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Abstract— We present a set of potential function components
to assist an automated or semi-automated vehicle in navigating
a multi-lane, populated highway. The resulting potential field is
constructed as a superposition of disparate functions for lane-
keeping, road-staying, speed preference, and vehicle avoidance
and passing. The construction of the vehicle avoidance potential
is of primary importance, incorporating the structure and
protocol of laned highway driving. Particularly, the shape and
dimensions of the potential field behind each obstacle vehicle
can appropriately encourage control vehicle slowing and/or
passing, depending on the cars’ velocities and surrounding
traffic. Hard barriers on roadway edges and soft boundaries
between navigable lanes keep the vehicle on the highway, with
a preference to travel in a lane center.

I. INTRODUCTION

The structure and relative simplicity of automobile high-
way driving offer an opportunity for greater automation
and driver assistance, hopefully increasing the safety and
efficiency of these roads. Control frameworks may be applied
to highway travel without the complications of street driving
(stop lights, stop signs, cross traffic, frequent turns, etc.), and
the higher vehicle speeds mean that avoiding collisions is
of even greater importance, being more likely to save lives.
Additionally, many hypothesize that adding automation on
highways will increase throughput, with coordinated traffic
moving swiftly even in crowded cases.

However, driving is a complex task, and even highway
subtleties make the implementation of a rule-based naviga-
tion algorithm cumbersome. Therefore, utilizing an artificial
potential field for local trajectory generation offers an elegant
alternative. Potential function approaches have already seen
considerable use for robot motion planning [1], [2]. This
method models the robot as a positively-charged body mov-
ing in an electric field. Typically, the potential function U(q)
includes a negative (attractive) component driving the robot
towards its goal location and positive (repulsive) components
around all obstacles in the workspace. Then, the desired
motion from any given pose q can be determined by gradient
descent, q̇ = −α∇U(q), or with dynamics,

mq̈ + cq̇ = F = −∇U(q) .

The key to employing this technique is creating an ap-
propriate potential function U(q) to generate the desired
behavior. Although collision-free robotic navigation has been
well studied, distinctive issues and asymmetries apply to
highway vehicles to differentiate our problem from that of a

classic omnidirectional robot in an “unbiased” configuration
space:
• Vehicles have a preference to stay in well-defined lanes

and further to stay in the middle of a lane.
• Direction of travel is limited; that is, vehicles must

travel in the direction of the highway.
• Lateral velocity (due to lane change) is generally small

relative to longitudinal velocity (along the highway).
Accordingly, acceptable tolerances for obstacle prox-
imity vary by direction; that is, being one meter to the
side of another car is more acceptable than following
one meter behind.

• The dynamic nature of the controlled vehicle and the
obstacle vehicles plays a role in acceptable proximity;
both the absolute and relative velocities determine de-
sired distance to maintain behind another car, and these
parameters clearly change with time.

Thus, we present a potential function for highway driving
that encodes avoiding obstacles (primarily other vehicles)
and road edges while preferring travel in a lane center and at
a desired speed. This potential function may be envisioned
as part of an overall control system for autonomous vehicle
navigation in the traditional formulation; however, other
applications, such as active driver assistance devices, may
represent more realistic near term options.

Other researchers have also investigated utilizing potential
fields for navigating automobiles. Gerdes and Rossetter have
many contributions [3]–[6]; in particular, Rossetter’s disser-
tation [5] focuses on incorporating a lane-keeping potential
into a drive-by-wire car, including a detailed vehicle model
and lateral stability requirements. Our primary contribution
above their work and others [7]–[9] is an appropriate vehicle
collision avoidance potential in a full two-dimensional field,
including implicit decision-making on whether to pass slow
obstacles. We also consider vehicle velocity dependencies
and preferences in a more thorough manner.

II. POTENTIAL FUNCTION COMPONENTS

Let us first consider the behavior we wish our highway
vehicle to exhibit. In the absence of obstacles, the control
vehicle should maintain a target speed vdes (e.g. the speed
limit) and stay in the center of its current lane. When
approaching another vehicle in the same lane, the controlled
vehicle should either (a) change lanes to avoid the other car,
if the speed of this “obstacle car” is too slow and an adjacent
lane is clear; or, (b) slow to match the other car’s speed,
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which is acceptable if it is near vdes or in heavy traffic. In
no circumstance should the vehicle leave the road or contact
another vehicle.

For simplicity, assume the highway is straight and of
infinite length; for curved roads, the same technique may be
applied to longitudinal / lateral highway coordinates. We also
assume knowledge of the roadway layout, our own vehicle
state, and the positions and velocities of nearby vehicles.
Other obstacles may be incorporated into this formulation
but here we consider only other vehicles, as this is most
common.

It is convenient to choose coordinate frames in which to
describe the potential functions. Let the x-direction align
with the direction of highway travel and choose the global
reference frame origin such that the first (right-most) lane
is centered at y = 0, as shown in Figure 1. The number of
lanes and width of each lane are parameterized by Nlanes and
δlane, respectively. All vehicles are modeled as rectangles of
width (y-size) W and length (x-size) L, with a body-fixed
frame attached in the rear middle (rear bumper). As in the
usual formulation, we can consider our controlled vehicle as
a point object in configuration space.
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Fig. 1. Highway Setup: coordinate frames and obstacle labels

The total proposed potential U results from the super-
position of several potential functions, which each fulfill a
particular role in the highway navigation. We label these
component functions lane for lane-keeping and centering,
road for prevention of leaving the roadway, car for collision
avoidance, and vel for targeting the desired speed vdes:

U = Ulane + Uroad + Ucar + Uvel .

Ulane, Uroad, and Ucar are each summations of similar
components for each lane division, roadway edge (two), and
nearby car, respectively. For example,

Ulane =
Nlanes−1∑

i

Ulane,i .

We address each component type individually below and
later discuss their interplay.

A. Lane Potential

The lane potential Ulane creates a barrier to lane changing
and guides the car into the center of its lane, but also is be
small enough to be easily overcome in the case that a lane
change is necessary (or preferred) for collision avoidance. A
Gaussian-like function is used to model the desired behavior
between each lane:

Ulane,i = Alane exp
(
− (y − yc,i)2

2σ2

)
.

Alane determines the maximum amplitude of the lane divider
potential, yc,i is the y-position of the ith lane division, and
σ determines how quickly the potential rises/falls and is
proportional to the lane width. Figure 2(A) shows a plot
of this potential for a y-axis cross-section of a three-lane
highway.

B. Road Potential

The road potential prevents the vehicle from leaving the
highway by becoming infinite at the road edges (positive
and negative y-boundaries of the workspace). On each side
of the road, we employ a repulsive potential commonly used
in robotics motion planning:

Uroad,j =
1
2
η

(
1

y − y0,j

)2

,

where η is a scaling factor and y0,j is the jth road edge
coordinate, j ∈ {1, 2}. See Figure 2(B) for a plot and (C)
for the roadway cross-section with the cumulative effect of
both lane and road potentials.

C. Car Potential

The car potential aims to keep the vehicle a safe distance
from each obstacle car by building a potential that rises to
infinite strength approaching any part of the vehicle. Also,
the potential must be shaped such that a lane change is
encouraged if the controlled vehicle is rapidly approaching
another car from behind — the vehicle should be forced to
the side (positive or negative y direction) rather than to a
stop (negative x direction).

The foundation of the car potential is the Yukawa potential
[10]:

Ucar,m(K) = Acar
e−αK

K
,

where K is a distance measurement to the mth obstacle car.
A key exploration of this paper is defining this potential,
particularly with regards to an appropriate pseudo-distance
K, as it play a critical role in governing the key behaviors
of our vehicle. A FIRAS potential [1] was also considered,
but the Yukawa proved to be better suited to our application
based on a slower rate of rise at moderate distances. This
property helps govern the transition between maintaining
a safe distance (pushing back) when farther away versus
forcing a lane change (pushing to the side) when closer to
the obstacle.

As noted earlier, the variable K acts as a pseudo-distance
from the obstacle. We have taken some liberties with this
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Fig. 2. Lane and road potentials for a cross-section of a three lane
highway. (A) Two lane-dividing potentials. (B) Road edge potentials. (C)
Superposition of all above components. Gray lines mark lane dividers and
road edges.

measurement, artificially modifying it to account for the
inherent asymmetries of highway driving. Consider the
following reasoning. The level of danger associated with
obstacle proximity depends also upon several other factors,
governed both by the vehicle dynamics and rules of the road.
For example, the relative position of cars on the highway
plays a strong role; a vehicle should stay far behind a leading
car in its lane, but is allowed relatively near the obstacle
to the side. Thus, in terms of pseudo-distance, one may
intuitively think of being 30 meters behind another vehicle
“as close as” 2 meters to the side of that vehicle. By altering
the pseudo-distance for this purpose, we can avoid the need
to have a different potential function for the region behind
an obstacle.

Another factor governing safe distances from obstacle
vehicles is speed, particularly when following a vehicle.
For high relative speed, the potential function influence
should occur at larger distances, as (a) it will take longer
to slow to match speeds or (b) there will be less distance
over which to change lanes. Additionally, higher absolute
velocity should also increase influence-distances, as, even
when matching speeds with the leading vehicle, more space
would be required for evasive maneuvering.

Accordingly, we describe below how K is determined for
two regions: forward/side and behind the obstacle vehicle
(see Figure 1).

1) K for Forward and Side of Obstacle: In front and
directly to the side of the obstacle, K is the Euclidean

distance to the nearest point on the obstacle car:

K = min
b∈B
‖q − b‖ ,

where B is the set of points comprising the obstacle. This
approach results in lines of constant distance on immediate
sides and front of the obstacle, with circular quarter-circle
arcs connecting them (see Figure 3). The side-of-obstacle
potential should have only a slight influence on adjacent
vehicles, avoiding the initiation of a lane change into the
obstacle. It is unlikely that the front-of-obstacle potential
actually influences our vehicle given the responsibility of
the trailing vehicle to avoid leading vehicles.

2) K for Behind Obstacle: The pseudo-distance K behind
an obstacle is adjusted from the Euclidean distance in two
important ways. First, a triangle, or wedge, is appended
behind the vehicle to guide lane-changing behavior (Figure
1). The location of the rear-most vertex of this triangle is
parameterized by ∆t — moving it farther back gives a more
pointed potential behind the car but also results in a larger
area behind the car that is impossible to enter (Figure 3).
This impossible-to-enter region acts as an additional safety
zone behind an obstacle car. Note that far behind the vehicle,
it is desirable that the potential field is fairly flat in the y-
direction, getting more pointed as the vehicle (wedge) is
approached.

The second modification to the pseudo-distance K in the
region behind the vehicle is to shrink the effective distance as
motivated above. Before determining the Euclidean distance
to the closest point on the wedge, the x-position relative to
the vehicle is scaled by a factor ξ ∈ (0, 1], simulating that the
current position is actually much closer to the wedge than it
really is. As noted earlier, however, we wish ξ be dependent
on the vehicle speeds. For the mth obstacle car, we define

ξm(v) = ξ0(v) · e−β(v−vm) ,

where v is the controlled vehicle’s speed and vm the speed of
the obstacle car. The exponential factor therefore depends on
the relative speed, scaled by parameter β. The quantity ξ0(v)
then represents the scale factor for when the vehicles are
traveling at the same speed and can depend on the vehicle’s
absolute velocity. To set ξ0(v), we have derived inspiration
from the “three second rule,” which dictates a following car
should allow a distance to the leading car equal to the time
traveled in three seconds:

ξ0(v) =

{
d0
Tfv

v ≥ d0
Tf

1 otherwise
,

where Tf is the desired following time (e.g., three seconds)
and d0 is essentially the maximum distance at which the
potential Ucar exerts an influence, as determined from the
other system parameters. The case where v < d0

Tf
should

rarely be invoked since d0 is small compared to vTf but is
included to ensure ξ(v) does not exceed 1.

In summary, the procedure to calculate the potential (or
gradient) when behind the kth obstacle is: (1) scale down
the x coordinate by x′ = ξm(v)x (in obstacle frame
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coordinates); (2) compute K, the Euclidean distance from
q′ = [x′y]T to the nearest point on the wedge appended
behind the obstacle; (3) use K to compute the potential (or
gradient); and (4) for the gradient vector direction, scale back
by ξm(v).

Figure 3 displays the total resulting potential around a
car. The scaling behind the car clearly expands its influence
in this region. Additionally, the wedge appended behind the
car artificially extends the obstacle and modifies its shape
(compare with the front of the car) to both prevent the
controlled vehicle from entering this zone and encourage lane
change behavior when appropriate.

Fig. 3. Complete car potential, with isopotential contours. Large values
are truncated.

D. Velocity Potential

The velocity potential function effectively creates a linear
feedback law in the x direction in order to guide the vehicle
towards a desired speed vdes:

Uvel = γ(v − vdes)x .

This function results in a force propelling the vehicle forward
when it is under its desired speed and a retarding force when
the vehicle exceeds its desired speed.

III. SIMULATION RESULTS

Based on the potential function components above, we
simulated several scenarios on a multi-lane, populated high-
way, employing the gradient-descent law described earlier.
The scenario and parameter values used are shown in Table

I. To investigate the validity of the potential functions,
we modeled the vehicle as a simple omnidirectional point
forced by −∇U with light damping. For more sophisticated
applications of potential functions to car-like vehicles, in
which our potential functions may also play a strong role,
see [5].

TABLE I
SETUP AND FUNCTION PARAMETER VALUES

Highway Setup Nlanes number of lanes 3
δlane lane width 4
W car width 2
L car length 3

Lane Potential Alane max. height 2
σ width parameter 0.3δlane

Road Potential η scale 3
Car Potential Acar Yukawa amplitude 10

α Yukawa scale 0.5
∆t wedge vertex location -0.5
β ξ exp. scale 0.6
Tf ξ0 follow time 3

Velocity Potential γ slope scale 0.2
vdes desired speed 25

We describe the resulting autonomous behavior in our
simulations, presenting still images showing the potential
fields from some of the more interesting cases. In these
figures, a yellow square denotes the starting position and
a green circle the end position. However, recall that these
potential fields are dynamic, especially changing as a result
of the controlled vehicle’s velocity. For greater clarity on
the resulting vehicle behavior, see the corresponding video
of these simulations included in the proceedings.

Without obstacles present, we have tested many initial
conditions to verify vehicle behavior to center in its lane, stay
on the road, and travel at the desired speed. Perturbations
from lane center and desired speed are quickly corrected,
with perhaps some small oscillations before steady state,
depending on damping values used in the simulation. The
controlled car never leaves the roadway, successfully blocked
by the road potential.

The addition of obstacles (other cars) in adjacent lanes
effectively prevents lane changes in that direction without
unduly forcing the controlled vehicle from its adjacent lane
center. The most interesting test cases, however, consider
how the controlled vehicle acts when approaching an obstacle
in its lane — specifically whether the vehicle changes lanes.

Scenario 1: Figure 4 shows the total potential with one
obstacle, meant to represent a leading car traveling nearly the
desired velocity. In this case a controlled vehicle traveling
at vdes in the middle lane slows into the local minimum
behind the obstacle car. Note the obstacle car in the first
lane is traveling faster and therefore has a “shorter” potential
influence behind it.

Scenario 2: Figure 5 portrays a scenario in which the
obstacle vehicle and controlled vehicle are going signifi-
cantly slower. In this case, the speed of the leading vehicle is
implicitly below threshold, under which it is then deemed an
“obstacle.” (Consider a vehicle having mechanical difficulty
or perhaps immediately following a collision; we show a
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Fig. 4. Scenario 1: Local minima encourage vehicle to slow slightly and
stay in lane.

moving vehicle to demonstrate behavior closer to the lane-
change threshold and to compare better to Scenario 1.) Thus,
the desired behavior is to change lanes. This does indeed
happen, and one can see the local minimum behind the
obstacle is not present as it was in the preceding scenario.
The vehicle changes lanes to avoid the the obstacle and
continue forward at vdes. Note that if an obstacle vehicle
were in either adjacent lane, the vehicle would change lanes
the opposite direction due to effects of the neighboring car
potential.

Fig. 5. Scenario 2: Vehicle changes lanes to avoid obstacle car and speed
up.

Scenario 3: In Figure 6, multiple obstacle vehicles are
present, representing a case with heavier traffic, with cars in
both adjacent lanes and the leading obstacle car moving at a
speed well below vdes. In this case, a local minimum exists
once again, similar to the first scenario, so the vehicle will
stay in its lane and slow to match the speed of the leading
car.

Fig. 6. Scenario 3: In heavier traffic, the vehicle slows and stays in its
lane.

IV. DISCUSSION

Our simulation results display the vehicle behavior we
designed the potential functions to elicit. With regards to
lane changing, we are content to follow an obstacle provided
it is moving reasonably close to our desired speed — we
may consider the “effort” of changing lanes not worth it.
However, if the leading vehicle’s speed is below tolerance,
the automatic behavior is to change lanes, but only if adjacent
lanes are clear of other obstacles.

The lane, car, and velocity potentials all work together
to effect the above behavior. The question of whether a
lane change will occur is a matter of considering if the
lateral forces from the car potential’s wedge shape are large
enough to overcome the barrier of the lane dividers. The
slower the controlled vehicle is going, the greater the force
resulting from velocity potential; in effect, this cancels out
the gradual-sloped periphery of the car potential and thus
the controlled vehicle engages the (stronger) region closer
to the obstacle, where the lateral forces will be greater.
Additionally, a larger difference in velocities between the two
vehicles would increase the region of influence (decreases the
pseudo-distance K) of the car potential, so the lane change
would be initiated earlier.

This interplay, however, necessitates that the potential field
parameter values must be chosen holistically. This fact, along
with the sheer dimension of the parameter space, is a weak-
ness (albeit surmountable) of our approach. One procedure
for parameter selection is to select a few of the parameters
as “independent,” with others assigned progressively. For
example, starting with Alane sets a scale for potential values.
Then η, Acar, and α can be chosen based on the desired
overlap of road edges and car sides into adjacent lanes.
Next the behind-obstacle parameters ∆t and β may be
selected, and so on. Other approaches, such as automated
computational parameter explorations, may be useful.

Unlike traditional potential field robotic navigation, there
is no true goal location. Rather, any lane center is accept-
able, with sufficient buffer from obstacles. Importantly, local
minima are thus generally acceptable and in fact play an
important role in the case of staying behind leading vehicles,
especially in traffic. In this scenario we would not wish to
navigate in between lanes to get to a lower potential, so
staying in the resulting local minima is certainly preferable.

Known issues exist for attempting autonomous navigation
via artificial potential fields. Although we have pointed out
how local minima are actually helpful in some scenarios for
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our application, they can also be a hindrance; for example,
they prevent more complex maneuvers to get around another
car. Additionally, care is required to ensure the commanded
force is realistic, respecting the vehicle dynamics. Another
consideration is time delay or time step size, as implemen-
tations occur in discrete time and large time steps can lead
to unstable behavior and collisions.

Most likely, many limitations of autonomous potential
field navigation will be overcome by using the proposed
potential function as part of a hierarchical or hybrid control
system. Such systems provide more convenient means of
trajectory control, perhaps using a set of motion primitives
that incorporate both car dynamics and highway protocol.
Since decision logic in these systems is often difficult, a
potential function provides a simple yet holistic view of
environment to assist in evaluating the appropriate direction
of motion. For example, perhaps instead of following the
dynamics of a particle in the potential field to change lanes,
a certain vector resulting from the potential field may trigger
the stored procedure (motion primitive) of how to make the
lane change, along with setting the necessary parameters.

To further refine the potential field presented in this
paper, alternative or additive potential functions could also be
explored in the future. The front-of-obstacle potential is one
candidate for change. Although we do not wish for trailing
cars to “push forward” our vehicle (and so we want to keep
this influence small), expanding the influence of front-of-
obstacle potential for cars traveling in adjacent lanes may
be useful to prevent changing lanes immediately in front of
a faster-moving car. For the velocity potential, other means
may be explored for moving at desired velocities, as in slow
conditions the resulting ramp can be quite strong — small
perturbations in position or the obstacle layout can result
in relatively large forces, creating a “tension” in which the
vehicle is always trying to move at vdes (perhaps not unlike
human drivers).

V. CONCLUSION

We have presented a set of potential function components
useful for modeling highway driving. The lane and road po-
tentials keep the vehicle on the roadway and preferably in the
center of a lane and present a barrier to lane changes. The car
potential results in appropriate collision avoidance behavior,
with important velocity-dependent adjustments included for
the region behind the obstacle. Finally, the velocity potential
encourages the vehicle to move at a desired speed. Although
we have demonstrated the usefulness of the combined poten-
tial function as the sole navigation means of an autonomous
vehicle, several other uses may exist, including for decision
making in a motion primitive based controller, or as additive
input in driver assistance devices.
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