
 
 

 

  

Abstract- This paper presents a novel technique for 
implementing Clothoidal real-time paths for mobile robots.  
As first step, Rational Bezier curves are obtained as 
approximation of the Fresnel integrals. By rescaling, rotating 
and translating the previously computed RBC, an on-line 
Clothoidal path is obtained. In this process, coefficients, weights 
and control points are kept invariant. This on-line approach 
guarantees that an RBC has the same behavior as the original 
Clothoid using a low curve order. The resulting Clothoidal path 
allows any two arbitrary poses to be joined in a plane. RBCs 
working as Clothoids are also used to search for the shortest 
bounded-curvature path with a significant computational cost 
reduction. In addition to this, the proposed technique is tested 
on a real mobile robot for trajectory generation and kinematic 
control. To the authors’ knowledge, the present approach is the 
first technique which allows real-time Clothoidal path 
computation. 

I. INTRODUCTION 
Trajectory generation for autonomous vehicles has been 

subject to extensive research in recent decades. The simplest 
solution is to generate a trajectory concatenating line and arc 
segments [2], [3]. The main disadvantage of this technique is 
the curvature discontinuity between segments. This problem 
can be overcome by using smooth transition curves between 
straight lines and arc segments. In addition, constantly 
varying centrifugal acceleration, jerk is desirable in order to 
minimize wheel slip problems. This type of curves is 
commonly known as Clothoid or Cornu spiral. In this sense, 
Clothoids have been used in mobile robot trajectory 
generation [5], [6]. Another possibility is to combine only 
piecewise clothoids to join two poses (x,y,θ) in a plane [7], 
[8]. In these papers, authors introduced the concept of 
Elementary paths, that is, two equal concatenate piecewise 
clothoids to join symmetrical poses.  They also introduced 
the concept of Bi-Elementary paths to join two arbitrary 
poses in a plane just only combining two different 
elementary paths. 

It is interesting to note that Clothoids have also been used, 
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for many years, as transition curves in road design [4] given 
that constant jerk guarantees passenger comfort. 

Unfortunately, Clothoids are transcendental curves 
defined in terms of Fresnel integrals which cannot be solved 
analytically. For this reason, in recent years, research efforts 
have been focused on finding continuous function 
approximation techniques [9]-[12]. However, these 
techniques, successful in CAD platforms, cannot be used in 
real-time path planning generation due to the great 
computational cost of high order approximation curves. In 
this sense, [10] uses a 26th order continuous function, which 
is unacceptable in real-time systems to the authors’ opinion.  
In [12], a Fixed Point iteration technique is used to find an 
approximated solution of Fresnel integrals which requires a 
high computational cost. The results obtained in [11] do not 
guarantee inherent properties of Clothoids. In addition to 
mentioned problems to approximate a Clothoid, joining 
piecewise Clothoids requires additional iterative methods 
[7], [8]. 

The goal of our research is to present a technique that 
computes a general continuous curve approximation of 
Clothoids at the lowest possible degree, guaranteeing, at the 
same time, Clothoidal behavior.  

The process generates first an off-line general 
approximation of Fresnel integrals, and then particularizes it 
by rescaling, rotating and translating an on-line curve is 
obtained. Therefore, Clothoidal path construction is carried 
out without iteration, suitable for real-time applications. 

Our previous work [1] presented a general off-line 
approximation of the Fresnel integrals into Rational Bezier 
Curves (RBC). This paper represents a continuous 
progression of [1], in the sense that, elementary paths are 
constructed simply by rescaling, rotating and translating the 
general off-line formulation, keeping coefficients, weights 
and control points of RBCs invariant.  

This paper is organized as follows. In section II, a brief 
review of Clothoid curve properties is presented. Section III 
shows a brief review of the methodology to approximate 
Fresnel integrals by Rational Bezier Curves [1]. Section IV 
establishes the methodology to compute Bi-elementary paths 
using the general off-line Clothoidal formulation. In Section 
V, the methodology is tested to search for the shortest 
bounded-curvature paths. In Section VI, Clothoidal paths as 
control references are tested on a real mobile robot. 
Conclusions and future works are presented in Section VII. 
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II. PROPERTIES OF CLOTHOID CURVES 
The Cornu spiral or Clothoid curve is defined 

parametrically in terms of Fresnel integrals as follows: 
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where K is a positive real number, γ  is a non-negative real 
number. Clothoid curves have the following properties:  

1. Angle of tangent: 2γπτ 2⋅=   
2. Curvature: Kk γπ ⋅= , Radius kR 1=  
3. Arc length L: γπγ ⋅⋅=⋅= AKL , where A is the 

well-known clothoid constant parameter. 
4. Homotecial factor AK ⋅= π  

The most attractive property of the clothoid curve is that: 
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where R is the radius of the curvature. This property 
guarantees smooth transitions establishing, at the same time, 
a linear relation between the curvature and the arc length. In 
addition, the variation of the centrifugal acceleration, J, is 
defined by the topographers as [4]: 

J
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3

2 =  

where V is vehicle velocity. As mentioned in the 
introduction, Fresnel integrals must be solved numerically. 
Approximation methods use polynomial and non-polynomial 
functions. In particular, all existing techniques involving 
non-polynomial functions [9] are only useful when 
approximating Fresnel integrals in a single point. However, 
CAD/CAM systems or mobile robot trajectory generation 
modules require a continuous function. For this purpose, 
polynomial functions are the ideal solution.  

The standard polynomial functions commonly used in 
CAD/CAM are Bezier, Rational Bezier, B-spline and 
NURBS. Some of these curves have been used for Clothoid 
approximation [10]-[12].  

III. PREVIOUS WORKS 
Our previous work [1] presented an off-line methodology 

to approximate the Clothoid by Rational Bezier Curve for a 
selected working interval. The RBC has the following 
formulation: 
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where: 

Ck: Control points 
N :  Order of the RBC 

wk :  Weights of the control points 
u :  Intrinsic parameter [0…1] 

In order to construct a Clothoid-like Rational Bezier, it is 
necessary to change the variable, 
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where γi and γe are the limits of the selected working 
interval, γi≤γ≤γe, for the Fresnel integrals which can be 
calculated from Clothoid properties explained in Section II. 
This is based on the tangent angle, curvature and the arc 
length of the clothoid as seen in Section II and Fig.3. 
The RBC has two degrees of freedom corresponding to 
control points and weights. In [1], first the control points are 
computed forcing the weights to 1. This translates the RBC 
to a Bezier curve that can be expressed as a linear equation 
of these control points, as follows, 

N
N BCBCBCP γγγγ ⋅++⋅+⋅= ...1
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where kBγ  is the kth Bernstein basis function: 
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In that case, Fresnel integrals Pγ = (C(γ), S(γ)) are obtained 

using a non-polynomial approximation explained in [9], that 
computes the Fresnel integrals with an accuracy of 2⋅10-10. 
The resulting linear equations can be solved by least squares 
techniques obtaining the control points of the RBC that 
approximate the Fresnel points. This approximation does not 
touch the start and end points, nor does it guarantee the 
required C2 continuity at the start point. To overcome this 
problem, the control points have to be forced at these 
locations at the cost of decreasing the approximation 
accuracy unless the order of the curve is increased. 

An alternative to increasing the order of the Bezier curve 
is to compute the weights using the previously computed 
control points and force the start and end points to the 
correct locations. In that case, the weights are also computed 
using least squares techniques. 

As shown in [1], the RBC has the same behaviour as the 
Clothoid with homothetial factor equal to 1 and error in the 
approximation less than 20101 −⋅ .  Fig.1 shows a block 
diagram of the methodology.  

In order to obtain a general off-line formulation of the 
clothoid, one of the main properties of the parametric curves, 
that is, transformation invariance [14] is used. This property 
allows the RBC to be rotated, translated and rescaled 
through the control points. Note that the homothetial factor, 
K, of the Clothoid is included in the RBC as a scaling factor, 
as shown in (3). 

 

( )
0

0

( )

N
k

k k
k

N
k

k
k

w K C B
P

w B

γ

γ

γ =

=

⋅ ⋅ ⋅
=

⋅

∑

∑
     (3) 

 

2247



 
 

 

WORKING 
INTERVAL

FRESNEL POINTS
 BY

 NON-POLYNOMIAL 
FUNCTIONS

SET OF LINEAR EQUATIONS 
WITH WEIGHTS EQUAL TO 1

LEAST SQUARES

REALLOCATIOIN OF 
THE CONTROL 

POINTS

SET OF LINEAR EQUATIONS WITH 
THE RESULTING CONTROL POINTS 

WEIGHTS AND CONTROL POINTS

INITIAL RBC 
ORDER

ERROR< 1*10 -20

LEAST SQUARES

INCREASE THE RBC 
ORDED

Control points

weights

No

Yes

 
Fig. 1 Block diagram of the approximation technique 

The selected working interval depends on the application. 
For a 2π rotation, four Clothoids with a working interval of 
[ ]2,0 π  have to be combined. In this case, the approximation 
technique determines that an 11th order RBC guarantees 
Clothoidal behavior. The corresponding weights and control 
points are shown in Table I.  
 

TABLE I 
 COEFFICIENTS OF THE RBC FOR A PATH PLANNING 

 
C S i 

Ci wi Ci wi 
0 0 1 0 1 
1 0.0909 1-77·10-7 0 1 
2 0.1818 1+77·10-8 0 1 
3 0.2727 1-17·10-7 0.003 1-27·10-6 
4 0.3636 1+15·10-7 0.012 1+92·10-7 
5 0.4540 1-18·10-7 0.031 1+14·10-7 
6 0.5422 1-82·10-8 0.0634 1-47·10-7 
7 0.6251 1-68·10-8 0.1107 1+36·10-7 
8 0.6973 1-22·10-8 0.1755 1-19·10-7 
9 0.7513 1-40·10-9 0.2564 1+66·10-8 

10 0.7797 1-47·10-8 0.3473 1-27·10-9 
11 0.7798 1 0.4382 1 

 
The most interesting aspect to remark is that the 

homothetial factor K acts as a scaling factor. Therefore, the 
coefficients are computed just once for any group of 
Clothoids. 

IV. BI-ELEMENTARY PATH 
In this paper, an elementary path is considered as a 

concatenation of two equal piecewise Clothoids. 
Furthermore, two poses in the plane can be obtained by 
concatenating two different elementary paths to form a Bi-
elementary path [7], [8]. In particular, to link the start 
pose, ),,( iiii yx θ=p , and end pose, ),,( eeee yx θ=p , it is 
necessary to compute the split pose, ),,( ssss yx θ=p  which is a 
symmetric pose with respect to the start and end poses [13]. 

From the split pose, the tangent angles of the first 
Clothoid,(τ1, τ2) are obtained as: 

( ) 2/1 is θθτ −=   (4) 

( ) 2/2 se θθτ −=    (5)          
The second Clothoid is equal and symmetric to the first one. 
This means that the control points of the second clothoid can 
be obtained by simply taking the symmetric control points of 
the first Clothoid, see Fig.2. 

 
Fig. 2. Control points symmetry: Construction of an elementary path. 
 

In addition, a pivot intermediate point (Cγ, Sγ), defining a 
symmetrical axis between the two elementary paths is 
obtained. This pivot point is calculated introducing the 
tangent angles, (τ1, τ2) in the RBC, as described in Fig. 3. 
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Fig 3 Block diagram of RBC reconfiguration 
 
As the tangent angle does not depend on the homothetial 
factor, it is possible to construct normal elementary paths 
with K=1. Afterwards, the specific elementary paths will be 
recomputed using the homothetial factor as a scaling factor, 
as seen in Fig. 4. 
 

 
                Without scaling factor                          With scaling factor 
Fig 4. Elementary path construction with end pose (10,7, 0.7854) 
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Therefore, the next step will be to scale the control points 
considering that the last control point of the second clothoid, 
( )22 ,

NN SC CC , of the first elementary path and the last control 
point of second clothoid, ( )44 ,

NN SC CC , belong to the second 

elementary path has to coincide with the split pose and the 
end pose respectively, that is: 
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Without losing generality, both elementary paths are 

constructed with respect to the coordinate origin. Fig.5 is a 
diagram of elementary path construction. 

 

 
Fig 5. Diagram of the elementary path construction 
 
 

The last step is to translate and rotate the control points of 
the RBCs until the correct pose, defining a Bi-Elementary 
path. Figure 6 shows an example of Bi-elementary path 
construction.  

 

 
Fig 6 Bi-elementary path: Start pose:(0,0,0), End pose: (30,20,0.1) 

 
The working interval of the resulting RBCs for the four 

Clothoids are [0… ( )1τγ ], ] ( )1τγ …0], ]0… ( )2τγ ], ] ( )2τγ …0] 
respectively. In contrast to the method described in [7] and 
[8], this method avoids iterative procedures when computing 
elementary paths.  

V. THE SHORTEST BOUNDED-CURVATURE PATH 
As demonstrated in [13], the loci of split poses 

(intermediate poses) joining the start and end poses with a 
Bi-elementary path is a circle. Therefore, it exists an infinite 
set of solutions (Bi-elementary paths with different lengths 
and curvatures) joining start and end poses. In particular, we 
are interested in obtaining the shortest bounded-curvature 
path that satisfies kinematic curvature constrains of vehicle-
like mobile robots 

maxkk ≤ . Unfortunately, this solution can 
not be obtained with analytical methods; requiring heuristic 
algorithms. 

Based on the ideas from [15], we have developed a 
heuristic method to find the shortest bounded-curvature path. 
In this paper, the shortest bounded-curvature path is obtained 
by concatenating circular arcs with the maximum allowed 
curvature and straight lines. However, results from [15] do 
not satisfy curvature continuity condition. On the contrary, 
our approach solves this problem using a Bi-elementary path 
that inherently satisfies this condition. Obviously, our 
solution obtain one elementary path with the maximum 
curvature and minimum scaling factor (similar to the 
maximum curvature circle) and another elementary path with 
minimum curvature and maximum scaling factor (similar to 
a straight line). 

Based on [13], the center ( )cc yx ,  and radius r  of the 
circle (loci of split poses) depends on the start pose, ip , and 
end pose ep , generally expressed as: 

( ) ( )eiccc ryx ppf ,,, ≡  

Additionally, the split pose depends on the independent 
variable θ  (angle the circle) as shown in Fig. 7:  

( )θ,, eis pphp ≡  

 
Fig 7. Diagram of the elementary path construction 

 

Therefore, the problem is stated as follows: 

( )( )( )iesryBiElementaLengthL
i

ppp
p

,,minmin =  with 
maxkk ≤ . 

It can be shown that the split pose for the optimal solution 
is always located on the non-shadowed area H1 of the circle 
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depicted in Fig. 7 if only if the curvature condition is 
satisfied in the area. Otherwise, the solution will be 
necessary located on the shadowed area H2. Therefore, our 
search procedure tries first to find a solution in H1 and if 
doesn’t exists, then looks for solution in H2. 

Based on [15], our search procedure looks for the pose 
that satisfies the curvature condition and it is closest to either 
start or end pose. 

It is important to remark that in our method it is not 
necessary to develop the whole Bi-elementary path to 
compute the length of the path. This can be done firstly, 
computing the tangent angle of the Elementary paths using 
Equations (4) and (5). Later, terms K1 and K2 of the Fresnel 
integrals (scaling factors of the RBCs) are calculated through 
Equations (6) and (7). In this case, only the last control point 
of the second Clothoid of the Elementary path, ( )22 ,

NN SC CC , 

( )44 ,
NN SC CC  it is required to compute the arc length, which can 

be done simply by projecting the first control point of the 
first Clothoid. 

Fig. 8 depicts three geometric loci (possible split poses 
within bounded-curvature) where the optimal solution has 
been found in H1. 

 
Start pose (0,0,0) & End pose (20,30,1) 

 
Start pose (0,0,0) & End pose (0,50,1.2) 

 
Start pose (20,20,1.2) & End pose (30,50,2.2) 

Fig. 8. Bounded-curvature shortest path with RBCs as clothoids 
 
Fig. 9, shows the case where the solution could not be found 
in H1 and therefore the search procedure was focused on H2. 
 

 
Fig. 9. Bounded-curvature shortest path out of the shortest path  
 

With this heuristic method, the computational cost of the 
search procedure is significantly reduced compared to brute-
force search on the whole circle.  

In our simulations using a 2.4 GHz Pentium IV, If the 
solution exists in H1, the mean time required was 13 ms. 
Otherwise, several iterations will be required at the cost of 
0.26 ms/iteration. 

VI. EXPERIMENTAL RESULTS 
In order to test the new formulation, a trajectory 

generation module has been implemented on the differential 
mobile robot shown in Picture 1.  

 

 
 

Picture 1 Differential mobile robot 
 

This robot is equipped with an industrial PC NI PXI-8186 
with a Pentium IV at 2.2 GHz. With this processor, 
Clothoidal paths are computed in 15 ms.  

In real applications, it is particularly important to resample 
the RBC, especially when using computed paths as control 
references. In any case, as the RBC is a continuous function, 
continuous resampling is always possible. 

Curvature, arc length and tangent angles depend on each 
vehicle and path requirement, as explained in Section IV. In 
particular, for a tricycle-like mobile robot, the curvature is 
related to the steering wheel turning radius while arc length 
is considered for differential mobile robots. 

The main property of the clothoid is that it guarantees a 
constant Jerk which minimizes wheel slip. This produces 
errors that cannot be measured by the encoders and therefore 
the mobile robot is equipped with inertial sensors capable of 
measuring variation in the tangential acceleration. The open-
loop control structure used in our experiments is shown in 
Fig. 10. 
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Fig. 10. Open control loop 

 
where γ parameter  can be easily calculated as  

K
TnV ⋅⋅=γ  

and 
n: number of samples in the RBC. 
T:  sampling period. 
V: mobile robot velocity. 
K: scaling factor. 
 

An example of the bi-elementary path followed by the 
robot is show in Fig. 11. (left). Start pose is selected to 
(0,0,0) and end pose to (5,12,1). The robot velocity is 
selected to 0.25 m/s. the centrifugal acceleration suffers by 
the robot is show in Fig.11 (right). 

 
Fig. 11. Clothoidal path (right). Inertial sensor measurement (left) 

VII. CONCLUSIONS AND FUTURE WORKS 
This paper presents a method for obtaining real-time 

Clothoidal paths in mobile robotics. The method involves 
two steps: 1) to define off-line approximations of Clothoids 
as Rational Bezier Curves (RBC); 2) To generate on-line 
paths by simply rescaling, rotating and translating the 
previous off-line formulation. In whole process, coefficients, 
weights and control points are kept invariant. 

One of the main advantages of this method is that a low 
order curve is obtained guaranteeing Clothoidal behavior. In 
addition to this, the curved is computed off-line, which is 
one of the most time-consuming tasks. Another advantage of 
this method is that construction of Elementary paths and Bi-
elementary path is computed without requiring iterative 
methods. As a consequence, the method can be implemented 
in systems under real-time requirements.  

As it has been shown, there are infinite solutions to join 
two arbitrary poses in a plane using Bi-Elementary paths. In 
particular, we are interested in the shortest-bounded 
curvature path, which can be obtained based on some 
heuristic rules. It has been shown that the Bi-elementary 

parameter computation takes about 0.26 ms of computational 
time. As a result, robot path planning only requires about 15 
ms to find the shortest bounded-curvature path using a 
heuristic iterative method. 

In real applications, it is particularly important to resample 
the RBC, especially when using the computed paths as 
control references. Given that RBCs are continuous 
functions, continuous resampling is always possible. In the 
paper, it has been shown, different cases to resample a RBC 
based on: curvature, arc length and tangent angle. In 
particular, for tricycle-like mobile robots, the curvature case, 
since it is related to the steering wheel turning radius while 
arc length case is considered for differential mobile robots. 

As a conclusion, it is also important to remark that the 
technique presented in this paper is a novel approach and, to 
the authors’ knowledge, it is the first proposal to allow 
Clothoidal paths implementing real-time.  

As further research, it will be interesting to extend 2D 
Fresnel integrals associated to Clothoids to 3D. This will 
imply the application of the proposed path planning method 
to robots with 6 d.o.f. or even more. This method can also be 
used to generate trajectories for high speed CNC machines. 
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