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Abstract— The widespread success of sampling-based plan-
ning algorithms stems from their ability to rapidly discover
the connectivity of a configuration space. Past research has
found that non-uniform sampling in the configuration space
can significantly outperform uniform sampling; one important
strategy is to bias the sampling distribution based on features
present in the underlying workspace. In this paper, we unite
several previous approaches to workspace biasing into a gen-
eral framework for automatically discovering useful sampling
distributions. We present a novel algorithm, based on the
REINFORCE family of stochastic policy gradient algorithms,
which automatically discovers a locally-optimal weighting of
workspace features to produce a distribution which performs
well for a given class of sampling-based motion planning
queries. We present as well a novel set of workspace features
that our adaptive algorithm can leverage for improved configu-
ration space sampling. Experimental results show our algorithm
to be effective across a variety of robotic platforms and high-
dimensional configuration spaces.

I. INTRODUCTION

Veteran users of probabilistic motion planning algorihms
have come to view sampling distributions as comparable
to heuristic functions used by deterministic planners; the
correct distribution can make a crucial difference in perfor-
mance. Although there have been many ad-hoc approaches
to improving sampling for randomized planners, we believe
that the approach presented here is the first to formally
frame the task of choosing a sampling strategy as stochastic
policy optimization. This formulation allows us to leverage
techniques well known in the machine learning community in
order to automatically identify useful sampling distributions
based on features in the workspace.

In this paper, we show significant speedups in planning
for both a “piano-mover” type scenario as well as a planar
manipulator example. For example, in figure 1, we show an
automatically learned sampling distribution for maneuvering
a planar L-shaped beam through a series of doorways.
The underlying parameters of the distribution were learned
by training on a set of examples with only one doorway;
however, learning generalized well to the three-doorway ex-
ample shown here, with performance significantly exceeding
uniform sampling.

Although the experiments presented here use the bidirec-
tional RRT algorithm, there is nothing specific to RRTs in
particular (or indeed to the workspace features we selected)

Fig. 1. Workspace-biased sampling distribution used to plan paths for a
planar rotating and translating L-beam. Top: automatically learned prob-
ability distribution. Bottom: samples drawn from distribution (red) shown
along with robot path (gray). Although the scene pictured above has three
doorways, the distribution was learned from examples containing only a
single doorway, demonstrating ability to generalize across environments.

in our overall approach; hence, we expect our results to
be applicable across a range of workspace features and
randomized planning algorithms.

A. Background

In recent years, probabilistic sampling-based motion plan-
ning algorithms have gained popularity in a broad variety
of problem domains. By building a graph structure that im-
plicitly represents the connectivity of a configuration space,
algorithms such as the rapidly-exploring random tree (RRT)
and probabilistic roadmap (PRM) planners can often solve
high-dimensional planning problems much more quickly
than combinatoric or complete methods [1], [2].

Although probabilistically complete, in practice, sampling-
based planners commonly suffer from the so-called “narrow
passage problem”: the relatively low probability of sampling
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states that extend the graph through small gaps in free
configuration space [3]. Much effort has been dedicated to
developing sampling strategies for improved planning, based
on either configuration space or workspace features.

Configuration space (C-space) samplers include the bridge
test sampler to identify samples within narrow passages
in C [4], approximate medial axis sampling [5], and rejec-
tion of samples within the Voronoi region of near-colliding
states [6]. Characteristics of specific robotic platforms such
as manipulability can be used as well [7]. For dynamic
re-planning applications, the sampling distribution can be
biased towards previously useful states [8], prompting the
use of nearest-neighbor classifiers to search among many
past queries for relevant information [9]. Since many sam-
pling strategies themselves take as input samples from an
underlying distribution, their strengths can be combined by
setting up chains of dependent samplers [10].

Workspace biasing methods include the Gaussian sampler
for sampling near workspace obstacles [11], as well as the
workspace medial axis approach [12]. More recent methods
have focused on geometric analysis to identify workspace
narrow passages [13], [14].

In this paper, we propose a general framework for adapting
the sampling distribution of probabilistic motion planners to
a particular problem class. We implemented our approach to
bias bidirectional RRT sampling based on several workspace
features, including a novel set of features which we present
here. Experimental results show our method to be effective in
both free-flying and manipulation motion planning examples.

II. ADAPTIVE WORKSPACE BIASING

Recent work in machine learning [15], [16] has shown
that informed and effective heuristic functions can be learned
for (approximately) optimal deterministic planners. Effective
heuristics prove crucial for solving complex robot planning
problems. Similarly, we expect that machine learning tech-
niques can prove effective in adapting the performance of
modern sample based planners.

Despite all the effort invested in developing sampling
strategies, experiments have shown that there is no “one-
size-fits-all” sampler that gives optimal performance across
all classes of planning problems [17], [18]. The sampling
strategy here plays a role reminiscent of the learned heuristic
functions in [15], [16]: an informed one can be crucial
for effective planning. A key idea in our work is that the
sampling strategy adopted by a probabilistic sample-based
planner can be understood as a stochastic policy in the sense
common in the field of Reinforcement Learning [19].

The cost-adaptive strategy for hybrid PRM sampling at-
tempts to address this problem by maintaining weights on a
discrete set of samplers [20]. Our approach differs from the
cost-adaptive hybrid PRM approach in that it can be applied
to a broader class of randomized planners, whereas the
hybrid sampling approach features a reward function tailored
specifically to probabilistic roadmaps. By applying rewards
equally to all samples from a given planning query, we avoid
the task of assigning credit or blame to individual samples—a

difficult proposition even after the planning query is finished.
Furthermore, we base our approach on continuous features
in the workspace as opposed to performance of a discrete
set of sampling strategies.

We choose to focus on the workspace instead of the
configuration space in forming our sampling distributions
because many workspace features, such as visibility and
connectivity, can be computed algebraically or numerically.
Computing the configuration-space analogs of such features,
however, can be intractable—in fact, doing so is often at
least as hard as solving the original planning problem. For
example, computing the configuration-space analog of pen-
etration depth (minimal translation and rotation to bring two
solid objects out of contact) is known to be far more difficult
than translation-only [21]. Fortunately, it is often possible
to deduce information about configurations from workspace
information alone. For instance, the workspace distance to
the nearest obstacle at a given configuration can be mapped
into a free volume in the configuration space [22], [23]. More
theoretical underpinnings of workspace-to-C mappings can
be found in [14].

Another reason to focus on the workspace is due to
size considerations. In order to have a valid parametric
distribution which is easily sampled, we use a finite-element
decomposition of the robot workspace. Creating a partition
of a high-dimensional configuration space with similar gran-
ularity is typically infeasible.

Our framework produces a workspace-biased distribution
that yields good performance on a given class of planning
problems based on a weighting of workspace features. Aside
from a sampling-based planner, our approach requires: a
discretization of the workspace into a set X of finite ele-
ments; a feature vector f(x) : X 7→ RK evaluated at each
x ∈ X ; a distribution p(y|x) over robot configurations given
a particular x ∈ X ; and finally a reward function r(ξ) which
assigns rewards based on planning performance given the
samples ξ = {x(1), . . . , x(T )}. Since the general problem
formulation is not specifically targeted at a particular feature
set or randomized planner, we note that the methods pre-
sented here should generalize across a variety of probabilistic
planning algorithms and features beyond those used here.

The overall course of the approach is as follows: Invoke
sampling-based planner on an instance of the problem class.
To generate samples, the planner should first sample an
element x ∼ q(θ, x) based on a weighting θ of the workspace
features f(x), and then sample a configuration y from
p(y|x). At the end of a planning episode, assign a reward
r(ξ). Finally, estimate the gradient of the expected reward
with respect to the weights θ, take a gradient step, and start
again.

A. Elliptical path distance

We found that the elliptical path distance feature proved
to be critical in biasing sampling distributions. This feature,
used in [24] as a descriptor of path topologies, helps to
preferentially sample locations which fall close to the optimal
workspace path between the initial and goal configurations
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Fig. 2. Illustration of elliptical path distance in a simple 2D workspace. Top:
optimal cost-to-go to get to initial workspace element A. Middle: optimal
cost to get to goal element B. Bottom: Elliptical path distance. The value
at F is equal to the sum of the values at C and D minus the value at E.
Blue corresponds to small values; red corresponds to large.

of the search. To compute the feature, we run an optimal
planner, such as Dijkstra’s algorithm, twice over the set of
workspace elements. The first run computes d(x, xinit), the
optimal cost-to-go from every workspace element x ∈ X
to get to the workspace element xinit associated with the
initial configuration of the robot. The second run computes
the optimal cost to get to xgoal, the workspace element
associated with the goal configuration. Then, the value of
the elliptical path distance is given by

d(x) = d(x, xinit) + d(x, xgoal)− d(xinit, xgoal) (1)

The feature is so named because all elements in a level
set of d(x) have the same net optimal cost to get to the
initial and goal workspace elements, just as all points on an
ellipse have the same total distance to the foci of the ellipse.
The elliptical path distance has a value of zero anywhere
along an optimal workspace path between the initial and
goal elements. See Figure 2 for an illustration in a simple
2D workspace.

B. Workspace-biased distribution

We create a workspace-biased probability distribution
q(θ, x) that samples in a discretization X of the workspace
into finite elements. The distribution q(θ, x), a member of the
exponential family of distributions, uses the weight vector θ
to bias the salience of various features in the workspace. Our
current implementation uses a uniform voxel discretization
of the workspace, but non-uniform representations of the
workspace (i.e. quadtrees, octrees, KD-trees) are in practice

Fig. 3. The L-beam planning problem. Top: initial and goal configurations.
Bottom: Comparison of two solution trees. The tree on the left (2924 nodes)
was built with uniform sampling. The tree on the right (404 nodes) uses
workspace feature biasing.

equally viable. For each workspace element x ∈ X , we
compute a feature vector f(x) ∈ RK .

Now we define the distribution q(θ, x) as

q(θ, x) =
1

Z(θ)
exp

(
θT f(x)

)
Z(θ) =

∑
xi∈X

exp
(
θT f(xi)

)
Note that Z(θ) serves as a normalizing term so that the
probabilities sum to one. The distribution q(θ, x) is a Gibbs
distribution, and has several useful properties: When θ = 0,
q(θ, x) becomes the uniform distribution. As θj approaches
∞, the distribution holds nonzero probabilities only where
fj(x) reaches its maximum value. Given a uniform dis-
cretization over the workspace, as the cell size approaches
zero, q(θ, x) approaches a continuous probability density
function.

C. Sampling from the distribution

To sample x ∼ q(θ, x), we store the cumulative probability
Cm for m = 1, . . . , |X |, and then sample a real number β
uniformly in the interval (0, 1]. There exists a unique element
xi for which Ci−1 < β ≤ Ci. For a given β value, the
corresponding xi can be found efficiently via binary search.

Recall that each x ∈ X corresponds to a volume in the
workspace, but our sampling-based planner requires samples
in the configuration space. Having sampled x ∼ q(θ, x), we
now need to sample y ∼ p(y|x). Since there is typically a
one-to-many relationship between workspace locations and
full configurations which is platform-specific, formulating
the distribution p(y|x) must depend upon the robot and
configuration space being used. For example, with the 7-
DOF planar arm illustrated in Figure 4, we define p(y|x)
to select among configurations which leave the end effector
positioned within the sampled workspace volume x.
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D. Estimating the reward gradient

The distribution for a sampling-based planner can be
viewed as a stochastic policy. We are interested in the
expected reward for a given planning episode:

η(θ) = Eq[r(ξ)]

Given that the reward is assigned at the end of the episode,
and given that all samples are drawn from q, we can approxi-
mate the policy gradient with respect to θ by multiplying the
reward for the planning episode by the average score ratio
over all samples:

∇̂η(θ) =
r(ξ)
T

T∑
t=1

∇q(θ, x(t))
q(θ, x(t))

In the case of the distribution q(θ, x) described above, the
score ratio is the difference between the feature vector at a
particular element and the expectation of the feature vector
under the distribution:

∇q(θ, x)
q(θ, x)

= f(x)− Eq[f ]

= f(x)−
∑

xi∈X
f(xi) q(θ, xi)

The update rule for θ is then

θnew = θold + α ∇̂η(θ)

where α is a small positive constant.
In our experiments, our goal was to find a sampling

distribution to produce faster planning times. Hence, we used
a very simple reward function equal to the number of queries
solved per unit time. Instead of taking a gradient step after
every planning query, we concatenated every five planning
queries into a single sequence of samples ξ in order to get
a smoother estimate of the reward gradient.

Other viable reward functions which are easy to implement
include maximizing the probability that a query is solved
given a probability of (1− γ) at every timestep of resetting
and beginning a new planning episode; or, suffering a uni-
form loss at every time step until a problem is solved, up to
a maximum.

III. EXPERIMENTS

Our experiments focused on finding good sampling distri-
butions for the bidirectional RRT algorithm in two different
problem classes. The first two problem classes consist of
maneuvering a free-flying L-shaped beam through a narrow
passageway (see Figure 3). The second class requires plan-
ning paths for an 7-DOF planar arm in a cluttered environ-
ment (see Figure 4). Experimental results are summarized
in Table I.

A. Features used

We selected the same set of four features in each problem
class. Features fg4 and fg8 are Gaussian convolutions of
voxel occupancy with varying supports, directly correspond-
ing to the strategy of [11]. Feature frv computes the relative

Fig. 4. Top: planar 7-DOF arm in sample initial and goal configurations.
Middle: fg8 feature (left), and frv feature (right). Bottom: fepd feature
(left), and learned likelihood function (right).

visibility of each voxel cell in the workspace by casting rays
to a number of reference locations and counting the number
of visible locations. Finally, fepd is computed as the elliptical
path distance with respect to the initial and goal workspace
elements of each planning query, as in Equation 1.

To avoid numerical instability, we rescale all the features
so that |fi(x)| ≤ 1 ∀x, i. Representative illustrations of the
features can be found in Figure 4.

Obviously, time spent computing features is an important
consideration. Running a low-dimensional optimal planner
twice as a preprocessing step for a high-dimensional planner
may seem like a poor use of computer cycles; however,
optimal planning on Euclidean grids is quite efficient [25],
and does not add much running time in practice. For the
3D L-beam scene, the Dijkstra’s step took 0.3s on average;
for the planar scenes, runtime to compute fepd averaged
about a millisecond. The frv feature took somewhat longer
to compute, especially on large scenes, owing to a naı̈ve
software implementation. In future work, we will investigate
the use use of approximate visibility calculation as well
as GPU-based line-of-sight algorithms [26]; we decided to
focus the present experiments on vetting our framework for
searching the space of workspace distributions.

B. Bidirectional RRT algorithm

The bidirectional RRT algorithm attempts to find a con-
tinuous path through Cfree from the initial configuration of
the system yinit to some goal configuration ygoal [1]. The
algorithm begins by initializing the two search trees Tinit

and Tgoal to contain their respective roots yinit and ygoal.
The tree Tinit is initially set to be the active tree. Then the
following steps are repeated: A configuration ynew ∈ C is
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sampled. Then its nearest neighbor ynearest in the active tree
T is selected according to a scalar metric ρ(y1, y2) 7→ R+

defined on C. Next, an edge e is generated which extends
from ynearest towards ynew; if e lies in Cfree, then the
terminal point of the edge (often ynew itself) is inserted into
T as a child of ynearest. The active tree is then swapped. If
the previous extension was successful, an attempt to connect
the trees by extending from the newly active tree to ynew

is made. Otherwise, the process repeats until the trees are
connected or another termination criterion has been reached
(e.g., a specified time or memory limit is exceeded or the
algorithm has reached a maximum number of iterations).
Once the two search trees are connected the path between
yinit and ygoal is extracted, and the problem is solved.

C. L-beam results

The L-beam scenario is a common starting point for
investigating the narrow passage problem in motion planning.
It consists of passing an L-shaped beam made of two
perpendicular blocks through a square hole in a central wall.
In [5], the experimenters construct two versions of the robot
in order to scale problem difficulty: a small version made of
30× 4× 4 blocks, and a large version made with 34× 8× 8
blocks.

For the L-beam, we implemented the conditional distribu-
tion p(y|x) by uniformly sampling a random position for the
center of the elbow within the workspace element x, and then
sampling uniformly among orientations. The 120×100×100
workspace was decomposed into 82,369 voxels with sides of
length 2.5.

We decided to bootstrap learning of the θ vector by
performing the policy gradient descent on a restricted version
of the problem where the robot is constrained to translation
and rotation only along the medial plane of the workspace.
To make sure the problem was hard enough to require a
thorough search of the parameter space, we used an extra-
large robot with 34 × 10 × 10 blocks. Due to the relatively
small size of the configuration space, we were able to
conduct 1000 runs of the planner quite quickly, for a total
of 200 gradient steps.

We then benchmarked the workspace-biased sampler
against a uniform sampler in the planar restricted scene
with the extra-large robot. For each run, the initial and goal
configurations were placed randomly on opposite sides of
the passage. In 100 runs of each sampling strategy, the
mean planning times were 1.61s for the uniform sampler
and 0.052s for the workspace-biased sampler—a speedup of
over 22x.

Learned values for θ generalized well to the full 3D case.
We ran 100 queries with each sampling strategy for both
the small and the large robot. To keep experiment times
reasonable, we halted the planner after 20,000 samples. Mean
runtimes remained significantly shorter for the workspace-
biased sampler on the small robot problem, with a 100%
success rate. For the large robot, the difference in runtimes
was secondary to the tremendous difference in success rate.
While the workspace-biased sampler was able to solve 94

queries in under 20,000 samples, the uniform sampler was
able to solve only four.

D. Planar arm results

For the planar arm scene, we anchor the base joint a 7-
DOF arm to the center of a workspace containing a set of
randomly distributed circular obstacles. For each problem
query, we set the initial and goal conditions of the search
to random poses within the workspace, with the additional
requirement that the initial and goal positions of the end
effector be separated by a minimum distance. The workspace
for the scene was decomposed into 121× 81 voxels.

We implemented the conditional distribution p(y|x) by
placing the end effector within the sampled workspace el-
ement x and sampling uniformly within the null space of
the Jacobian to provide the extra degrees of freedom. To do
so, we first sample a set of joint angles uniformly within
the joint limts of the arm, and subsequently use a Jacobian
transpose-based IK solver to bring the end effector into the
workspace cell x.

Although the results of the planar arm experiment were
not as dramatic as the L-beam results, we were able to
observe nearly a 2x speedup when using the workspace-
biased sampler. Presumably, the mapping between workspace
features and configuration space features is weaker for a long
kinematic chain than is that for a free-flying robot.

IV. GENERALIZATIONS AND FUTURE WORK

We have developed our approach using the earliest policy
gradient method (REINFORCE) to demonstrate its simplicity
and effectiveness. In practice, recent work has demonstrated
that more sophisticated algorithms can achieve better per-
formance more quickly. In particular, we expect to improve
learning speed through the gain adaptation and covariant
gradient descent techniques [27], [28].

Our approach to learning effective samplers by treating
them as stochastic policies was based on heuristics developed
in the workspace of the planning queries. This is particularly
convenient for the motion planning problems we discuss
here, but it is important to note that the approach generalizes
to any effective strategy for sampling. We believe in general
that lower-dimensional problems will serve as effective fea-
tures to guide sampling in the full configuration space, much
as simplified or more abstracted planning problems can be
used as heuristics to effectively guide deterministic planners
[15], [29]. For instance, in coordinated multi-agent motion
planning [30], we expect very effective sampling heuristics
can be derived from deterministic motion planners for the
agents planning independently. Equally, in this work we have
treated the mapping p(y|x) from the workspace sample to
configuration space sampling as a fixed function. As part of
the stochastic sampling policy, it too can naturally be adapted
to improve planning performance using the algorithm as
presented.

The work presented here uses a discretization of the
underlying workspace workspace to guide the sampling. In
future work, we look forward to generalizing these results
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Robot Sampler Success rate Fail time Tree nodes Samples Edge CC State CC Plan time Speedup

7-DOF Planar Arm uniform 98% 6.131 362 4,488 4,839 15,158 1.278 (0.507)
workspace 100% - 306 1,224 1,517 7,624 0.648 1.974

Planar L-beam: 34× 10
uniform 98% 12.695 1,584 4,490 6,055 37,692 1.161 (0.045)

workspace 100% - 125 636 754 3,894 0.052 22.456

Full 3D L-beam: 30× 4
uniform 83% 17.872 3,171 7,021 10,079 111,529 3.945 (0.144)

workspace 100% - 657 4,126 4,773 23,357 0.569 6.937

Full 3D L-beam: 34× 8
uniform 4% 16.495 3,159 7,471 10,539 111,668 4.573 (0.277)

workspace 94% 3.365 806 9,821 10,619 39,474 1.265 3.614

TABLE I. Experimental results. Data in columns from “Tree nodes” to “Plan time” are averaged over successful runs of the planner. “Edge CC” and
“State CC” are the number of high-level edge collision checks and low level state collision checks, respectively. “Speedup” is calculated as the ratio of
planning times between the two sampling schemes. “Fail time” is calculated as the mean time it takes to exceed 20,000 samples (the upper limit for the
experiments performed).

to learn continuous distributions directly in the configuration
space.
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