
Adapting the Wavefront Expansion in Presence of Strong Currents

Michaël Soulignac∗,∗∗ Patrick Taillibert∗ Michel Rueher∗∗

* THALES Aerospace

2 Avenue Gay Lussac

78852 Elancourt, France

{firstname.lastname}@fr.thalesgroup.com

** Nice Sophia Antipolis University

I3S/CNRS, BP 145

06903 Sophia Antipolis, France

rueher@essi.fr

Abstract— The wavefront expansion is commonly used for
path planning tasks and appreciated for its efficiency. However,
the existing extensions able to handle currents are subject to
incorrectness and incompleteness issues when these currents be-
come strong. That is, they may return physically infeasible paths
or no path at all, even if a feasible path exists. This behavior
endangers the robot, especially in a dynamic replanning context.
That is why we propose a new extension called sliding wavefront
expansion. This algorithm, combining an appropriate cost
function and continuous optimization techniques, guarantees
the existence of a path with an arbitrary precision.

I. INTRODUCTION

Autonomous robots are more and more used to collect

data in hostile or hardly accessible areas. In a civil context,

these data may concern rescue tasks (locating survivors after

a natural hazard) or prevention tasks (keep a watch on

fragile areas, such as forests). In military missions, they

may concern surveillance tasks (about enemy installations

or troops).

To perform these complex tasks, robots are guided by on-

board planners. These planners have to be very reactive,

because the environment is often changing or unknown.

Thus, they implement very simple (but fast) algorithms,

such as the wavefront expansion [3]. This algorithm is

computationally efficient, but ignores or underestimates the

weather conditions, in particular currents.

However, in the case of Unmanned Air Vehicles (UAVs) or

Autonomous Underwater Vehicles (AUVs), which are gen-

erally small or slow, the impact of (air or water) currents is

significant. In this context, several extensions of the original

wavefront expansion have been proposed [5][7], but they

become incorrect in presence of strong currents. That is to

say, they may provide a path which is not physically feasible

by the robot. This behavior is due to the use of invalid cost

functions, which consider some cells as reachable, whereas

it might not be the case.

Using valid cost functions allows to eliminate incorrect-

ness issues, but leads to incompleteness ones: the algorithm

may fail to find a path, even if one exists. This behavior is

due to the discrete motion model, imposing on the robot to

move from a cell to another.

Both behaviors are dangerous for the robot, because they

can lead to an energy breakdown or worse, to collisions.

Consequently, we propose a new algorithm called sliding

start goal

Fig. 1. An example of environment with currents. Each current node is
represented by a grey arrow.

wavefront expansion, mixing a valid cost function and a

continuous motion model: (1) the cost function represents

the actual travel time of the robot in currents; (2) costs are

propagated among new entities, called sliders, which posi-

tions are computed by continuous optimization techniques.

II. PROBLEM STATEMENT

A robot, moving in a planar environment from a start site,

has to reach a goal site in a minimum time taking currents

into account, as depicted in figure 1.

The robot and sites are modeled by single points, and the

environment by a 2-D Euclidean space E . We denote R =
(O,~x,~y) the frame embedded in E , (ux,uy) the coordinates

of a vector ~u in R and u its modulus.

The current can be seen as a 2-D vector field ~c, known

either by measurement or forecasting, and hence discontinu-

ous. They are defined on the nodes of a mesh (not necessary

regular), called current nodes. The mean distance between

current nodes may correspond to the resolution of measures

or the precision of the forecast model.

The robot’s velocity relative to R is denoted ~vR, and its

velocity relative to the current ~c is denoted ~vc. Applying the

velocity composition law, these two quantities are linked by

the following relation:

~vR = ~vc +~c (1)

The modulus vc is assumed constant; it depends on the

robot’s engine capabilities.

Our problem consists in planning the time-optimal path

between the start and goal sites, given (1) the value of vc

and (2) a finite number of current nodes.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1352

start

Fig. 2. Different stages of the wavefront expansion in the environment
of figure 1, discretized into a 40 × 40 grid, without currents. The 8-
neighborhood and the Euclidean metric are used for cost propagation.

III. THE WAVEFRONT EXPANSION

A. Description

In [6], Jarvis proposed to exploit a computer vision tech-

nique, called distance transform, for path planning tasks. This

technique consists in propagating the Manhattan distance

required to reach a goal cell in a regular grid, corresponding

to a discretized representation of the environment. After this

phase, a path to the goal can be built from any cell to the

goal, by applying the hill climbing algorithm.

Later, Dorst and Trovato [3] generalized this algorithm

to a space of any dimension, using any neighborhood and

any metric. Figure 2 depicts a wavefront expansion using a

neighborhood of size 8 and the Euclidean distance for the

metric. In this case, the expansion is isotropic. The successive

wavefronts are thus discretized circles.

The wavefront expansion can be interpreted in various

ways. It can be seen as a distance transform (Jarvis’ view-

point), an application of the Dijkstra’s algorithm (Dorst’s

viewpoint) or a numerical potential field method (Bar-

raquand’s viewpoint [1]).

B. Extensions to currents

To handle currents, specific cost functions have been pro-

posed [5][7]. They lead to anisotropic wavefront expansions

(see figure 3 on next page), which gives better paths (in terms

of travel time) than isotropic expansions.

However, in presence of strong currents, incompleteness

or incorrectness issues may raise, as explained in the next

section.

IV. ISSUES DUE TO STRONG CURRENTS

We consider that a current is strong when its velocity is

greater than the robot’s velocity. More formally, every current

~c verifying c≥ vc is qualified as strong.

A. Incorrectness issues

We show here that the specific cost functions proposed in

literature to handle currents are invalid: they consider some

cells as reachable, whereas moves towards these cells are

physically impossible. Unfortunately, the use of invalid cost

functions may lead to incorrect planners, providing partially

infeasible paths.

To illustrate this fact, let us apply the functions proposed

by Pêtrès and Garau to the following example:

"The robot has to perform a unitary move ~d = 1~x between

two cells, with a velocity ~vc = 100~x, relative to a slightly

faster current ~copp =−120~x ".

Of course, this move is impossible, because the actual

robot’s velocity (relative to the ground) is ~vR =−20~x.

Pêtrès [7] proposed to use the following composite cost

function:

τ1 = τdist
1 + ατcur

1 (2)

This cost function can be interpreted as follows: the quan-

tity τdist
1 measures the traveled distance, and τcur

1 the angular

difference between the robot heading and the direction of

currents. Therefore, τ1 represents a compromise (tuned by

α) between traveling the minimal distance and pointing in

the same direction than currents.

In our particular example, we have:

{

τdist
1 = d

τcur
1 = 1−〈τ1~x · ~copp〉/Q

where Q = (d + 2α)cmax is a normalization term (cmax

denoting the maximal current strength), α a positive gain

and 〈·〉 the scalar product.

Thus, equation 2 becomes:

τ1 =
d + α

1 +(α/Q)copp
x

Using cmax = copp and d = 1, the cost of move ~d without

current is τ1 = 1 + α . Adding ~copp, this cost becomes τ ′1 =
(1+α)/(1−α/(1+2α))= k ·τ1. In other words, in presence

of ~copp, the cost of ~d is penalized by a factor k equal to:

k = 1/(1−α/(1 + 2α))∈ [1,2[

However, in spite of this penalization, the move ~d is still

considered as possible.

Garau [5] proposed the cost function τ2 defined by:

τ2 = d/||~vc + ~copp||

where ~vc is the robot velocity relative to the current and

|| · || the norm operator.

The idea of this cost function is to reflect the impact of

currents on the robot’s velocity. A pushing current globally

implies a velocity increase, and an opposite one a decrease.

Without current, the cost of move ~d is τ2 = 1/100. Adding
~copp, this cost becomes τ ′2 = 1/20 = 5τ2. In other words, in

presence of ~copp, the cost of ~d is penalized by a factor 5.

This penalization is more prohibitive than the Pêtrès’ one,

but the move is still considered as possible.

To sum up, both functions penalize physically impossible

moves by a factor γ , instead of forbidding them. In those

conditions, planners based on these functions may return a

path containing infeasible parts, even if an entirely feasible

path exists.

1353

start goal

(b)(a) (c)

start

Fig. 3. Results obtained with c = 120 km/h and vc = 100 km/h, applying
the following cost functions: (a) Pétrès (τ1); (b) Garau (τ2); (c) ours (τ3).
The upper part depicts different stages of the wavefront expansion; the lower
part the paths found. Feasible parts are drawn in grey and infeasible parts
in black.

This is illustrated in figure 3. The path guided by Pétrès’

cost function is completely infeasible. The one guided by Ga-

rau’s is better (because impossible moves are more severely

penalized) but some parts remain infeasible.

However, there exists an entirely feasible path, depicted

in figure 3c. It has been obtained by using our cost function

τ3, introduced it the next subsection.

B. Incompleteness issues

In this part, we first introduce a valid cost function τ3.

Then we show that the use of this function solves the

previous problem but brings a new one. Indeed, applying

a valid function on discretized elements (the cells of the

environment) leads to an incomplete planner, which may fail

to find a feasible path, even if such a path exists.

Contrary to the functions τ1 and τ2 above, the function τ3

we propose here models the actual travel time of the robot.

In particular, τ3 has the fundamental property to correctly

capture impossible moves.

Let us consider a move ~d, in a current ~c. Using equation

1, the duration τ3 of this move verifies: ~d = (~c + ~vc) · τ3.

Contrary to Garau, we do not directly apply the norm

operator to this equality, but we project it on x and y axis:

{

dx = (vc
x + cx) · τ3

dy = (vc
y + cy) · τ3

(3)

The relation vc2 = vc
x

2 +vc
y

2, allows us to eliminate vc
x and

vc
y in equation 3, leading to the following relation:

(dx− cx · τ3)
2 +(dy− cy · τ3)

2 = vc2 · τ2
3 (4)

Solving this second degree equation gives1:

τ3 =
−(cx ·dx + cy ·dy)+

√
∆

vc2− c2
=

√
∆−〈~d ·~c〉
vc2− c2

(5)

1It can be shown that (5) is always the positive root of (4).

where ∆ = vc2 · (d2
x + d2

y)− (cx ·dy− cy ·dx)
2.

Note that in the particular case of vc = c we simply have:

τ3 =
d2

2〈~d ·~c〉
(6)

Like Pêtrès’ and Garau’s cost functions, τ3 naturally

incites the robot to point in the direction of the current: if

the scalar product 〈~d ·~c〉 increases, τ3 decreases.

Moreover, τ3 is defined only if ∆ ≥ 0. This condition

allows to determine the region the robot can reach, in

presence of the current ~c.

If the robot is faster than the current (i.e. if vc ≥ c), this

region is unlimited. Otherwise, this region is delimited by a

cone, called accessibility cone. We can show that this cone

forms an angle αmax equal to:

αmax = 2 · arctan

(

vc

√
c2− vc2

)

The move ~d is thus physically feasible if and only if the an-

gle α between vectors ~d and~c lies in A = [−αmax/2,αmax/2].
When α tends towards the bounds of the domain A, the

cost τ3 tends towards +∞. Therefore, the cost of every

move ~d such that α /∈ A is set to +∞.

The use of such a cost function guarantees that the

resulting paths are entirely feasible. However, the realism

of τ3 is not compatible with a discretized world. Indeed,

problems appear when propagation directions are close to

the borders of the accessibility cone: these directions are

deleted because they are invalid, but the remaining direction

may not be sufficient to reach the goal.

This point is illustrated in figure 4. The angle of the acces-

sibility cone is about 84◦, which eliminates the horizontal and

vertical moves. The only remaining diagonal does not allow

to reach the goal. Consequently, the planner answers that

no feasible path exists, whereas the dotted path is entirely

feasible. This last path has been obtained by using the sliding

wavefront expansion, proposed in section V).

(b)(a)

start goal

accessibility

 cone

0.0

3.4

0.0

1.7

0.0

1.7

3.4 3.4

6.8

 + + +

 +

 + +

 +

 + + +

 +

 + +

 +

 + +

 +

 +

 + + +

 +

 + +

 +

 + +

 +

 +

 + +

 +

 +

Fig. 4. Same situation than in figure 3c, with c = 150km/h. (a) different
stages of the wavefront expansion; (b) focus around the start cell. Only one
diagonal of the grid is explored; the rest is considered as unreachable, in
particular the goal point. However, the dotted line path is feasible.

1354

In response, a first idea would consist in using smaller

cells. However, whatever the size of the cells, the number

of neighbors of each cell stays the same. Therefore, exactly

the same propagation directions will be usable during the

wavefront expansion, and the problem will remain.

Increasing the size of the neighborhood appears to be a

better idea, but it is computationally expensive and simply

reduces the visible effects of the problem, without solving

it.

As a matter of fact, the cause of the problem is deeper.

It concerns the nature of the wavefront expansion itself.

Indeed, in order to propagate costs, the environment is first

discretized. However, this discretization step, which seems

quite natural, is the source of incompleteness. Whatever the

type or size of cells, each of them has a finite neighborhood,

which implies a finite number of propagation directions.

To actually solve the problem, we think that costs should

not be propagated in a discrete domain, but in a continuous

one. Based on this idea, we propose a new algorithm, called

the sliding wavefront expansion.

V. THE SLIDING WAVEFRONT EXPANSION

In this section we first introduce two concepts: Elementary

Current Areas (ECAs), extending punctual values of current

within small polygons, and sliders, containing the potential

viapoints of the path.

Then, we explain the new wavefront expansion algorithm,

optimizing the state of sliders at each step.

A. Introducing ECAs

Using a regular grid to discretize the environment seems

not pertinent, because the current nodes are not necessary

placed in a regular way in the environment. Therefore, many

cells could have the same value of current, which represents

a useless redundancy of information.

To guarantee the minimal number of cells, we propose the

concept of Elementary Current Area (ECA). An ECA is an

indivisible region of the environment, in which the current

is homogeneous. Each ECA contains a unique current node.

The value of this node is extended to the whole area.

ECAs are computed by building the Voronoï diagram [4]

around the current nodes. This diagram is made up of line

segments which are equidistant to the nodes (see figure 5).

(a) (b)

Fig. 5. Illustration of ECAs for two distributions of current nodes (grey
arrows): (a) uniform and (b) non-uniform.

It is clear that ECAs (like grid cells in previous ap-

proaches) maintain discontinuity in values of currents. That

is, if we consider the border of an ECA, there is one value

of current on one side, and another one on the other side,

without a smooth transition. This choice is voluntary, for the

following reasons:

1) Borders of ECAs allow us to introduce sliders, new

entities used in the cost propagation.

2) Since current nodes already includes an error (most

often, they are forecast), a very fine modeling of

currents seems meaningless.

However, if the application requires to plan a path very

precisely, the above adaptations are possible:

• Inserting artificial current nodes between existing ones

using interpolation techniques.

• Adapting the cost function τ3, in order to model a

continuous variation of currents.

B. Introducing sliders

We associate a slider at each ECA border. Like the graphi-

cal component, a slider is made up of a knob which can slide

on a rail, with respects to its bounds. More formally, a slider

is denoted Si and has the following attributes (illustrated in

figure 6):

• A border Bi, of equation a · x + b · y + c = 0, modeling

the rail;

• Two points B−i = (x−i ,y−i) and B+
i = (x+

i ,y+
i), modeling

the bounds;

• A variable li, the curvilinear abscissa on Bi, modeling

the position of the knob;

• A viapoint Vi = (xi,yi), modeling the knob. The values

of xi and yi can be deduced from li by:

xi = x−i +
√

l2
i /(1 +(a/b)2)

yi = y−i +(−a · xi− c)/b
(7)

• A domain Di for li values: Di = [0, l+i], modeling the

rail bounds;

• The pair Ai = {ECA1,ECA2} of the two adjacent ECAs

to Si.

The notion of neighborhood can be defined between

viapoints as follows: two viapoints Vi and V j are neighbors

if and only if Ai∩A j 6= /0

l

V
B

ECA1

ECA2

l =4
+

(a) (b)

knob
rail

Fig. 6. Illustration of sliders: (a) the graphical component and (b) the
mathematical item associated to each ECA border.

1355

C. New path representation

Since ECAs are an exact cell decomposition of the en-

vironment, the path P between start and goal sites goes

necessary through a set of adjacent ECAs.

As mentioned before, an ECA is characterized by a

constant current. This implies that, within each ECA, the

triangular inequality (concerning the travel time) is verified.

Thus, the fastest way to go through an ECA is to follow a

straight line linking two borders, i.e. a straight line between

two neighbor viapoints.

Applying this reasoning to all traveled ECAs, we can

deduce that P is a succession of line segments [Start,V1],
[V1,V2], ... , [Vn−1,Vn], [Vn,Goal]. For short, we will model

P as a list of viapoints Vi, with V0 = start and Vn+1 = goal.

D. Cost propagation

In the propagation process, grid cells introduced in sub-

section III-A are replaced by sliders. In other terms, the costs

are propagated among sliders and no more among cells.

The main difference between cells and sliders comes from

the mobility of their viapoints. Indeed, in the case of cells,

viapoints are static. Their position is defined in advance;

generally set to the center of the cell. On the contrary,

viapoints of sliders have one degree of freedom: as explained

before, they can slide on their rail.

This mobility allows to solve the incompleteness issues

due to discretization, mentioned in subsection IV-B. Indeed,

from a viapoint Vi all propagation directions within the

accessibility cone are available, using different sliders, as

shown in figure 7. In particular, these propagation directions

can be arbitrary close to the borders of the cone. Thus the

existence of a path can be guaranteed with an arbitrary

precision.

Figure 8 illustrates this fact: the sliding wavefront expan-

sion succeed in finding a feasible path, where the classical

wavefront failed (see figure 4).

E. Cost evaluation

Let us consider a viapoint Vi, which predecessors are V j

(j ∈ [0, i−1]). The cost Ti associated to Vi is given by2:

Ti = min
l j

i−1

∑
j=0

τ
j, j+1

3 (8)

2It can be shown that this cost corresponds to a global minimum, because

all τ
j, j+1

3 functions are convex.

accessibility

 cone

Vi

Fig. 7. Illustration of the continuous motion model (bottom-left corner of
fig. 5). Using different sliders, all the propagation directions are available
in the accessibility cone.

start

goal

Fig. 8. The sliding wavefront expansion, using ECAs of 5a, with c = 150
km/h, and vc = 100 km/h. Contrary to the figure 4, the wavefront of sliders
(in dark grey) reaches the goal, thanks to the ability of viapoints to slide on
borders. Potential paths are drawn in light grey and the final path in dark.
This expansion is similar to the one of figure3c, with bigger cells.

where τ
j, j+1

3 is the cost function given by equations 5 and

6, modeling the travel time between viapoints j and j+1. We

have dx = x j+1−x j, dy = y j+1−y j. c is the current within the

common ECA to sliders S j and S j+1 (given by A j ∩A j+1).

As shown in equation 7, x j and y j can be expressed in

function of l j. Therefore, the quantity Ti only depends on

variables l j.

In other words, the cost of the viapoint Vi is computed

by minimizing the i-variables function Ti. Since there are

only bound constraints3 on variables li, this minimization

task is performed analytically or numerically, depending on

the status of bound constraints:

• If all bound constraints are inactive, the optimal position

of viapoints can be expressed analytically, by solving

the equation ~∇T1 = 0 (~∇ denoting the gradient operator).

Let us consider the example of V1 = (l1,y1) in figure 9a.

The equation ~∇T1 = 0 reduces to dT1/dl1 = 0. Solving

this last equation gives:

l1 = lstart +(y1 · cx)/(vc + cy)

This equation reflects that the robot directs its velocity

vector ~vc along y axis, letting itself derive on x axis.

• If some bound constraints are active, computations

become too complex to be done analytically. Thus, we

apply a numerical approach called projected gradient

[2]. This algorithm is similar to a gradient descent, but

restricted to the valid domain by a projection process,

illustrated in figure 9b.

It is important to note that this algorithm generally

converges to the optimal solution, without reaching it

(∇T → 0 during iterations). To stop this convergence,

we opted to the common condition ∇T < ε .

3A priori, there are also constraints linked to the accessibility cone, i.e

∆≥ 0 for all functions τ
j, j+1

3 . Instead of posting these constrains explicitly,

each function τ
j, j+1

3 is artificially continued outside its domain, with an
appropriate form.

1356

l1

T2l2

(b) (a)

0

start

K1=(1.5,4)

K2=(0,8)

K1=(1.8,4)

optimum

Fig. 9. (a) Focus around the start cell. First propagation step: V1 is
analytically evaluated. Second step: V2 is numerically evaluated, by the
projected gradient method, changing the position of V1; (b) steps of the
projected gradient descent on T2 surface.

F. The algorithm

As the classical wavefront expansion, the sliding version

is a Dijkstra-like algorithm: during an iterative process,

the viapoint Vi with the lowest cost Ti is selected in the

wavefront W and expanded. An expansion step consists in

evaluating all the neighbors of Vi, and adding them in the

wavefront. This process, detailed below, is repeated until

the goal viapoint is selected for expansion.

SLIDING_WAVEFRONT_EXPANSION(Start,Goal,S,ε)

⊲ Input Start,Goal: viapoints

⊲ Input S: list of sliders

⊲ Input ε: desired precision on the gradient

⊲ Auxiliary W : wavefront

⊲ Auxiliary N: local neighborhood

⊲ Auxiliary Vi: viapoint, with cost Ti

1 Begin

2 W ← {Start}
3 do

4 Vi← argminVk∈W (Tk)
5 W ←W \ Vi

6 N← NEIGHBORHOOD(Vi,S)
7 for each V j ∈ N do

8 do

9 MINIMIZE_COST(V j,Vi)

10 CHOOSE_PREDECESSOR(Vi)

11 while ∇Tj ≥ ε
12 ADD_PREDECESSOR(V j,Vi)

13 W ←W ∪V j

14 w̄hile Vi 6= Goal

15 End

The procedure NEIGHBORHOOD(Vi) returns all neighbors

of Vi, using the definition of subsection V-B.

The procedure MINIMIZE_COST(V j,Vi) computes the cost

of a new viapoint V j, coming from Vi, applying the contin-

uous optimization techniques described in part V-E.

The procedures ADD_PREDECESSOR and

CHOOSE_PREDECESSOR allow to handle the predecessors

of V j in two phases. These two phases are necessary because

of the continuous motion model of sliders. Indeed, since V j

can slide on its border, its optimal predecessor can change,

depending on the following ECAs, as shown in figure 10.

V3

V2

V3

V1

(b)

ECA3

ECA3

(a)

Fig. 10. Depending on the current present in ECA3, the optimal predecessor
of viapoint V3 is either V1 or V2. However, when evaluating V3, information
about next ECAs is unknown.

l l l

T

l
i

T i
2*

T i
1*

T i
3*

i
1*

i
2*

i

3*

Fig. 11. Choice between 3 potential predecessors P1, P2, P3 of viapoint Vi:
(a) if li ≤ l1

i

∗
, P1 is chosen; (b) if l1

i

∗
< li < l3

i

∗
, P2 is chosen; (c) if li > l3

i

∗
,

P3 is chosen.

The problem is that, by definition, information about future

ECAs is unknown, when evaluating V j.

Therefore, Vi is added to the list of potential predecessors

of V j, by the procedure ADD_PREDECESSOR(V j,Vi).
Next, when V j is evaluated, the procedure

CHOOSE_PREDECESSOR(Vi) selects the best predecessor of

Vi as follows:

Depending on the traveled ECAs, each predecessor Pk of

Vi leads to a different cost function T k
i . The minimum of each

function T k
i

∗
is known. It is denoted T k

i

∗
and it is situated

at lk
i

∗
. The procedure selects the predecessor Pk such that

li ∈ [lk−1
i

∗
, lk+1

i

∗
] and T k

i

∗
is minimal. This is illustrated in

figure 11.

VI. EXPERIMENTAL RESULTS

The aim of this part is to compare the capability of

the classical wavefront expansion and the sliding wavefront

expansion to plan a valid path in currents. To do this, we

applied the following procedure:

1) We collected wind charts W on Meteo France website4

during three months, to constitute a sample of 90

realistic environments.

4http://www.meteofrance.com/FR/mer/carteVents.jsp

Start

Goal

Fig. 12. An example of test-case.

1357

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0

5

10

15

20

25

30

35

40

45

50

su
cc

es
s

ra
te

R

currents intensity I

Fig. 13. Success rate curves, from up to bottom: (Sli) : diamonds, (Cla3)
: triangles, (Cla2) : circles and (Cla1) : squares.

2) We generated N = 500 test-cases. Each test-case T =
{W,Start,Goal} is built in the following way: (1) a

wind-chart W is randomly chosen between the 90 pos-

sible ones; (2) the Start and Goal sites are randomly

placed on W .

3) For each test-case, we varied the intensity I of currents,

defined by:

I = max{c}/vc

In our tests, we chose I > 1 to voluntarily induce

the incompleteness and incorrectness issues mentioned

above.

Note that for such intensities, there naturally exists

some test-cases where no feasible path exists (for

instance, test-cases where the currents are globally

against the robot).

As explained in section IV-B, I = 1 implies that only a

half plan of the environment is reachable at each move.

Therefore, each move has the probability of 1/2 to be

invalid. In those conditions, about 50% of tests-cases

are potentially impossible. This percentage increases

with I.

4) For each intensity I, we applied the following algo-

rithms to the N test-cases:

• (Cla1): classical wavefront expansion, using τ1;

• (Cla2): classical wavefront expansion, using τ2;

• (Cla3): classical wavefront expansion, using τ3;

• (Sli): the sliding wavefront expansion, using τ3.

5) Finally, we computed the success rate R defined by:

R =
Nsuccess

N
·100

where Nsuccess denotes the number of test-cases leading

to a successful planning.

A planning is said successful if the algorithm succeeds

in computing a valid path between the Start and Goal

sites. Success rates are plotted in figure 13 for each

algorithm.

The worst results are obtained by (Cla1), which suffers

from important incorrectness issues: more than 75% of

computed paths were invalid, even for small intensities.

Then, results improves with the quality of the cost

function. Indeed, since the cost function τ2 penalizes

impossible moves more severely than τ1, success rates

obtained by (Cla2) are slightly better. (Cla3) obtains even

better results due to the use a valid cost function: since

impossible moves are forbidden, only valid paths are

returned. However, incompleteness issues occur, because of

the discrete motion model of the robot. The algorithm fails

to find a path, even on very simple instances.

As expected, the use of (Sli) considerably reduces this

phenomenon. Since (Sli) combines a continuous motion

model and a valid cost function, it obtains the best results.

Its success rate of is about 10% upper than (Cla3).

However, the price to pay is the computational efficiency.

We roughly observed that the classical wavefront expan-

sion performed on a 50× 50 grid (the resolution used in

our experiments) is about 5 times faster than the sliding

wavefront expansion. This was expected, since the sliding

wavefront expansion integrates some optimization processes,

which are time-consuming, in particular in the cases of slow

convergence. A deeper study of this aspect is in progress.

VII. CONCLUSION

In this paper, we showed that in presence of strong

currents, using the existing extensions of wavefront expan-

sion may lead to incorrectness or incompleteness issues. In

response, we proposed a new extension, called the sliding

wavefront expansion. Combining a valid cost function and

a continuous motion model, this new extension succeeds in

finding a path where the existing extensions may fail.

Further works will concern a deeper study on the proper-

ties of algorithm (notably the distance from the optimum and

the time complexity), and also its extension in a 3-D space.

REFERENCES

[1] BARRAQUAND, J., LANGLOIS, B., AND LATOMBE, J.-C. Numerical
potential field techniques for robot path planning. In Transactions on

Systems, Man, and Cybernetics (1992), vol. 22, pp. 224–241.
[2] CALAMAI, P. H., AND MORE, J. J. Projected gradient methods for

linearly constrained problems. Mathematical Programming: Series A

and B (1987), 9–116.
[3] DORST, L., AND TROVATO, K. Optimal path planning by cost wave

propagation in metric configuration space. In Proceedings of SPIE-The

International Society for Optical Engineering (1988), pp. 186–197.
[4] FORTUNE, S. A sweepline algorithm for voronoi diagrams. In Pro-

ceedings of the second annual symposium on Computational geometry

(1986), pp. 313–322.
[5] GARAU, B., ALVAREZ, A., AND OLIVER, G. Path planning of

autonomous underwater vehicles in current fields with complex spatial
variability: an a* approach. In Proceedings of the International

Conference on Robotics and Automation (2005), pp. 194–198.
[6] JARVIS, R. A. Collision-free trajectory planning using the distance

transforms. Mechanical Engineering Transactions of the Institution of

Engineers 3 (1985), 187–191.
[7] PETRES, C., PAILHAS, Y., PATRON, P., PETILLOT, Y., EVANS, J.,

AND LANE, D. Path planning for autonomous underwater vehicles.
Transactions on Robotics 23 (2007), 331–341.

1358

