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Abstract— In this paper, we present a scalable, decentralized
task allocation algorithm for a group of unknown number of
Unmanned Aerial Vehicles (UAVs), which are equipped with
GPS receivers, synchronized clocks and radars with a finite, but
known operating distance to identify neighbors. The algorithm
assigns subgroups of UAVs, whose initial positions are randomly
scattered in a bounded space, to a finite set of independent
tasks. The key features of the proposed algorithm are: (1) the
algorithm does not require any communication between the
UAVs; (2) the task allocation is achieved in finite time. The
analysis and results in the simplified 2D simulation environment
respectively prove and verify the correctness of the proposed
algorithm.

I. INTRODUCTION

UAVs represent the fastest growing market segment of
the robotics industry with projections of exceeding $13.5
billion by 2014 [1]. The price/performance ratio for UAVs
is falling and networked groups of autonomous UAVs will
soon become a reality. There is great potential for the use
of such networked groups in many applications including
search and rescue operations, scouting and reconnaissance
missions for homeland security, and environmental mapping
with three-dimensional mobile sensors. In all these appli-
cations heterogeneous unmanned vehicles must be able to
search for information, localize and identify the source of
information, and track the information source in a dynamic
setting. One of the critical problems in applications is the
task allocation problem. Generally, the mission or task is first
decomposed into a set of subtasks, which are then allocated
by a coordination algorithm to individual robots.

In this paper, we are interested in the following task
allocation problem. Suppose a group of unknown number of
homogeneous or heterogeneous UAVs (fixed or rotary wings)
which are equipped with GPS receiver and synchronized time
clocks, are at different points on a known plane at time t0
(see Fig. 1 (a)). Suppose each UAV can sense other UAVs
that are within a distance ds but cannot communicate with
other UAVs. At t0, all UAVs are triggered (by a broadcast
message1) to start a common task whose description consists
of (a) a set of independent subtasks, e.g., tracking different
targets and surveilling different areas of interest (see Fig. 1

1This broadcast message is the reason that we call our algorithm “almost
communication-less”. This is the only required communication, which is
used to initiate the proposed algorithm. After this initiation, no more
communication is necessary.

(a) (b)

Fig. 1. Initial randomly scattered configurations at t0 (a) and final target
trajectories for four area surveillance subtasks (b) of a group of unknown
number of UAVs

(b)); and (b) an allocation function which computes the
number of UAVs required for each subtask given the total
number of UAVs. The problem is to establish consensus on
the total number of vehicles available and which vehicle
should take which subtask in finite time.

Multiple robot task allocation algorithms have been stud-
ied extensively. In the following, we will briefly review
the literature from the perspective of existence of com-
munication. When communication is available, many al-
gorithms achieve task allocation through passing messages
between robots [2] in either a centralized or decentralized
way by maximizing a utility function [3], [4], [5], [6].
If communication is not available, task allocation can still
be solved implicitly using emergent approaches [4] in the
context of rendezvous [7], [8], consensus problems [9], [10],
or formation control [11], [12], [13], [14], [15]. Control
of robots is based on just local information from near
neighbors. In the rendezvous problems [7], [8], a group of
vehicles need to converge to an unknown point. In consensus
problems [10], a group of vehicles need to agree on a specific
value through local sensing. In formation control problem,
vehicles are controlled according to neighboring information
to achieve a given formation. If only local information (no
GPS, no common map, trajectories, or targets) is available
to each agent, the existence of a solution is guaranteed
only under very restrictive assumptions [8], [9], [10] on
the connectivity or visibility graph. When some global in-
formation, e.g., common map or trajectories, is available,
many results exist [16], [12], [13], [14], [15], [7], which use
either gradient- or geometric-based methods to achieve the
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various objectives. However, these methods only guarantee
asymptotic convergence and/or are not readily applicable
for UAVs, which are subject to nonholonomic kinematic
constraints and whose forward velocity must be larger than
a positive lower bound (fixed wing UAVs cannot hover at
one point or reverse directions).

We propose a scalable, decentralized algorithm for the
task allocation problem considered in the paper. The key
idea is to use a local sensing based control law and time
synchronization to distribute all vehicles at regular intervals
along a common curve in finite time such that consensus can
be established on the total number of vehicles and allocation
of subtasks to vehicles. The proposed algorithm 1) does not
need any communication between neighboring vehicles for
the designed control law, 2) converges in finite time, and 3) is
applicable for both fixed and rotary wing UAVs which might
have a large positive lower bound on the forward velocity.

In the following, we will first formulate the problem
mathematically in Section II. The proposed algorithm for
a group of homogeneous vehicles is presented in Section III.
Sections IV and V respectively provide the results in a
simplified 2D simulation environment and conclusion.

II. PROBLEM FORMULATION

The task allocation problem considered in this paper can
include either homogeneous or heterogeneous vehicles. For
conciseness, we will first limit ourselves to the case with
homogeneous vehicles. Extension to the heterogeneous case
will be discussed later.

A. The UAV model
The dynamics of the UAV is simplified as the Dubins

car [17]: ẋ = vf cos θ, ẏ = vf sin θ, and θ̇ = w, in
which vf ∈ [vmin

f , vmax
f ] with vmax

f = kvvmin
f > 0 and

kv > 1 is the input determining the forward velocity, and
w ∈ [−wmax, wmax] is the input determining the yaw angle
turning rate. Note that we model the UAV with a positive
lower bound on the forward velocity such that the proposed
algorithm will be applicable for the fixed wing UAVs.

B. The sensor models
Each UAV is equipped with two sensors. One is a GPS

signal sensor, from which the UAV will know its position
and orientation in a common inertial frame. The other one is
an omnidirectional sensor, e.g., the radar, which has a limited
sensing distance ds. Once the distance between two UAVs
is less than ds > 0 as shown in Fig. 2, both vehicles will
know the relative position to each other.

C. Task description
A task description, denoted as T , consists of m subtasks,

denoted as {Ti}, a bounded mission area S ⊂ �2, and a task
allocation function L:

L : N ×N → N ∪ {0}
n× k → lk,

(1)

which shows that lk ≤ n ∈ N∪{0} vehicles will be assigned
to subtask k ≤ m ∈ N , where the total number of vehicles
is n ∈ N . If

∑m
k=1 lk < n, some UAVs will not be assigned

any subtask (or equivalently assigned the null subtask). If∑m
k=1 lk > n, the subtasks must be prioritized and lower

priority subtasks may not be assigned to any vehicle.

fd
hd

sd

Fig. 2. The limited sensing distance of the UAV

D. Objective
Given an unknown number n > 0 of homogeneous UAVs

starting with a common task description T from arbitrary
initial configurations qi(t0) ∈ S at time t0, the objective is
to design decentralized control laws for these UAVs such that
there exists a constant tf > t0 after which each vehicle will
be assigned to a specific subtask and the number of vehicles
assigned to subtask Tk is nk = L(n, k).

III. ALMOST COMMUNICATION-LESS TASK

ALLOCATION (ATA) ALGORITHM

We will first describe the outline of the proposed ATA
algorithm, and then provide details.

A. Outline of the algorithm
Step 0: Initialize k as 0.
Step 1: At time tk, all vehicles compute the largest closed

admissible curve Qk with total length Lk in the mission area
S. By the “admissible curve”, we mean the UAVs are able
to track exactly the curve with any forward velocity vf ∈
[vmin

f , vmax
f ] in the nominal condition. Because all vehicles

are homogeneous, they compute the same closed curve (see
Fig. 6 a). The reason to choose the largest curve is to reduce
the effect of uncertainties in the task allocation based on
the curve length, which will be explained with details in
Section III-C.

Step 2: At time tk (assuming the computation time
in Step 1 is negligible), all vehicles start to fly to and
track the common closed admissible curve Lk with constant
forward velocity vf in the same direction (clockwise or
counter clockwise) (see Fig. 6 b). Because the mission area
S is bounded, there exists ΔTt (a positive constant to be
determined in Section III-B), after which all vehicles will
track the closed curve.

Step 3: At time tk + ΔTt, each vehicle will adjust its
inputs according to the distance to its adjacent neighbors
such that after ΔTk (a positive constant to be computed
in Section III-C) all vehicles will achieve equal distance
between each other along the closed curve (see Fig. 7 a) if
there are enough vehicles for them to see each other. We call
this the equal distance condition. At time tk + ΔTt + ΔTk,
each vehicle will compute the total number n of vehicles
on the closed curve according to the total curve length
Lk and distance dn between adjacent vehicles (see Fig. 3).
According to the task allocation function L, each vehicle will
know how many vehicles for each subtask. Finally, based on
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the current location on the closed curve, vehicle will decide
which subtask it should choose at this moment (see details
in Section III-C).

Step 4: Before each vehicle flies to its assigned subtask,
it will check whether the equal distance condition was
established (see details in Section III-D). If the equal distance
condition is achieved, then each vehicle will fly to its as-
signed subtask; otherwise, all vehicles compute the common
closed curve Qk+1 with total length Lk+1 = Lk − ds.

Step 5: Set k ← k +1 and tk be the time after the equal
distance condition checking is done, and go back to Step 2.

Steps 0, 1 and 5 are straight forward, we will only explain
the other three steps in the following sections.

B. Step 2: fly to and track the common closed admissible
curve in finite time

Objective: Given a common closed admissible curve Qk

and n vehicles starting from random configurations qi(t0) ∈
S at time t0, the objective of this step is to control these
vehicles such that after constant ΔTt time all vehicles will
track the closed curve in the same direction with a constant
forward velocity. We ignore the collision avoidance here
assuming that there is a collision avoidance strategy, e.g.,
the vehicles will fly on the different altitudes when potential
collision might happen.

Algorithm: The following decentralized control law is
used for each vehicle:

1) Select a set of way points on the closed curves. Be-
cause the vehicle is able to track the curve in the same
direction, a unique configuration can be determined for
each way point.

2) Choose the way point whose corresponding configu-
ration is closest to the current configuration of the
vehicle according to the shortest path between two
configurations for the Dubins car.

3) Follow the shortest path with constant forward velocity
to the way point on the closed curve. If the vehicle
reaches the curve earlier than ΔTt, then it will track
the curve.

Because the initial configurations of all vehicles are as-
sumed to be in the bounded mission area S, the following
lemma will ensure that there exists such ΔTt, after which
all vehicles track the common closed curve in the same
direction.

Lemma 1: For a bounded space S ⊂ [xmin, xmax] ×
[ymin, ymax], there is an upper bound ΔTt = 4π

wmax
+√

(xmax−xmin)2+(ymax−ymin)2

vf
on the time for the Dubins

car with constant forward velocity vf and turning rate in
{−wmax, 0, wmax} to move between any two configurations
in S.

Proof: The minimum turning radius of the Dubins
car is

vf

wmax
. According to [17], the shortest path between

two any configurations in S is less than 4πvf/wmax +√
(xmax − xmin)2 + (ymax − ymin)2, and therefore we have

the bound on the duration of the flight between any two
configurations.

C. Step 3: achieve the equal distance condition on a closed
curve in finite time and assign subtasks based on the curve
length

Objective: Let Qk be the current admissible closed planar

cl

nd
n

k

d
Ln

nd

Fig. 3. Tentative task allocation based on the curve length

curve with total length Lk. Assume that n vehicles fly along
this curve with same direction at random positions on the
curve at tk + ΔTt. We assume that no two vehicles are at
the same position. Let function D : �2 × �2 → �+ ∪ {0}
return the length of the shorter curve segment between two
points on the closed curve. Let pi(t) denote the location of
vehicle i at time t. The objective is to control these vehicles
such that after constant duration ΔTk we have

D(pi(t), pk(t)) =
LQ

n
,∀t > ΔTk + tk + ΔTt (2)

for all adjacent vehicles i and k.
Algorithm: Let df and dh be the curve length from the

current vehicle respectively to the vehicle in the front and
behind as shown in Fig. 2. If there is no vehicle in the front
or behind, then df or dh is set to be infinity. The following
control law is proposed.

1) Compute distance df and dh for the current vehicle.
2) If df > dh, then the forward velocity of the vehicle is

set to be kupvf ≤ vmax
f for some constant kup > 1;

otherwise, the forward velocity is set to be vf ≥ vmin
f .

3) After ΔTk, if a vehicle does not have equal distance
dn to its front and behind neighbors, then it just
keeps tracking the closed curve; otherwise, it will make
tentative decision about which subtask to take using the
following procedure:

a) The vehicle computes the total number of vehicle
as n = Lk

dn
.

b) The vehicle computes how many vehicles are
needed for a specific subtask with the given task
allocation function L. Assume that subtask Ti

needs ni vehicles.
c) The vehicle computes the curve length lc from

the current position to the right most intersection
of the closed curve with the positive x axis of an
inertial frame with origin at the the center of the
closed curve (see Fig. 3).

d) For some i ∈ {1, 2, · · · , m}, if
∑i−1

j=1
ni

n Lk ≤
lc ≤

∑i
j=1

ni

n Lk, then this vehicle is assigned to
subtask Ti.

The following two lemmas will show the correctness of the
proposed algorithms in this section. The first lemma shows
that there exists constant ΔTk after which the equal distance
condition will be achieved if it is possible. Note that there
exist other methods, e.g., [12], [15], to achieve the equal
distance condition along a curve. However, these methods
normally can only converge to the equal distance condition
when time goes to infinity and/or require that the vehicles are

1386



nk dnL
n
n

1
1

nk dnL
n
n

3
3

nk dnL
n
n

2
2

Go to subtask 1

Go to subtask 2 Go to subtask 3

Fig. 4. The equal distance condition ensures the correct task allocation based
on the curve length

either considered as holonomic points or are able to move
in both forward and backward directions. The second lemma
shows that the subtasks will be allocated correctly if the equal
distance condition is achieved.

Lemma 2: If Lk ≤ dsn, then the vehicles achieve the
equal distance condition after executing the above control
law for duration ΔTk = Lk

(kup−1)vf
.

Proof: Let Δdk,j = D(pk, pj)− Lk

n ,

Δd+
k,j =

{
Δdk,j , Δdk,j > 0
0, Δdk,j ≤ 0 , (3)

and

Δd−k,j =
{

0, Δdk,j > 0
Δdk,j , Δdk,j ≤ 0 . (4)

It is easy to see that
∑

i,j Δd+
i,j +

∑
i,j Δd−i,j = 0.

When these vehicles are in the equal distance condition, then∑
i,j Δd+

i,j =
∑

i,j Δd−i,j = 0.

First, the control law will decrease
∑

i,j Δd+
i,j mono-

tonically with at least rate (kup − 1)vf because at any
moment, there always exists a vehicle which moves with
velocity kupvf to decrease

∑
i,j Δd+

i,j if Lk ≤ dsn (see

Lemma 5 in appendix). Secondly,
∑

i,j Δd+
i,j will approach

its maximal value n−1
n Lk when all the vehicles are very

close to each other (see Lemma 6 in appendix). Therefore,

after ΔTk = Lk

(kup−1)vf
≥ (n−1)Lk

n(kup−1)vf
all vehicles will be in

the equal distance condition.

Lemma 3: If the equal distance condition is achieved, the
proposed curve length based allocation procedure makes the
correct task allocation.

Proof: It is easy to see that all vehicles assigned to
subtask Ti span a total curve length of ni

n Lk = nidn,
which includes ni vehicles as required by the task allocation
function L, if all vehicles are equally distributed as illustrated
with three subtasks in Fig. 4.

Note that the task allocation is achieved through the
curve length. If Lk is small and there are many vehicles
on the closed curve, then the difference of the curve length
between adjacent vehicles will be small. If the curve distance
fluctuation due to uncertainties during the flight is larger than
the small equal distance, then task allocation might not be
correctly completed. Therefore, it is better to start with the
largest possible closed curve to achieve the equal distance
condition as stated in Step 1.

D. Step 4: check whether the equal distance condition has
been established

Objective: We have shown that Step 3 will achieve cor-
rect task allocation if all vehicles achieve the equal distance
condition. However, if the equal distance condition is not
achieved, the correct task allocation is not guaranteed. In this
step, we will show how to detect whether the equal distance
condition was established and how to control vehicles if
vehicles were not in the equal distance condition.

Algorithm:
1) At time tk+ΔTt+ΔTk, the vehicle computes a closed

curve Q′
k by “growing” the curve Qk by 0 < ρ ≤ ds

shown in Fig. 5. Note that Q′
k can be mathematically

described as the boundary of the set obtained by taking
the Minkowski sum of Qk with a circle of diameter ρ.
The smallest Euclidean distance from any point on one
curve to the other curve is always less than ds such that
the vehicle on one curve is able to sense the vehicle
on the other curve. Assume that the larger curve has
total length L′

k.
2) If a vehicle already decides which subtask to choose

in Step 3, then the vehicle flies to and track the
larger closed curve Q′

k with velocity vf , however, in
opposite direction to the curve Qk. Otherwise, the
vehicle keeps tracking the curve Qk. When the vehicle
flies to the curve Q′

k, it initializes a counter with value
0. Whenever it senses that a vehicle flies along the
curve Qk through the closest point to the curve Q′

k,
the counter will increase by 1.

3) After
L′

k+4πrw+ds

vf
in which rw = vf

wmax
is the mini-

mum turning radius, a vehicle checks whether the equal
distance condition has been established as follows:

a) If the vehicle is still on the curve Qk, then it will
know that the equal distance condition has not
been established.

b) If the vehicle is on the curve Q′
k, then it will

know that the equal distance condition has been
established only if it did not sense any vehicle
on the curve Qk, i.e., its counter is still at 0, (see
Fig. 5 b); otherwise, the equal distance condition
was not established (see Fig. 5 a).

The following lemma shows the correctness of the pro-
posed equal distance condition checking algorithm.

Lemma 4: The proposed algorithm will establish a con-
sensus on whether the equal distance condition has been

established or not after
L′

k+4πrw+ds

vf
.

Proof: If the equal distance condition has been estab-
lished in Step 3, then all vehicles will fly to the curve Q′

k and

sense nothing on the curve Qk after
L′

k+4πrw+ds

vf
as shown

in Fig. 5 (b). Otherwise, the vehicle will know that because
it either is still at the curve Qk or senses vehicles on the
curve Qk from the curve Q′

k as shown in Fig. 5 (a).

E. Convergence of the proposed algorithm
The following theorem shows that the proposed algorithm

will always converge when there are enough vehicles.
Theorem 1: When the number of UAVs in the bounded

region is at least

nmin = �πrw

ds
, �· denotes the ceiling function (5)
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Fig. 5. Illustration of the equal distance condition checking

the proposed algorithm will make correct task allocation in
finite time.

Proof: First, it is shown Lemma 3 that if the equal
distance condition is established, then the correct task al-
location will be achieved. Second, the total length of the
closed curve for achieving the equal distance condition
decreases by ds in each iteration. Because there are at least
nmin = �πrw

ds
 > 0 UAVs and the space is bounded, within

�L0
ds
 iterations, there will exist a closed curve such that the

equal distance condition is achieved and the subtasks are
correctly allocated. Finally, each iteration will take at most

ΔTt +ΔT0+ L′
0+4πrw+ds

vf
time for each iteration. Therefore,

the algorithm will converge in

�L0

ds
(ΔTt + ΔT0 +

L′
0 + 4πrw + ds

vf
). (6)

F. Scalable computational time analysis
In this section, we will analyze the computation time

for each step of the proposed algorithm and show that the
algorithm is scalable with respect to the number of vehicles,
n.

In Step 1, each vehicle just needs to compute the closed
curve according to the common bounded space informa-
tion. This computation is independent of n. In Step 2, the
computation of the shortest path for the Dubins car is also
independent of n. In Steps 3, the computation is only related
to the curve length to the neighboring vehicle along the
closed curve, and therefore, is independent of n. In Step 4,
the computation is scalable because at most one constant time
(independent of n) operation is necessary at each moment.

G. Extension to a group of heterogeneous vehicles
Assume that we have a group of heterogeneous vehicles.

We can easily setup a protocol in the broadcasted task
description such that different types of vehicles will fly at
different altitudes such that the above proposed algorithm is
applicable for each group of the same type of vehicles.

IV. SIMULATION RESULTS

We use the proposed algorithm to solve the task allocation
problem in a surveillance scenario. As shown in Fig. 1 (a),
there is a group of unknown number of UAVs scattered
around the Monterey Bay area. At time t0, a broadcast
information is sent to these vehicles to fly to and track
four trajectories respectively to provide surveillance along
the coast line and the entrance to the bay area (Fig. 1 (b)).
Assume that the total number of the vehicle is n, and a task

(a) (b)

Fig. 6. The snapshots of the executing the proposed algorithms

(a) (b)

Fig. 7. The snapshots of the executing the proposed algorithms

allocation function that assigns 3
8n vehicles to the middle

right closed curve, 1
4n vehicles to both the top and middle

left curves, and 1
8n vehicles to the bottom curve. Clearly, the

task allocation function must be designed to ensure that nk

is a natural number.
The snapshots of the execution of the proposed algorithms

are shown in Figs. 6 and 7. Figure 6 (a) shows the common
closed curve (the dashed line) and its way points, and Fig. 6
(b) shows that all vehicles track the common closed curve.
Figure 7 (a) shows that the equal distance condition has
been established on the closed curve, and Fig. 7 (b) shows
that subtasks are allocated and vehicles fly to their final
target trajectories. Figure 1 (b) shows the final results of
the task allocation, in which the top curve and middle left
both have 8 vehicles, the bottom one has 4, and the middle
right has 12 vehicles. This allocation of the vehicles satisfies
the requirement in the given task description.

V. CONCLUSION

In this paper, we propose an almost communication-less
decentralized algorithm to achieve task allocation for a group
of unknown number of vehicles, which are initially scattered
randomly in a bounded planar space, just through local
sensing and time synchronization. The proposed algorithm
converges in finite time, and is scalable with respect to
the total number of vehicles. It is applicable to UAVs,
especially for small-scale fixed wing UAVs which are subject
to nonholonomic constraints and have a positive lower bound
on the forward velocity.

APPENDIX

Lemma 5: The equal distance control law in Section III-
C will cause ΔD =

∑
i,j Δd+

i,j to decrease monotonically
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behind front
Case 1 vf kupvf

Case 2 kupvf vf

Case 3 vf vf

Case 4 kupvf kupvf

TABLE I

THE SPEED OF ADJACENT VEHICLES OF A VEHICLE

df dh

α > dn > dn

β > dn ≤ dn

γ ≤ dn > dn

ξ ≤ dn ≤ dn

TABLE II

THE DISTANCE OF ADJACENT VEHICLES TO A VEHICLE

with at least rate (kup − 1)vf if ds > Lk

n .
Proof: We will first study the effect of each vehicle,

and then the effect of all vehicles on ΔD.
1) The effect of a single vehicle on ΔD The speed of

vehicles behind and in the front of a vehicle can be either
of four types in Table I.

The distance to vehicles in the front and behind a vehicle
can be either of the four types in Table II.

If a vehicle has velocity kupvf , then it will change ΔD
with the rate in Table III.

If a vehicle has velocity vf , then it will change ΔD with
the rate in Table IV.

2) The effect of all vehicles on ΔD
If we list the distance to adjacent vehicles for each

vehicle along the closed curve according to the types in
Table II, there are only two patterns before the equal
distance condition is established: 1) β{α}∗γ with speed
pattern kup{kup, vf}∗vf and 2) γ{ξ}∗β with speed pattern
vf{kup, vf}∗kup, in which kup denotes speed kupvf for

(df , dh) Case 1 Case 2 Case 3 Case 4
α +vd −vd 0 0
β 0 −vd −vd 0
γ − − − −
ξ 0 0 0 0

TABLE III

THE EFFECT OF A VEHICLE WITH VELOCITY kupvf ON ΔD, IN WHICH

vd = (kup − 1)vf , AND “−” MEANS THAT THIS SITUATION IS

IMPOSSIBLE.

(df , dh) Case 1 Case 2 Case 3 Case 4
(> ds, > ds) − −vd 0 0

α +vd −vd 0 0
β − − − −
γ 0 −vd 0 −vd

ξ 0 0 0 0

TABLE IV

THE EFFECT OF A VEHICLE WITH VELOCITY vf ON ΔD, IN WHICH

ds > dn = Lk
n

simple notation and A∗ means to generate a sequence with
a non negative integer length using elements from set A.

It can be checked with Tables III and IV, the total effect
of middle symbols, ξ∗ and α∗, will not change ΔD, and the
total effect of symbols β and γ will decrease ΔD with at
least (kup − 1)vf .

Lemma 6: For a closed curve with length Lk and n
vehicles,

∑
i,j Δd+

i,j will have maximal value n−1
n Lk.

Proof: According to (3),∑
i,j Δd+

i,j =
∑

m,n

(D(pm, pn)− Lk

n

)
=

∑
m,nD(pm, pn)−∑

m,n
Lk

n

≤ Lk − Lk

n ,

(7)

for all adjacent vehicles m, n whose D(pm, pn) is larger than
Lk

n and the equality is true when all vehicles are at the same
location.
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