(xk,i|xk−1,i) (3)

The intrinsic idea of the multi-source tracking algorithm is
to calculate the inference of states through a message passing
process. The local message passed from source i to source

j in the graphical model in Fig.1 is

mij(xk,j) =
∫

xk,i
[p(zk,i|xk,i)ψi,j(xk,i,xk,j)

∫

xk−1,i
p(xk,i|xk−1,i)p(xk−1,i|Z1:k−1)dxk−1,i

∏

l∈N (xk,i)\j

mli(xk,i)]dxk,i

(4)
where N (xk,i)\j denotes all state variables with a link to
xk,i, except xk,j . The messages are passed iteratively until
convergence, and the filtering distribution is given by

p(xk,i|Z1:k) ∝ p(zk,i|xk,i)
∏

l∈N (xk,i)

mli(xk,i)

∫

xk−1,i
p(xk,i|xk−1,i)p(xk−1,i|Z1:k−1)dxk−1,i

(5)
Since the closed-form solutions to the two distribution

are difficult to obtain, a Monte Carlo version of sequential
belief propagation is developed. The filtering distribution
is represented by weighted samples, i.e., p(xk,i|Z1:k) ∼

{x
(n)
k,i , π

(n)
k,i }

N
n=1, and each message at time instant k can

be approximated as mji(xk,i) ∼ {x
(n)
k,i , ω

(n)
k,i }

N
n=1, where N

is the number of the particles. In the following section, we
will introduce the application of the general sequential belief
propagation algorithm in the fusion of color and infrared
images.

III. SEQUENTIAL BELIEF PROPAGATION FOR COLOR AND
INFRARED IMAGES FUSION

Given two information sources: color and infrared images,
we can represent the object state in the two images as
xk,C = [xk,C yk,C sk,C ]

T , xk,I = [xk,I yk,I sk,I ]
T ,

where {xk,C , yk,C} and {xk,I , yk,I} represent the center
coordinates of the object in color and infrared images, re-
spectively. sk,C and sk,I represent the corresponding scales.
If there is no registration error, xk,C and xk,I should be equal
since they represent the state variable of the same object;
Otherwise they are different.

Since there has only two state variable nodes in the graphic
model, (4) and (5) can be simplified as

mIC(xk,C) =
∫

xk,I
[p(zk,I |xk,I)ψI,C(xk,I ,xk,C)

∫

xk−1,I
p(xk,I |xk−1,I)p(xk−1,I |Z1:k−1)dxk−1,I ]dxk,I

mCI(xk,I) =
∫

xk,C
[p(zk,C |xk,C)ψC,I(xk,C ,xk,I)

∫

xk−1,C
p(xk,C |xk−1,C)p(xk−1,C |Z1:k−1)dxk−1,C ]dxk,C

(6)
and

p(xk,C |Z1:k) ∝ p(zk,C |xk,C)mIC(xk,C)
∫

xk−1,C
p(xk,C |xk−1,C)p(xk−1,C |Z1:k−1)dxk−1,C

p(xk,I |Z1:k) ∝ p(zk,I |xk,I)mCI(xk,I)
∫

xk−1,I
p(xk,I |xk−1,I)p(xk−1,I |Z1:k−1)dxk−1,I

(7)
In the fusion of color and infrared images, the potential

function ψC,I(xk,C ,xk,I) and ψI,C(xk,I ,xk,C) model the
registration error. In our case, we use a Gaussian distribution
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to represent it, i.e.,

ψC,I(xk,C ,xk,I) = ψI,C(xk,I ,xk,C)
∝ exp(−(xk,C − xk,I)

TΛ(xk,C − xk,I))
(8)

where Λ is the variance matrix, which can be determined
by the registration process. The whole sequential belief
propagation algorithm, which is similar to that of [9][12][15],
is summarized in Algorithm 1.

IV. OBSERVATION LIKELIHOOD FUNCTION

A major concern is the lack of a competent similarity
criterion that captures both statistical and spatial properties,
i.e., most approaches either depend only on the color distri-
butions or structural models. Many different representations,
from aggregated statistics to appearance models, have been
used for tracking objects. Color histograms are popular
representations of nonparametric density, but they disregard
the spatial arrangement of the feature values. Moreover, they
do not scale to higher dimensions due to exponential size
and sparsity. Appearance models map the image features
onto a fixed size window. Since the dimensionality is a
polynomial in the number of features and the window size,
only a relatively small number of features can be used.
Appearance models are highly sensitive to the pose, scale
and shape variations. To overcome the shortcomings of the
existing approaches, Ref.[18] proposed a covariance matrix
representation to describe the object windows. Ref.[22] used
this approach for detection and classification. In [19], this
approach is extended to tracking domain. Recently, [23]
combined the Logitboost and the covariance feature to detect
humans in still images. However, till now, there exists no
work to use the covariance feature for constructing likelihood
function for particle filter.

For a given rectangular region which includes Mr rows
and Mc columns, let fij(i = 1, · · · ,Mr, j = 1, · · · ,Mc) be
the d-dimensional feature vectors inside this region for each
pixel. The feature vector fij can be constructed using two
types of mappings: spatial attributes that are obtained from
pixel coordinate values, and appearance attributes, i.e., color,
gradient, etc. These features may be associated directly to the
pixel coordinates.

The covariance feature of a region can be calculated as

C =
1

MrMc − 1

Mr
∑

i=1

Mc
∑

j=1

(fij − µ)(fij − µ)
T

where µ is the vector of the means of the corresponding
features for the points within this region. The covariance
matrix is a symmetric matrix where its diagonal entries
represent the variance of each feature and the non-diagonal
entries represent their respective correlations.

Supposing no features in the feature vector would be
exactly identical, which states the covariance matrices are
positive definite, it is possible apply the distance measure.
The distance metric uses the sum of the squared logarithms
of the generalized eigenvalues to compute the dissimilarity

Algorithm 1 Fusion tracking algorithm

Given: {x(n)
k,C , π

(n)
k,C}

N
n=1, {x

(n)
k,I , π

(n)
k,I }

N
n=1

Output: {x(n)
k+1,C , π

(n)
k+1,C}

N
n=1, {x

(n)
k+1,I , π

(n)
k+1,I}

N
n=1

Re-sampling: For n = 1, 2, · · · , N , resam-
pling {x

(n)
k,C , π

(n)
k,C}

N
n=1, {x

(n)
k,I , π

(n)
k,I }

N
n=1 to get

{x̂
(n)
k,C , 1/N}

N
n=1, {x̂

(n)
k,I , 1/N}

N
n=1

Prediction: For n = 1, 2, · · · , N , draw predicted particles
from the prior dynamics

x
(n)
k+1,C ∼ p(xk+1,C |xk,C = x̂

(n)
k,C),

x
(n)
k+1,I ∼ p(xk+1,I |xk,I = x̂

(n)
k,I ),

and initialize

π
(n)
k+1,C = p(zk+1,C |x

(n)
k+1,C), π

(n)
k+1,I = p(zk+1,I |x

(n)
k+1,I),

ω
(n)
k+1,C = 1/N, ω

(n)
k+1,I = 1/N.

Update:
(U.1) Importance Sampling

x̄
(n)
k+1,C ∼ p(xk+1,C |xk,C = x̂

(n)
k,C)

x̄
(n)
k+1,I ∼ p(xk+1,I |xk,I = x̂

(n)
k,I )

(U.2) Message Re-weighting

ω
(n)
k+1,C = GC/(

1

N

N
∑

r=1

p(x̄
(n)
k+1,C |x̂

(r)
k,C))

ω
(n)
k+1,I = GI/(

1

N

N
∑

r=1

p(x̄
(n)
k+1,I |x̂

(r)
k,I))

where

GC =
∑N

m=1 π
(m)
k+1,Ip(zk+1,I |x

(m)
k+1,I)

× ψI,C(x
(m)
k+1,I , x̄

(n)
k+1,C)[

1
N

∑N

r=1 p(x
(m)
k+1,I |x

(r)
k,I)]

GI =
∑N

m=1 π
(m)
k+1,Cp(zk+1,C |x

(m)
k+1,C)

× ψC,I(x
(m)
k+1,C , x̄

(n)
k+1,I)[

1
N

∑N

r=1 p(x
(m)
k+1,C |x

(r)
k,C)]

(U.3) State Re-weighting
Normalize ω(n)

k+1,C , ω(n)
k+1,I and set

π
(n)
k+1,C = p(z

(n)
k+1,C |x̄

(n)
k+1,C)

N
∑

r=1

p(x
(n)
k+1,C |x̄

(r)
k,C)

π
(n)
k+1,I = p(z

(n)
k+1,I |x̄

(n)
k+1,I)

N
∑

r=1

p(x
(n)
k+1,I |x̄

(r)
k,I)

and normalized them.
(U.4) Iteration:

x
(n)
k+1,C ← x̄

(n)
k+1,C ,x

(n)
k+1,I ← x̄

(n)
k+1,I .

Iterate (U.1) to (U.4) until convergence.
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between covariance matrices as

ρ(C, C̄) =

√

√

√

√

d
∑

t=1

ln2λt(C, C̄)

where {λt(C, C̄)} are the generalized eigenvalues of C and
C̄, computed from

λtCst − C̄st = 0, t = 1, 2, · · · , d

and st are the corresponding generalized eigenvectors. The
distance measure ρ satisfies the metric axioms, positivity,
symmetry, triangle inequality, for positive definite symmetric
matrices.

Denote the covariance feature of the regions determined
by the state xk,C and xk,I as C(xk,C) and C(xk,I), respec-
tively, we can compute the likelihood function as

p(zk,C |xk,C) ∝ exp(−βC · ρ(C(xk,C), C̄C))

p(zk,I |xk,I) ∝ exp(−βI · ρ(C(xk,I), C̄I))

where the subscript “C” and “I” indicate the color and
infrared images, respectively. C̄C and C̄I are corresponding
reference covariance model, which can be determined at the
first frame. βC and βI are prescribed parameters. In our
settings, we choose βC = βI = 20.

It is possible to compute covariance matrix from feature
images in a very fast way using integral image representation.
After constructing tensors of integral images corresponding
to each feature dimension and multiplication of any two
feature dimensions, the covariance matrix of any arbitrary
rectangular region can be computed independent of the
region size. Refer to [22] for more details.

It should be noted that though [19] used the covariance
feature for tracking, their approach is based on an extensive
search. In this paper, to the best of our knowledge, this is
the first time for application of the covariance feature in the
particle filtering framework.

V. EXPERIMENTAL RESULTS

The proposed approach is tested on thermal/color video
sequence pairs from OTCBVS dataset collection[27]. Data
consists of 8-bit greyscale bitmap thermal images, and 24-
bit color bitmap images of 320× 240 pixels.

For all of the experiments, the states of the particle
filter are defined as x

(C)
k = [x

(C)
k , y

(C)
k , s

(C)
k ],x

(I)
k =

[x
(I)
k , y

(I)
k , s

(I)
k ], where x

(C)
k , y

(C)
k and x

(I)
k , y

(I)
k indicate

the locations of the object in color and infrared images,
respectively; s(C)

k and s(I)
k are the corresponding scales. The

dynamics of the objects are assumed to be a random walking
model, which can be represented as

x
(C)
k = x

(C)
k−1 + v

(C)
k , x

(I)
k = x

(I)
k−1 + v

(I)
k ,

where v
(C)
k and v

(C)
k are multivariate zero-mean Gaussian

random variables. For each particle filter, we assign 100
samples.

We can initialize the particle filters with a detector
algorithm[24] or a manfully specified image patch in the first

frame. The covariance models for the object are extracted
in the first frame and remain fixed for the duration of the
experiment. For fair comparison, all of the particle filters for
the sequence are started with same initial detection results.

In this experiment, we attempt to track a woman in dark
clothing through occlusion and distraction by crowds. In
order to examine how can the proposed fusion approach
improve the tracking performance, we compare the tracking
results of five algorithms. For notational simplicity, we
call the five algorithms as “Color”, “Infrared”, “Average”,
“Covariance”, and “BP”, respectively. They are explained
as follows:

“Color”
This approach uses color information only and the corre-

sponding feature vectors are defined as

f
(C)
ij = [i, j, R(i, j), G(i, j), B(i, j), |I(C)

x (i, j)|, |I(C)
y (i, j)|]

where i, j are pixel coordinates, R(i, j), G(i, j), B(i, j)
are corresponding R, G, B values, respectively; and
I
(C)
x (i, j), I

(C)
y (i, j) are the intensity derivatives of the

grayscale version of the color images.
“Infrared”
This approach uses infrared information only and the

corresponding feature vectors are defined as

f
(I)
ij = [i, j, I(I)(i, j), |I(I)

x (i, j)|, |I(I)
y (i, j)|]

where i, j are pixel coordinates, I(I)(i, j) is the correspond-
ing grayscale value, and I(I)

x (i, j), I
(I)
y (i, j) are the intensity

derivatives.
Obviously, the above two approaches do not use the fusion

mechanism. In the following we will introduce two existing
representative fusion approaches.

“Average”
This approach performs weighting average of the likeli-

hood functions.

p(zk|xk,C ,xk,I) = αp(zk,C |xk,C) + (1− α)p(zk,I |xk,I)

where p(zk,C |xk,C) and p(zk,I |xk,I) are determined by the
above-mentioned f

(C)
ij and f

(I)
ij , respectively, and α is a

weighting factor. In this paper, we select α = 0.5. This
setting means that we treat the color information and infrared
information equally.

“Covariance”
This approach realizes fusion during constructing feature

vectors. It was first proposed in [19] and showed good
performance for fusion tracking of color and infrared images.
In our case, the feature vector is defined as

fij =
[

i j R(i, j) G(i, j) B(i, j) I
(C)
x (i, j)

I
(C)
y (i, j) I(I)(i, j) I

(I)
x (i, j) I

(I)
y (i, j)

]

This vector is actually a combination of the above-mentioned
f
(C)
ij and f

(I)
ij . Adopting this covariance representation im-

plies that xk,C = xk,I . Denote the corresponding covariance
and reference covariance to be C(xk,C ,xk,I) and C̄CI ,
respectively, then the likelihood is

p(zk|xk,C ,xk,I) ∝ exp(−β · ρ(C(xk,C ,xk,I), C̄CI))
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Fig. 2. Tracking performance comparisons between five algorithms. Blue
dots indicate successful tracking; Red dots indicate failure tracking.

where β = 20.
“BP”
This is the proposed approach in this paper. The utilized

likelihood function is also determined by the above-defined
f
(C)
ij and f

(I)
ij . The other details are omitted.

In Fig.2, we give the comparison between the perfor-
mances of different algorithms, where the successful tracked
frames are marked with blue and otherwise are marked with
red. A more quantificational comparison will be our future
work.

From Fig.2 we can see all of the algorithms failed during
Frames 476-495. In fact, during this period, there is a tele-
graph pole which occludes the object and therefore the track-
ing performances are decreased. However, after the object
re-appears (about Frame 495), the approaches “Color” and
“Average” never recovers the accurate position of the object
and locks onto the telegraph pole. The approach “Infrared”,
which uses infrared information only, can recover the track-
ing of the object. However, from Frame 503, the tracker
will be hijacked by a passing person which is similar to the
tracked object and gives the wrong tracking results. It seems
only the approaches “Covariance” and “BP” can recover the
performance from the influence of the telegraph pole, and
can resist the attraction of the passing person. Furthermore,
from this figure we can see the approach “BP” tracks the
person almost throughout the entire sequence, despite severe
occlusion and background distraction, while the approaches
“Covariance” fails during some short periods. Finally, we
notice that the approach “BP” also fail during Frames 787-
795(the last frame). This is due to the reason that during
these frames the tracked person is occluded by some trees,
which produce clutter.

Figs.3-5 give some representative examples. Fig.3 is for
the approach “Infrared”. During Frames 440-467, the object
walks near the telegraph pole, and the tracking performance
is satisfactory, though the telegraph pole partially occludes
the object. During Frames 467-504, the object re-appears

and the occluding finishes, the tracker recovers the accurate
tracking of the object. However, at Frame 505, the tracker
is hijacked by a near passing person which is similar to the
object and from then on the tracker locks onto this person;
Therefore it totally fail during Frame 505 to the end(See
Fig.3 for the representative frames 511 and 564).

On the other hand, the approach “Average”, though fuses
the information of color and infrared, fails at Frame 452.
After that frame it locks onto the telegraph pole and never
recovers. This shows that simple averaging can not provide
robust fusion for this case. See Fig.4 for representative
frames.

Finally, we compare the tracking results of the ap-
proaches “Covariance” and “BP”. From Fig.2 we see that
“BP” can provide more stable tracking performance than
“Covariance”. This can be shown from Fig.5. We can see
the proposed approach can give better performance than the
approach “Covariance”. More results are omitted due to the
page limitations.

VI. CONCLUSIONS

The contribution of this paper is twofold: First, the co-
variance feature is used to construct the likelihood function
under the framework of particle filter. This likelihood cap-
tures the spatial and statistical properties as well as their
correlation within representation of covariance. Secondly,
different from the existing fusion approaches, our approach
automatically realize the fusion by sequential belief prop-
agation, which uses message passing scheme to exchange
information between color and inferred image information.
The performance of the proposed approach is evaluated using
real visual tracking examples.
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