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Abstract— In this paper the authors propose geometric tech-
niques to deal with the problem of grasping of the objects
relaying on their mathematical models. For that we use the
geometric algebra framework to formulate the kinematics of a
three finger robotic hand. Our main objective is by formulating
a kinematic control law to close the loop between perception
and actions. This allows us to perform a smooth visually guided
object grasping.

I. INTRODUCTION

In this work the authors show how to obtain a feasible
grasping strategy based on the mathematical model of the
object and the manipulator. In order to close the loop between
perception and action we estimate the pose of the object
and the robot hand. A control law is also proposed using
the mechanical Jacobian matrix computed using the lines of
the axis of the Barrett hand. Conformal geometric algebra
has been used within this work instead of the projective
approach [1] due to the advantages which are provided by
this mathematical framework in the process of modeling
mechanical structures.

In our approach first we formulate the inverse kinematics
of the robot hand and analyze the object models in order
to identify the grasping constraints. This takes into account
suitable contact points between the object and the robot hand.
Finally a control law to close the perception and action loop
is proposed. In the experimental part, we present a variety
of real grasping situations. Other works regarding grasping
tasks are [6], [7].

II. GEOMETRIC ALGEBRA

The inner product of two vectors is the standard scalar
product and produces a scalar. The outer or wedge product of
two vectors is a new quantity which we call a bivector. Thus,
b ∧ a will have the opposite orientation making the wedge
product anti-commutative. The outer product of k vectors is a
k-vector or k-blade, and such a quantity is said to have grade
k. A multivector (linear combination of objects of different
type) is homogeneous if it contains terms of only a single
grade.

We will specify a geometric algebra Gn of the n dimen-
sional space by Gp,q,r, where p, q and r stand for the number
of basis vector which squares to 1, -1 and 0 respectively, and
fulfill n = p+ q + r.

We will use ei to denote the vector basis i. In a Geometric
algebra Gp,q,r, the geometric product of two basis vector is
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Fig. 1: Stereographic projection for 1-D.

defined as

eiej =

8
><
>:

1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p+ 1, · · · , p+ q

0 for i = j ∈ p+ q + 1, · · · , p+ q + r.
ei ∧ ej for i 6= j

This leads to a basis for the entire algebra:

{1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, . . . , {e1 ∧ e2 ∧ . . . ∧ en} (1)

Any multivector can be expressed in terms of this basis.

III. CONFORMAL GEOMETRY

Geometric algebra G4,1 can be used to treat conformal
geometry in a very elegant way. To see how this is possible,
we follow the same formulation presented in [2].

A. The Stereographic Projection

The conformal geometry is related to a stereographic
projection in Euclidean space. A stereographic projection is a
mapping taking points lying on a hypersphere to points lying
on a hyperplane. In this case, the projection plane passes
through the equator and the sphere is centered at the origin.
To make a projection, a line is drawn from the north pole to
each point on the sphere and the intersection of this line with
the projection plane constitutes the stereographic projection.

For simplicity, we will illustrate the equivalence between
stereographic projections and conformal geometric algebra in
R1. We will work in R2,1 with the basis vectors {e1, e4, e5}
having the usual properties. The projection plane will be the
x-axis and the sphere will be a circle centered at the origin
with unitary radius.

Given a scalar xe representing a point on the x-axis, we
wish to find the point xc lying onto the circle that projects
to it (see Figure 1). The equation of the line passing through
the north pole and xe is given by f(x) = − 1

xe
x + 1 and

the equation of the circle x2 + f(x)2 = 1. Substituting
the equation of the line on the circle, we get the point of
intersection xc, which can be represented in homogeneous
coordinates as the vector

xc = 2
xe

x2
e + 1

e1 +
x2
e − 1

x2
e + 1

e4 + e5. (2)
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From (2) we can infer the coordinates on the circle for the
point at infinity as

e∞ = lim
xe→∞

{xc} = e4 + e5, (3)

eo =
1

2
lim
xe→0

{xc} =
1

2
(−e4 + e5), (4)

Note that (2) can be rewritten to

xc = xe +
1

2
x2
ee∞ + eo, (5)

B. Spheres and Planes

The equation of a sphere of radius ρ centered at point
pe ∈ Rn can be written as (xe − pe)2 = ρ2. Since xc · yc =
− 1

2 (xe−ye)
2 and xc ·e∞ = −1 we can factor the expression

above to
xc · (pc −

1

2
ρ2e∞) = 0. (6)

Which finally yields the simplified equation for the sphere
as s = pc − 1

2ρ
2e∞ . Alternatively, the dual of the sphere is

represented as 4-vector s∗ = sIc. The sphere can be directly
computed from four points as

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (7)

If we replace one of these points for the point at infinity we
get the equation of a plane

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (8)

So that π becomes in the standard form

π = Icπ
∗ = n+ de∞ (9)

Where n is the normal vector and d represents the Hesse
distance.

C. Circles and Lines

A circle z can be regarded as the intersection of two
spheres s1 and s2 as z = (s1 ∧ s2). The dual form of the
circle can be expressed by three points lying on it

z∗ = xc1 ∧ xc2 ∧ xc3 . (10)

Similar to the case of planes, lines can be defined by circles
passing through the point at infinity as:

L∗ = xc1 ∧ xc2 ∧ e∞. (11)

The standard form of the line can be expressed by

L = l + e∞(t · l), (12)

the line in the standard form is a bivector, and it has six
parameters (Plucker coordinates), but just four degrees of
freedom.

IV. DIRECT KINEMATICS

The direct kinematics involves the computation of the po-
sition and orientation of the end-effector given the parameters
of the joints. The direct kinematics can be easily computed
given the lines of the axes of screws.

A. Rigid Transformations

We can express rigid transformations in conformal geom-
etry carrying out reflections between planes.

1) Reflection: The reflection of conformal geometric en-
tities help us to do any other transformation. The reflection
of a point x with respect to the plane π is equal x minus
twice the direct distance between the point and the plane For
any geometric entity Q, the reflection respect to the plane π
is given by

Q′ = πQπ−1 (13)

2) Translation: The translation of conformal entities can
be done by carrying out two reflections in parallel planes π1

and π2, that is

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q(π−1
1 π−1

2 )︸ ︷︷ ︸
fTa

(14)

Ta = (n+ de∞)n = 1 +
1

2
ae∞ = e−

a
2 e∞ (15)

With a = 2dn.
3) Rotation: The rotation is the product of two reflections

between nonparallel planes

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q(π−1
1 π−1

2 )︸ ︷︷ ︸
fRθ

(16)

Or computing the conformal product of the normals of the
planes.

Rθ = n2n1 = Cos(
θ

2
)− Sin(

θ

2
)l = e−

θ
2 l (17)

With l = n2 ∧ n1, and θ twice the angle between the planes
π2 and π1. The screw motion called motor in [3] related to
an arbitrary axis L is M = TRT̃

Q′ = (TRT̃ )︸ ︷︷ ︸
Mθ

Q((T R̃T̃ ))︸ ︷︷ ︸
gMθ

(18)

Mθ = TRT̃ = Cos(
θ

2
)− Sin(

θ

2
)L = e−

θ
2L (19)

B. Kinematic Chains

The direct kinematics for serial robot arms is a succession
of motors and it is valid for points, lines, planes, circles and
spheres.

Q′ =

n∏

i=1

MiQ

n∏

i=1

M̃n−i+1 (20)

V. BARRETT HAND DIRECT KINEMATICS

The direct kinematics involves the computation of the po-
sition and orientation of the end-effector given the parameters
of the joints. The direct kinematics can be easily computed
given the lines of the axes of screws.

In order to explain the kinematics of the Barrett hand, we
show the kinematics of one finger. In this example we will
assume that the finger is totally extended. Note that such a
hypothetical position is not reachable in normal operation,
but this simplifies the explanation.
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Fig. 2: Barrett hand hypotetical position

Fig. 3: Barrett hand at home position

We initiated denoting some points on the finger which help
to describe their position.

x1o = Awe1 +A1e2 +Dwe3, (21)
x2o = Awe1 + (A1 +A2)e2 +Dwe3, (22)
x3o = Awe1 + (A1 +A2 +A3)e2 +Dwe3. (23)

The points x1o, x2o and x3o describe the position of each
union and the end of the finger in the Euclidean space, see
the figure 2.

Having defined these points it is quite simple to calculate
the axes,which will be used as motor’s axis.

L1o = −Aw(e2 ∧ e∞) + e12, (24)
L2o = (x1o ∧ e1 ∧ e∞) Ic, (25)
L3o = (x2o ∧ e1 ∧ e∞) Ic, (26)

when the hand is initialized the fingers moves away to home
position, this is Φ2 = 2.46o in union two and Φ3 = 50o

degrees in union three. In order to move the finger from this
hypothetical position to its home position the appropriate
transformation need to be obtained.

M2o = cos (Φ2/2)− sin(Φ2/2)L2o, (27)
M3o = cos (Φ3/2)− sin(Φ3/2)L3o, (28)

Having obtained the transformations, then we apply them to
the points and lines to them that must move.

x2 = M2ox2oM̃2o, (29)
x3 = M2oM3ox3oM̃3oM̃2o, (30)
L3 = M2oL3oM̃2o. (31)

The point x1 = x1o is not affected by the transformation,
as are for the lines L1 = L1o and L2 = L2o see figure 3.

Fig. 4: Mathematical model of the object.

Since the rotation angle of both axis L2 and L3 are related,
we will use fractions of the angle q1 to describe their
individual rotation angles. The motors of each joint are
computed using 2

352q4 to rotate around L1, 1
125 q1 around

L2 and 1
375q1 around L3, the angles coefficients were taken

from the Barrett hand user manual.

M1 = cos(q4/35) + sin(q4/35)L1, (32)
M2 = cos(q1/250)− sin(q1/250)L2, (33)
M3 = cos(q1/750)− sin(q1/750)L3. (34)

The position of each point is related to the angles q1 and
q4 as follows:

x′1 = M1x1M̃1, (35)

x′2 = M1M2x2M̃2M̃1, (36)

x′3 = M1M2M3x3M̃3M̃2M̃1, (37)

L′3 = M1M2L3M̃2M̃1, (38)

L′2 = M1L2M̃1. (39)

Since we already know x′3, L′1, L′2 and L′3 we can calculate
the speed of the end of the finger using

Ẋ ′3 = X ′3 · (−
2

35
L′1q̇4 +

1

125
L′2q̇1 +

1

375
L′3q̇1). (40)

VI. POSE ESTIMATION

There are many approaches to solve the pose estimation
problem ([4]). In our approach we project the known math-
ematical model of the object on the camera’s image. This
is possible because after calibration we know the intrinsic
parameters of the camera, see fig 4. The image of the
mathematical projected model is compared with the image
of the segmented object. If we find a match between them,
then this means that the mathematical object is placed in the
same position and orientation as the real object. Otherwise
we follow a descendant gradient based algorithm to rotate
and translate the mathematical model in order to reduce the
error between them. This algorithm runs very fast

Figure 5 shows the pose estimation result. In this case we
have a maximum error of 0.4o in the orientation estimation
and 5mm of maximum error in the position estimation of the
object. The problem becomes more difficult to solve when
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Fig. 5: Pose estimation of a disk with a fixed camera.

Fig. 6: Pose estimation of a recipient.

the stereoscopic system is moving. Figure 6 shows how well
the stereo system track the object. If we want to know the real
object’s position with respect to the world coordinate system,
of course we must know the extrinsic camera’s parameters.
Figure 7 illustrates the object’s position and orientation with
respect to the robot’s hand. In the upper row of this figure
we can see an augmented reality position sequence of the
object. This shows that we can add the mathematical object
in the real image. Furthermore, in the second row of the same
image we can see the virtual reality pose estimation result.

VII. GRASPING THE OBJECTS

Considering that in using cameras we can only see the
surface of the observed objects, in this work we consider
them as bidimensional surfaces which are embed in a 3D
space, and are described by the following function

→
H (s, t) = hx(s, t)e1 + hy(s, t)e2 + hz(s, t)e3, (41)

where s and t are real parameters in the range [0, 1]. Such
parametrization allows us to work with different objects like
points, conics, quadrics, or even more complex real objects
like cups, glasses, etc.

There are many styles of grasping, however we are taking
into account only three principal styles and they are shown
in Fig. 8. Note that also for each style of grasping there are
many possible solutions, for another approach see [5].

Fig. 7: Object presented in augmented and virtual reality.

a)

b) c)

Fig. 8: a) Object and his normal vectors; b) Planes of the object;
c) Forces of grasping.

A. Style of grasp one

Since our objective is to grasp such objects with the Barrett
Hand, we must consider that it has only three fingers, so the
problem consists in finding three points of grasping for which
the system is in equilibrium by holding; this means that the
sum of the forces are equal to zero, and also the sum of the
moments.

We know the surface of the object, so we can compute its
normal vector in each point using

N(s, t) =

 
∂
→
H (s, t)

∂s
∧ ∂

→
H (s, t)

∂t

!
Ie. (42)

In surfaces with low friction the value of F tends to its pro-
jection over the normal (F ≈ Fn). To maintain equilibrium,
the sum of the forces must be zero

∑3
i=1 ‖Fn‖N(si, ti) = 0,

(Fig. 8.a).
This fact restricts the points over the surface in which the

forces can be applied. This number of points is more reduced
if we consider that the forces over the object are equal.

3∑

i=1

N(si, ti) = 0. (43)

Additionally, in order to maintain the equilibrium of the
system, it must be accomplished that the sum of the moments
is zero

3∑

i=1

H(s, t) ∧N(s, t) = 0. (44)

The points on the surface with the maximum and minim
distance to the mass’s center of the object fulfill H(s, t) ∧
N(s, t) = 0. The normal vector in such points crosses the
center of mass (Cm) and it does not produce any moment.
Before determining the external and internal points, we must
compute the center of mass as

Cm =

∫ 1

0

∫ 1

0

→
H (s, t)dsdt (45)

Once Cm is calculated we can establish the next restriction

(H(s, t)− Cm) ∧N(s, t) = 0. (46)
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The values s and t satisfying (46), form a subspace and they
fulfill that H(s, t) are critical points on the surface (being
maximums, minimums or inflections)

The constraint imposing that the three forces must be equal
is hard to fulfill because it implies that the three points
must be symmetric with respect to the mass center. When
such points are not present, we can relax the constraint to
allow that only two forces are equal in order to fulfill the
hand’s kinematics equations. Then, the normals N(s1, t1)
and N(s2, t2) must be symmetric with respect to N(s3, t3)

N(s3, t3)N(s1, t1)N(s3, t3)−1 = N(s2, t2) (47)

B. Style of grasp two

In the previous style of grasping three points of contact
were considered. In this section we are taking into account a
greater number of contact points, this fact generates a style
of grasping that take the objects more secure. To increment
the number of contact points is taken into account the base
of the hand.

Since the object is described by the equation H(s, t) it is
possible to compute a plane πb that divides the object in the
middle, this is possible using lineal regression and also for
the principal axis Lp. See Fig. 8.b
One Select only the points from locations with normal
parallels to the plane πb

N(s, t) ∧ πb ≈ 0 (48)

Now we chose three points separated by 25 mm to
generate a plane in the object. In this style of grasping the
position of the hand relative to the object is trivial, because
we just need to align the center of these points with the
center of the hand’s base. Also the orientation is the normal
of the plane π1 = x1 ∧ x2 ∧ x3 ∧ e∞.

C. Style of grasp three

In this style of grasping the forces F1, F2 and F3 do not
intersect the mass center. They are canceled by symmetry,
because the forces are parallel.

N(s3, t3)F3 = N(s1, t1)F1 +N(s2, t2)F2. (49)

Also the forces F1, F2 and F3 are in the plane πb and they
are orthogonal to the principal axis Lp (πb = Lp · N(s, t))
as you can see in the Fig. 8.c

A new restriction is then added to reduce the subspace of
solutions

F3 = 2F1 = 2F2, (50)
N(s1, t1) = N(s2, t2) = −N(s3, t3). (51)

Finally the direct distance between the parallels apply to
x1 and x2 must be equal to 50 mm and between x1, x2 to
x3 must be equal to 25 mm.

Now we search exhaustively three points changing si and
ti. Figure 9 shows the simulation and result of this grasping
algorithm. The position of the object relative to the hand
must be computed using a coordinate frame in the object
and other in the hand.

Fig. 9: Simulation and result of the grasping.

Fig. 10: Object’s position relative to the hand

VIII. TARGET POSE

Once the three grasping points (P1 = H(s1, t1), P2 =
H(s2, t2), P3 = H(s3, t3)) are calculated, for each finger
it is really easy to determine the angles at the joints. To
determine the angle of the spread (q4 = β), we use

cosβ =
(p1 − Cm) · (Cm − p3)

|p1 − cm| |Cm − p3|
. (52)

To calculate each one of the finger angles, we determine its
elongation as

x′3 · e2 = |(p1 − Cm)| − Aw
sin(β)

−A1, (53)

x′3 · e2 = |(p2 − Cm)| − Aw
sin(β)

−A1, (54)

x′3 · e2 = |(p3 − Cm)| + h−A1, (55)

where x′3 · e2 determines the opening distance of the finger

x′3 · e2 = (M2M3x3M̃3M̃2) · e2 (56)
x′3 · e2 = A1 +A2 cos( 1

125q + I2) +

+A3 cos
(

4
375q + I2 + I3

)
. (57)

Solving for the angle q we have the opening angle for each
finger. These angles are computed off line for each style of
grasping of each object. They are the target in the velocity
control of the hand.

A. Object pose

We must find the transformation M which allows us to
put the hand in a such way that each finger-end coincides
with the corresponding contact point. For the sake of sim-
plicity transformation M is divided in three transformations
(M1,M2,M3). With the same purpose we label the finger
ends as X1, X2 and X3, and the contact points as P1, P2

and P3.
The first transformation M1 is the translation between the

object and the hand, which is equal to the directed distance
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between the centers of the circles called Z∗h = X1∧X2∧X3

y Z∗o = P1 ∧ P2 ∧ P3, and it can be calculated as

M1 = e
− 1

2

„
Z∗h

Z∗
h
∧e∞ ∧

Z∗o
Z∗o∧e∞

∧e∞
«
Ic
. (58)

The second transformation allows the alignment of the planes
π∗h = Z∗h = X1 ∧X2 ∧X3 ∧ e∞ and π∗o = Z∗o ∧ e∞, which
are generated by the new points of the hand and the object.
This transformation is calculated as M2 = e−

1
2πh∧πo . The

third transformation allows that the points overlap and this
can be calculated using the planes π∗1 = Zo ∧X3 ∧ e∞ and
π∗2 = Zo∧P3 ∧ e∞, which are generated by the circle’s axis
and any of the points M3 = e−

1
2π1∧π2 .

These transformations define also the pose of the object
relative to the hand. They are computed off line in order to
know the target position and orientation of the object with
respect to the hand, it will be used to design a control law
for visually guided grasping

IX. VISUALLY GUIDED GRASPING

Once the target position and orientation of the object is
known for each style of grasping and the hand’s posture
(angles of joints), it is possible to write a control law using
this information and the equation of differential kinematics
of the hand that it allows by using visual guidance to take
an object.
Basically the control algorithm takes the pose of the object
estimated as shown in the Section 6 and compares with the
each one of the target poses computed in the Section 8 in
order to choose as the target the closest pose, in this way the
style of grasping is automatically chosen.

Once the style of grasping is chosen and target pose is
known, the error ε between the estimated and computed is
used to compute the desired angles in the joints of the hand

αd = αte
−ε2 + (1− e−ε2)αa (59)

where αd is the desired angle of the finger, αt is the target
angle computed in the section 8 and αa is the actual angle of
the finger. Now the error between the desired and the actual
position is used to compute the new joint angle using the
equation of differential kinematics of the Barrett hand given
in the Section 5.

A. Results

Next we show the results of the combination of the
algorithms of pose estimation, visual control and grasping to
create a new algorithm for visually guided grasping. In the
Figure 11 a sequence of images of the grasping is presented.
When the bottle is approached by the hand the fingers are
looking for a possible point of grasp.

Now we can change the object or the pose of the object
and the algorithm is computing a new behavior of grasping.
The figure (12) shows a sequence of images changing the
pose of the object.

Fig. 11: Visually guided grasping.

Fig. 12: Changing the object’s pose.

X. CONCLUSION

In this paper the authors used conformal geometric algebra
to formulate grasping techniques. Using stereo vision we are
able to detect the 3D pose and the intrinsic characteristics
of the object shape. Based on this intrinsic information we
developed feasible grasping strategies.

This paper emphasizes the importance of the development
of algorithms for perception and grasping using a flexible
and versatile mathematical framework.
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