
Impact of Workspace Decompositions on Discrete Search Leading

Continuous Exploration (DSLX) Motion Planning

Erion Plaku Lydia E. Kavraki Moshe Y. Vardi

Abstract— We have recently proposed DSLX, a motion plan-
ner that significantly reduces the computational time for solving
challenging kinodynamic problems by interleaving continuous
state-space exploration with discrete search on a workspace
decomposition. An important but inadequately understood
aspect of DSLX is the role of the workspace decomposition
on the computational efficiency of the planner. Understanding
this role is important for successful applications of DSLX to
increasingly complex robotic systems.

This work shows that the granularity of the workspace
decomposition directly impacts computational efficiency: DSLX
is faster when the decomposition is neither too fine- nor
too coarse-grained. Finding the right level of granularity can
require extensive fine-tuning. This work demonstrates that
significant computational efficiency can instead be obtained
with no fine-tuning by using conforming Delaunay triangu-
lations, which in the context of DSLX provide a natural
workspace decomposition that allows an efficient interplay
between continuous state-space exploration and discrete search.
The results of this work are based on extensive experiments on
DSLX using grid, trapezoidal, and triangular decompositions of
various granularities to solve challenging first and second-order
kinodynamic motion-planning problems.

I. INTRODUCTION

Motion planning is becoming increasingly relevant in

transportation, exploration, and search and rescue missions

[1]–[6]. While avoiding collisions when reaching a desired

goal, an already challenging task in path planning, a robot

deployed in realistic settings must additionally satisfy kino-

dynamic constraints that further restrict its possible motions.

While many methods have made significant progress in

taking into account kinodynamic constraints [1], [2], most

notably Rapidly-exploring Random Tree (RRT) [4] and Ex-

pansive Space Tree (EST) [5], kinodynamic motion planning

remains an active area of research.

Our recently proposed motion planner DSLX [7] has been

shown to significantly reduce the computational time for

solving challenging kinodynamic problems. The planner has

been successfully applied to several second-order robotic

models. DSLX represents a new class of planners that

combines in novel ways continuous state-space exploration

with discrete search on a workspace decomposition. The

idea of using decompositions appears early in motion plan-

ning literature. Key theoretical results were obtained using

Work on this paper has been supported in part by NSF CNS 0615328
(EP, LEK, MYV), NSF 0713623 (EP, LEK), a Sloan Fellowship (LEK),
and NSF CCF 0613889, CCF 0728882 (MYV). Experiments were run on
equipment supported by NSF CNS 0454333 and NSF CNS 0421109 in
partnership with Rice University, AMD, and Cray. The authors are with
the Department of Computer Science, Rice University, Houston, TX 77005,
USA {plakue,kavraki,vardi}@cs.rice.edu

(a) (b)

(c) (d)

Fig. 1. DSLX solving a motion planning query for a second-order
kinodynamic car. (a-c) Current lead is in red. States of the exploration tree
projected onto the workspace are shown as brown dots. The lead guides the
exploration and adapts to new information. This flexible interplay between
discrete search and continuous state-space exploration takes place in a
conforming Delaunay triangulation of the workspace. (d) Solution trajectory.

configuration-space decompositions [8]. Recently workspace

decompositions have been used in the Probabilistic RoadMap

(PRM) method [9] to improve its sampling [10]–[14]. A

survey of decomposition methods in motion planning can

be found in [1].

A critical difference of DSLX over related workspace

decomposition methods is that these methods are primar-

ily developed for geometric path planning while DSLX is

designed to take advantage of workspace decompositions

for kinodynamic motion planning [7] through a novel inter-

play between continuous state-space exploration and discrete

search. At each iteration, the discrete search computes a lead,

a sequence of decomposition regions that is estimated to be

useful for advancing the exploration toward the goal. The

continuous state-space exploration uses the current lead to

extend a tree along the decomposition regions specified by

the lead. Information such as coverage and exploration time

is fed back from the continuous state-space exploration to

the discrete search to improve the lead for the next iteration.

This interaction provides DSLX with the flexibility to extend

the tree along useful directions while able to radically change

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3751

direction if information from the exploration suggests other

useful leads, as shown in Fig. 1. It is this flexible interplay

that takes place on a workspace decomposition between

discrete search and continuous state-space exploration that

enables DSLX to achieve significant speedups when com-

pared to other motion planners such as RRT and EST [7].

An important but inadequately understood aspect of DSLX

is the impact of the workspace decomposition. Understanding

this impact is essential for successfully applying DSLX to

increasingly challenging and realistic problems.

The main contribution of this work is a detailed study of

the impact of different workspace decompositions on DSLX

and the identification of a workspace decomposition that is

particularly well-suited for DSLX. Our first implementation

of DSLX in [7] relied on a fixed-size grid decomposition.

This work shows that, on a grid decomposition, DSLX is

faster when the grid is neither too fine- nor too coarse-

grained. We also study the impact of trapezoidal and trian-

gular decompositions, and similarly to our findings for grid

decompositions, this work shows that DSLX is computation-

ally more efficient when the decomposition granularity is

balanced between fine- and coarse-grained.

Fine-tuning the decomposition to find the right granularity

could increase the computational efficiency but can require

extensive efforts. This work demonstrates that significant

computational efficiency can instead be obtained with no

fine-tuning by using conforming Delaunay triangulations

[15]. Extensive experiments on several first and second order

kinodynamic robot models operating in various workspaces

show that conforming Delaunay triangulations in the context

of DSLX provide a natural decomposition of the workspace

that allows a remarkably efficient interplay between the dis-

crete search and continuous state-space exploration. DSLX is

generally one order of magnitude more efficient when using

conforming Delaunay triangulations instead of the various

grid, triangular, and trapezoidal workspace decompositions.

II. DSLX

A detailed description of DSLX appears in [7]. This section

provides a summary of DSLX and describes several modifica-

tions to the DSLX algorithm to make the interplay between

the discrete search and continuous state-space exploration

even more efficient. Pseudocode is given in Algorithm 1.

The lead computation occurs in line 6 and is described in

section II-A. The continuous state-space exploration occurs

in line 7 and is described in section II-B.

A. Lead

The objective of the discrete search is to compute at

each iteration a lead (line 6), a sequence of decomposition

regions that is estimated to be useful for advancing the

continuous state-space exploration toward the goal. Let R =
{R1, R2, . . . , Rn} denote the workspace decomposition into

regions. DSLX associates a weight wi with each decomposi-

tion region Ri. The weight wi is a running estimate on the

usefulness of including Ri in the current lead and is com-

puted based on information gathered during each exploration

Algorithm 1 Pseudocode for DSLX

Input:
W , geometric description of the workspace
s, g, initial and goal specifications
tmax ∈ R

>0, upper bound on computation time
te ∈ R

>0, short time allocated to each exploration step

Output: A solution trajectory or NIL if no solution is found

1: STARTCLOCK

2: G = (V, E)← WORKSPACEDECOMPOSITION(W)
3: INITEXPLORATIONESTIMATES(G)
4: T ← exploration tree rooted at s
5: while ELAPSEDTIME < tmax do
6: [Ri1 , . . . , Rin

]← LEAD(G, s, g)
7: EXPLORE(T , [Ri1 , . . . , Rin

], te)
8: if a solution is found then return solution trajectory
9: return NIL

of Ri as wi = tαi /
(

covβ
i volγi

)

, where ti is the total time

spent exploring Ri; covi is an estimate on the exploration

coverage of Ri computed as in [7]; voli is the volume of

Ri; and α, β, γ are normalization constants. Usefulness is

indicated by a lower weight, i.e., Ri is considered useful

when Ri has a large volume and the exploration covers large

parts of Ri in a short amount of time.

The physical adjacency of the decomposition regions is

represented in a graph G = (V,E). For each Ri there

is a corresponding vertex vi ∈ V . Similarly, for any two

neighboring decomposition regions Ri and Rj there is an

edge (vi, vj) ∈ E. Let v(s), v(g) ∈ V be the two vertices

whose corresponding decomposition regions are associated

with the initial and goal states, s and g, respectively. A lead

is computed by searching G for sequences of edges from

v(s) to v(g). The usefulness of each lead for advancing the

exploration toward the goal is estimated based on the weights

wij = wi ∗ wj associated with each edge (vi, vj) ∈ E.

The edge (vi, vj) ∈ E is thus considered useful when

the corresponding regions Ri and Rj are also considered

useful. As in [7], the lead is computed more frequently as

the shortest path according to the weights wij using A*

or Dijkstra’s shortest-path algorithm. As suggested in [7],

random leads are also used, although infrequently, as a way

to correct for errors inherent with the estimates and ensure

that each possible lead is selected with non-zero probability.

B. Explore

The exploration starts by rooting a tree T at the initial state

s (line 4). The objective during each exploration step (line

7) is to extend T along the decomposition regions specified

by the current lead. Let Ravail include all the decomposition

regions in the current lead as well as their neighbors. Let

Ruse include all the decomposition regions in Ravail that have

been reached by states in T . The exploration is an iterative

process that lasts for at most te seconds. While there is

time remaining, a decomposition region Rj is selected from

Ruse with probability wexp(j)/
∑

Rk∈Ruse
wexp(k), where

wexp(j) = volγj /
(

tαj covβ
j

)

. This selection scheme gives

priority to those decomposition regions in Ruse that have

large volume and low coverage and have not been frequently

explored in the past. States associated with Rj are put into

3752

different bins depending on their (x, y) position, similar to

SBL [6]. A state s is selected from Rj for propagation by

first selecting a bin uniformly at random and then picking a

state uniformly at random from the bin. If the propagation is

successful a new state snew and the edge connecting s to snew

is added to T . The state snew is also added to the appropriate

decomposition region Rk. If Rk is in Ravail but not in Ruse,

then Rk is added to Ruse. Thus, when the exploration tree

reaches decomposition regions specified by the current lead

or their neighbors, they become available for selection during

the next iteration of the exploration step.

The interplay between the discrete search and continuous

state-space exploration, summarized in this section, is shown

in [7] to allow DSLX to obtain significant computational

speedups of up to two orders of magnitude when compared

to other tree-based planners, e.g., RRT and EST, for solving

challenging kinodynamic motion-planning problems.

III. EXPERIMENTS AND RESULTS

Experiments on this work test the impact of different

workspace decompositions on DSLX for solving kinody-

namic motion-planning problems. Experiments involve first

and second-order models of cars, unicycles, and differential

drives moving in unstructured and large environments, since

the design of DSLX [7] was motivated by such problems.

Implementations are based on the OOPSMP framework [16].

Experiments are run on Rice Cray XD1 ADA and PBC

clusters. Each processor runs at 2.2GHz and has 2GB RAM.

A. Kinodynamic Robot Models

Detailed descriptions of the robot models can be found in

[1], [2]. Bounds on controls and states are empirically de-

termined based on the workspaces used for the experiments.

In all cases, (x, y, θ) denotes the configuration.

1) Kinematic Car (KCar): ẋ = u0 cos(θ); ẏ =
u0 sin(θ); θ̇ = u0 tan(u1)/L, where L is the distance be-

tween the front and rear axles; |u0| ≤ 3m/s; and |u1| ≤ 35◦.

2) Smooth Car (SCar): ẋ = v cos(θ); ẏ = v sin(θ); θ̇ =
v tan(φ)/L; v̇ = u0; φ̇ = u1, where v is the velocity; φ is

the steering angle; |u0| ≤ 0.8m/s2; and |u1| ≤ 20◦/s.

3) Kinematic Unicycle (KUni): ẋ = u0 cos(θ); ẏ =
u0 sin(θ); θ̇ = u1, where |u0| ≤ 3m/s; and |u1| ≤ 40◦/s.

4) Smooth Unicycle (SUni): ẋ = v cos(θ); ẏ =
v sin(θ); θ̇ = ω; v̇ = u0; ω̇ = u1, where v and ω are the

translational and rotational velocities; |u0| ≤ 0.3m/s2; and

|u1| ≤ 10◦/s2.

5) Kinematic Differential Drive (KDDrive): ẋ =
ru0 cos(θ); ẏ = ru0 sin(θ); θ̇ = ru1/L, where r is the wheel

radius; and L is the length of the axis connecting the wheel

centers. Controls u0 and u1 are obtained from transforming

the controls to the left and right wheels as described in [2]

and are restricted to |u0| ≤ 3m/s and |u1| ≤ 40◦/s.

6) Smooth Differential Drive (SDDrive): ẋ = 0.5r(ωℓ+
ωr) cos(θ); ẏ = 0.5r(ωℓ + ωr) sin(θ); θ̇ = r(ωr −
ωℓ)/L; ω̇ℓ = u0; ω̇r = u1, where ωℓ and ωr are the

rotational velocities of the left and right wheels; r is the

wheel radius; L is the length of the axis connecting the wheel

centers; |u0| ≤ 10◦/s2; and |u1| ≤ 10◦/s2.

B. Benchmarks

Workspaces used in the experiments are shown in Fig. 2(a)

and are designed to vary in type and difficulty and provide

representative problems for kinodynamic motion planning.

Queries are generated at random in places similar to the

queries illustrated in Fig. 2(a). Solutions to these queries

require the robot to avoid obstacles, frequently change di-

rections, make sharp turns, go through narrow passages and

tunnels of varying width and length. Each workspace has

unit dimensions (1m=0.05units). The body length and width

of the car are set to 0.04 and 0.02; body length and wheel

radius of the differential drive are set to 0.04 and 0.01; body

length and width of the unicycle are set to 0.04 and 0.03.

C. Workspace Decompositions

We conducted experiments using grid, triangular, and

trapezoidal decompositions of various granularities.

1) Grid Decompositions: We used grids with 1×1, 2×2,

4× 4, 8× 8, 16× 16, 32× 32, 64× 64, and 128× 128 cells.

Fig. 2(b) provides an illustration.

2) Triangular Decompositions: Different triangulations

were obtained by varying the triangle area. Fig. 2(c) shows

an illustration. Triangulation T1 is obtained by using Seidel’s

algorithm as implemented in [17]. It is a coarse triangulation

and consists primarily of long and thin triangles. Triangula-

tions T2, T3, T4 are computed using the industrial-strength

package Triangle [15] and are obtained by requiring the

minimum angle in each triangle to be at least 20◦ and

the maximum area of each triangle in T2, T3, and T4 to

be at most 0.01, 0.0005, and 0.0002, respectively. Such

triangulations are commonly used in mesh generations.

3) Trapezoidal Decompositions: Trapezoidal decomposi-

tions are illustrated in Fig. 2(d) and are computed using

Seidel’s algorithm as implemented in [17].

4) Conforming Delaunay Triangulations: Conforming

Delaunay triangulations have been widely used in compu-

tational geometry and are similar to Delaunay triangula-

tions for a set of points, which maximize the minimum

angle among all possible triangulations, but could potentially

differ in some places to take into account polygonal edge

constraints by adding additional vertices [15]. Although in

some theoretical pathological cases O(n3) new vertices are

required, in practice the bound is linear [18]. Fig. 2(e) illus-

trates the conforming Delaunay triangulations as computed

by the industrial-strength package Triangle [15].

D. Results

For each combination of workspace, workspace decom-

position, and kinodynamic model, DSLX solves 30 queries

generated as described in section III-B. The computational

efficiency of DSLX for a given combination is measured as

the average time to solve the queries after dropping the four

lowest and highest times. A timeout of 800s is imposed for a

given query. In each DSLX run, the exploration time for each

step is set to te = 0.01s and the normalization constants are

set to α = 4.0, β = 2.0, and γ = 2.0 (see section II).

3753

(a) Workspaces used for the experiments

(b) Illustration of some grid decompositions, 8 × 8, 16 × 16, 32 × 32, 64 × 64, for one of the workspaces

(c) Illustration of triangulations T1, T2, T3, T4 for one of the workspaces

(d) Illustration of trapezoidal decompositions for each workspace

(e) Illustration of conforming Delaunay triangulations for each workspace

Fig. 2. (a) Workspaces used for the experiments. Obstacles are shown in blue. Each figure also illustrates a typical query for a second-order kinodynamic
car model with the initial state shown in green and the goal state shown in red. All drawings are according to scale. (b-e) Illustrations of different workspace
decompositions used for the experiments.

3754

(a) Kinematic car (b) Smooth car

(c) Kinematic unicycle (d) Smooth unicycle

(e) Kinematic differential drive (f) Smooth differential drive

Fig. 3. Bars (from left to right) correspond to the results when using different decompositions (x-axis) on the workspaces in Fig. 2. tD denotes the
computational efficiency of DSLX, as defined in section III-D, when using a conforming Delaunay triangulation. tOther denotes the computational efficiency
of DSLX when using a different decomposition. Decompositions 1, 2, 4, 8, 16, 32, 64, and 128 denote grid decompositions. Decompositions T1, T2, T3, T4
denote triangular decompositions. Decomposition Tr denotes trapezoidal decomposition. Descriptions of these decompositions can be found in section III-C.

TABLE I

COMPUTATIONAL EFFICIENCY OF DSLX WHEN USING CONFORMING

DELAUNAY TRIANGULATIONS OF THE FOUR WORKSPACES IN FIG. 2

KCar KUni KDDrive SCar SUni SDDrive

A 0.91s 0.61s 0.89s 13.29s 8.85s 11.89s
B 1.15s 1.07s 1.46s 22.48s 13.71s 13.25s
C 1.06s 0.98s 1.77s 19.41s 27.27s 17.47s
D 0.83s 0.78s 1.65s 11.24s 15.76s 18.66s

Table I shows the computational efficiency of DSLX when

using conforming Delaunay triangulations. The graphs in

Fig. 3 are obtained by plotting tD/tOther, where tD denotes

the computational time of DSLX when using a conforming

Delaunay triangulation and tOther denotes the computational

time of DSLX when using one of the other grid, triangular,

or trapezoidal decompositions described in section III-C.

To illustrate the difficulty of the problems solved and the

computational efficiency of DSLX, we first note that RRT

and EST require one to two orders of magnitude more time

than DSLX. For example, when using the third workspace of

Fig. 2(a) and the second-order unicycle model RRT and EST

require more than 250s on average to solve a query, while

DSLX requires only 27.27s. As another example, when using

the fourth workspace of Fig. 2(a) and the second-order car

model RRT and EST require more than 750s, while DSLX

requires less than 12s. Similar speedups are obtained for

the other workspaces and robotic models but due to scope

and space limitations are not included here. We note that

these results are in agreement with the work in [7] which

provided an extensive comparison of DSLX to RRT and EST

and showed that significant computational speedups of one

to two orders of magnitude are offered by DSLX.

The results in Fig. 3 show that as the grid size decreases,

the computational efficiency of DSLX generally increases.

After a certain point the grid size becomes too small and the

computational efficiency of DSLX starts decreasing. Similar

to our findings for grid decompositions, the computational

efficiency of DSLX depends on the granularity of the triangu-

lar decompositions. For example, DSLX is faster when using

triangulation T2 than when using the coarse-triangulation T1

or the fine-triangulations T3, T4.

When the decomposition is too coarse-grained there is no

significant advantage from the interplay of discrete search

and continuous state-space exploration. DSLX behaves in

such cases similar to traditional sampling-based tree plan-

ners that do not rely on a discrete component to lead the

continuous state-space exploration.

On the other hand, when the decomposition is too fine-

3755

grained, the overhead associated with the interplay between

discrete search and continuous exploration outweighs the

computational advantages it provides. Computational cost is

incurred by lead computations and updates to exploration

estimates. In fact logged data indicates that on too fine-

grained decompositions, e.g., 128 × 128 grid or T4, only a

small fraction of the total time is spent on calls to propagate,

which is responsible for extending the exploration tree.

These findings thus show that to take full advantage of

the interplay between discrete search and continuous state-

space exploration and increase the computational efficiency

of DSLX, the right level of decomposition granularity for

the motion-planning problem under consideration must be

found. Fine-tuning can however require extensive efforts.

An alternative solution is to use conforming Delaunay

triangulations which allow DSLX to achieve significant com-

putational efficiency, as shown in Table I and Fig. 3. We

note that in some cases triangulation T2 offers slightly

better results. The advantage of using conforming Delaunay

triangulations however is that without fine-tuning DSLX can

achieve significant computational speedups that are better

or comparable to computational speedups obtained by fine-

tuning the workspace decomposition.

IV. DISCUSSION

This work conducted an extensive study of the impact of

different workspace decompositions on DSLX in the context

of kinodynamic motion planning. Experiments were carried

out using several first and second-order kinodynamic robot

models and various workspace decompositions that have

commonly appeared in motion planning literature, such as

grid, trapezoidal, and triangular decompositions.

This work showed that the granularity of the workspace

decomposition directly impacts the computational efficiency.

DSLX is faster when the decomposition is neither too fine-

nor too-coarse grained. When the decomposition is too

fine-grained, the computational advantages offered by the

interplay between the continuous state-space exploration and

discrete search are outweighed by the computational cost

associated with lead computations and updates to exploration

estimates. On the other end of the spectrum, when the

decomposition is too coarse-grained there is no significant

advantage by using the lead to guide the continuous state-

space exploration. Finding the right level of granularity to

take full advantage of the computational benefits offered

by the interplay between continuous state-space exploration

and discrete search could further increase the computational

efficiency of DSLX but can require extensive fine-tuning.

This work demonstrated that significant computational

efficiency can instead be obtained with no fine-tuning by

using conforming Delaunay triangulations. In the context of

DSLX, conforming Delaunay triangulations provide a natural

workspace decomposition that achieves a balance between

coarse- and fine-grained decomposition, and thus allows a

remarkably efficient interplay between the continuous state-

space exploration and discrete search. Although the focus

of this work was on decompositions of 2D workspaces, De-

launay triangulations are also applicable to 3D workspaces.

Algorithms and their complexity for computing conforming

Delaunay triangulations in 2D and 3D or computing con-

strained Delaunay triangulations in any dimension, which

are almost conforming Delaunay except in a vew places, are

surveyed in [18]. In future work, we plan to use these find-

ings to successfully apply DSLX to increasingly challenging

motion-planning problems. As we move in this direction, it

becomes important to also consider decompositions of low-

dimensional projections of the state space, especially in the

case of non-vehicle robotic systems, such as manipulators.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations. Cambridge, MA: MIT Press, 2005.
[2] S. M. LaValle, Planning Algorithms. Cambridge, MA: Cambridge

University Press, 2006.
[3] A. M. Ladd and L. E. Kavraki, “Motion planning in the presence

of drift, underactuation and discrete system changes,” in Robotics:

Science and Systems. Boston, MA: MIT Press, 2005, pp. 233–241.
[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

in IEEE International Conference on Robotics and Automation, 1999,
pp. 473–479.

[5] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal

of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.
[6] G. Sánchez and J.-C. Latombe, “On delaying collision checking in

PRM planning: Application to multi-robot coordination,” International

Journal of Robotics Research, vol. 21, no. 1, pp. 5–26, 2002.
[7] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search leading con-

tinuous exploration for kinodynamic motion planning,” in Robotics:

Science and Systems, Atlanta, Georgia, 2007.
[8] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer, 1991.
[9] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[10] C. Holleman and L. E. Kavraki, “A framework for using the workspace
medial axis in PRM planners,” in IEEE International Conference on

Robotics and Automation, 2000, pp. 1408–1413.
[11] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A voronoi-

based hybrid motion planner,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, Maui, HI, 2001, pp. 55–60.
[12] Y. Yang and O. Brock, “Efficient motion planning based on disassem-

bly,” in Robotics: Science and Systems. Cambridge, USA: MIT Press,
2005, pp. 97–104.

[13] R. Bohlin, “Path planning in practice: Lazy evaluation on a multi-
resolution grid,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2001, pp. 49–54.
[14] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle:

An adaptive sampling strategy for PRM planning,” in International

Workshop on Algorithmic Foundations of Robotics, New York, NY,
2006, in press.

[15] J. R. Shewchuk, “Delaunay refinement algorithms for triangular
mesh generation,” Computational Geometry: Theory and Applications,
vol. 22, no. 1-3, pp. 21–74, 2002.

[16] E. Plaku, K. E. Bekris, and L. E. Kavraki, “OOPS for Motion Planning:
An Online Open-source Programming System,” in IEEE International

Conference on Robotics and Automation, Rome, Italy, 2007, pp. 3711–
3716.

[17] A. Narkhede and D. Manocha, “Fast polygon triangulation based on
Seidel’s algorithm,” in Graphics Gems 5, A. Paeth, Ed. Academic
Press, 1995.

[18] J. R. Shewchuk, “General-dimensional constrained delaunay and con-
strained regular triangulations, i: Combinatorial properties,” Discrete

& Computational Geometry, 2007.

3756

