
Towards Locally Computable Polynomial Navigation Functions for

Convex Obstacle Workspaces

Grigoris Lionis, Xanthi Papageorgiou and Kostas J. Kyriakopoulos

Abstract— In this paper we present a polynomial Navigation
Function (NF) for a sphere world that can be constructed
almost locally, with partial knowledge of the environment.
The presented navigation function is C2 and as a result the
computational complexity is very low, while the construction
uses local knowledge and information. Moreover, an almost
locally computable diffeomorphism between convex obstacles
and spheres is presented, allowing the NF scheme to be used
in a workspace populated by convex obstacles. Our approach
is not strictly local in the ǫ sense, i.e. the field around a point
is not influenced only by an ǫ region around the point, but
rather it is local in the sense that the NF around each obstacle
is influenced only by the obstacle and the adjacent obstacles. In
particular, we require, in the vicinity of an obstacle, the distance
between the obstacle and the adjacent obstacles. Simulations are
presented to verify this approach.

I. INTRODUCTION

A rather large portion of robotics problems are, in essence

motion planning problems, cast in the form of a point

agent moving in a static or dynamic environment while

simultaneously avoiding collisions. The agent is either a

robot, a physical agent moving in a 2-D or 3-D workspace,

or it represents a much more complicated system moving in

a complex environment.

A variety of different methods have been used for the robot

motion planning problem, ranging from artificial intelligence,

discrete motion planning, differential geometric methods to

methods arising from topological considerations. Excellent

introductions to the field are, among others, the books of

Latombe [1], and LaValle [2].

The method we focus on is a closed-loop approach,

where trajectory generation and trajectory tracking are fused

together. The approach is based on defining a special function

on the workspace, called a navigation function (NF). The

core concept of an NF is to establish a vector field on the

workspace, or more precisely on the free space (actually

we seek a potential function that generates this vector field)

This research project is co-financed by E.U.-European Social Fund (75%)
and the Greek Ministry of Development-GSRT (25%). Also, this work is
partially supported by the European Commission through contract “FP6 -
IST - 001917 - NEUROBOTICS: The fusion of Neuroscience and Robot-
ics”, contract “FP6 IST 2002 507006 ISWARM: Intelligent Small World
Autonomous Robots for Micro-Manipulation”, by Eugenides Foundation
Scholarship, and by the Greek State Scholarship Institute, IKY.

G. Lionis is a PhD Student in the Mechanical Engineering
Department, National Technical University of Athens, Greece,
glion@mail.ntua.gr

X. Papageorgiou is a PhD Student in the Mechanical Engineer-
ing Department, National Technical University of Athens, Greece,
xpapag@mail.ntua.gr

K.J. Kyriakopoulos is with the Faculty of Mechanical
Engineering, National Technical University of Athens, Greece,
kkyria@mail.ntua.gr

that steers the agent from any initial position to a specified

point of the workspace, the goal configuration, while on the

same time avoids collisions with the obstacles. NF’s were

introduced by Rimon and Koditschek in a series of papers

[3] as an exact way of solving the navigation problem in

a fully known workspace eliminating the problem of local

minima, and offer a very elegant solution to the problem of

robotic navigation. Potential function for robotic navigation

have been introduced earlier in the past by Khatib [4] as a

low-level obstacle avoidance scheme that used local sensing,

preventing the robot from colliding to nearby obstacles, but

in these initial approaches, the problem of local minima

prevailed. NF, which by construction do not have any local

minima, have been used for solving a variety of robot motion

problems, including among others high dimensional spaces,

non-holonomic vehicles, multi agent navigation, manipulator

control etc., [5], [6], [7].

Besides NF with global information,NF based control

schemes that require only local knowledge have been pre-

sented in the literature. In [8] a closed loop navigation

scheme for multiple agents, that requires limited sensing ca-

pabilities for the agents is presented, while in [9] the authors

utilize navigation functions that require local knowledge, to

stabilize a group of agents into a specific formation on the

plane while avoiding static point obstacles. A main difference

is that our NF does not need a tedious adjustment of a tuning

parameter, required for most NF based schemes, and as a

result the practicality of this approach is enhanced.

Rimon and Koditschek in their original work, required

strong analytic conditions for their functions, even though

technically only C2 function are required. As a result the

process of generating this function is relatively complex,

while it is not possible to utilize their construction if the

workspace is not completely know. The analytic requirement

results a global definition of NF, that cannot be used in

real-time given lack of global information. To understand

this, consider a Taylor expansion around any point. The

convergence of the Taylor expansion, means that information

for the complete domain exists in any point of the NF,

therefore it is not local.

In this work, we extend our previous approach, [10]. We

present a new NF, following the same design, but being

simply C2 instead of being smooth. This new approach,

leads to more efficient form of the NF, as the function is

now a polynomial instead of a complex exponential function,

allowing easier computations and tuning. Moreover, some of

the geometric constraints have been relaxed. Finally, in this

work, we present a scheme for mapping diffeomorphically

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3725

a workspace populated with convex obstacles to a sphere

world, while keeping the computation of the diffeomorphism

local. This allows our local NF scheme to be used in a

workspace with convex obstacles.

II. PROBLEM STATEMENT

We have a workspace W ∈ R
n. The coordinates1 of the

robot are a point p ∈ W . Inside the workspace there is a

number of obstacles Oi ⊂ W . The free space is defined

as F = W −
⋃

Oi. The navigation problem is to find a

continuous function T : [0, 1] → W steering the robot from

qinitial ∈ F to qfinal ∈ F that is T (0) = qinitial, T (1) =
qfinal, T (t) ∈ F , t ∈ [0, 1].

We seek a feedback control law, such that, the trajectories

of the closed loop system are continuous functions that solve

the motion planning problem, i.e. steer the robot to the goal

while avoiding collisions.

We start, following closely the work of Rimon and

Koditschek, by focusing on sphere worlds. Here, both W and

Oi are hyperspheres defined on R
n, and moreover we will

assume that obstacle spheres do not intersect Oi ∩ Oj = ∅
and that the obstacles are contained in the interior of the

workspace cl(W) ∩ Oi = ∅.

Then we extent this result in a workspace populated

with arbitrary convex obstacles, by utilizing a series of

transformations, as in [11], a sphere world represents an

abstracted model, of the actual realistic workspace.

III. A GLIMPSE OF THE NF METHODOLOGY

Given a workspace, populated with obstacles, a NF, is,

informally, a real function defined on the workspace, that:

• is 0 -minimum value- at the target configuration,

• is 1 -maximum value- on the boundary of the free space,

• does not have any local minima on the workspace.

By following the negated gradient of a NF, the agent con-

verges to the goal configuration, avoiding all the obstacles,

from almost any initial configuration, within the free space.

There is a set of initial configurations -with zero measure-

that lead to the saddle points of the NF. The existence of

the saddle points and of the set of initial configurations

leading to these saddles is a necessity for any continuous NF.

Rimon and Koditschek, in their seminal papers, established

a number of properties of these functions, the most useful

of which is that the NF properties of a function are invariant

under diffeomorphisms. This property, allows us, to reduce

the motion planning problem posed in an initial realistic

workspace, to an equivalent problem, in a sphere world, a

spherical subset of an Euclidean space, populated by spher-

ical objects that do not “touch” each other. The clearance

between the spheres is equivalent to the gap between the

obstacles of the original space.

Thus the problem of navigating in the real workspace, is

decomposed in to two parts:

• map diffeomorphically the original workspace to a

sphere world,

1We stick subsets of R
n to avoid topological considerations.

• find a NF in the sphere world.

Upon doing this, a closed-loop control scheme for steering

in the original workspace will have been derived.

In this work, we first present a locally computable NF for

a sphere world. The novelty of this work (compared to our

previous result) is a new NF on a sphere world, that it is

a rational function and can thus be exactly computed with

minimal computational cost, while for its construction only

partial knowledge of the environment is required, in the sense

that the robot needs information only for the obstacles in its

immediate vicinity. Our approach has the added benefit that

trivializes the tuning of an NF.

This approach is a step towards utilizing the NF methodol-

ogy to an actual real-time motion planner, which is provably

correct, closed loop and computationally tractable.

Finally, we present a local C2 diffeomorphism from a

world populated with convex obstacles, to a sphere world.

By doing so, we establish a closed loop control scheme

for solving the motion planning problem in a workspace

populated by convex obstacles. This is a crucial step towards

applying this methodology to more realistic environments.

IV. THE CONSTRUCTION OF NAVIGATION FUNCTION

In the original definition of a NF, the field is manipulated

by using an exponent k [3] to decouple the obstacles from

each other. This exponent, in effect, makes the obstacle field

resembling -when close to an obstacle- to the field produced

by a single obstacle, so that all “problematic” points of the

NF field are manipulated to become saddle. This approach is

the most widely used approach to establishing NF properties.

Our approach lies in constructing the NF field in a decoupled

way from the beginning. The field of each obstacle does

not affect the fields from the other obstacles. In this way,

in every point of the workspace, the robot can see exactly

either one or zero obstacles. This attribute of our NF allows

the robot to compute the NF using only local information.

Following, [3], we can define a navigation function ϕ(q)
on a compact connected analytic manifold with boundary,

F ⊂ R
n, in the interior of which there is a target point qd,as

a map ϕ : F → [0, 1] with the following properties:

1) smooth on F (at least a C(2) function),

2) polar on F , (qd is a unique minimum),

3) admissible on F , (uniformly maximal on ∂F),

4) a Morse function, (its critical points are nondegener-

ate).

We start with a navigation function defined on a sphere

world, i.e. on a workspace populated with spherical obsta-

cles. A sphere world has the benefit of grasping all the

topological and navigation properties of a workspace with

arbitrarily shaped, distinct non overlapping obstacles. The

local transformation from the convex shaped obstacle world,

to the sphere world is presented in another section. For the

sphere world, we propose the following navigation function:

ϕ(q) ,
γd(q)

γd(q) + β(q)
(1)

3726

where γd(q) : F → [0,∞), is a distance to the goal, defined

as γd(q) = ‖q − qd‖
2, taking the value zero only when the

agent reach its destination point q = qd, where ‖ · ‖ is the

Euclidean norm.

The other component function of the proposed navigation

function (1), is β(q) : F → [0, 1], which is a function that

vanishes only in case of the agent collides with an obstacle.

In [3], β(q) function was defined as the product of several

“obstacle functions”, β(q) =
∏

βi, with βi is vanishing

when the agent is in contact with one of the environmental

obstacles.

Following their line of reasoning, we construct function

β(q), as the product of several “obstacle functions”, one for

each obstacle. Prior to defining β(q) we give some auxiliary

definitions.

Definition 1: We construct the function

P (x) = an · xn + . . . + a1 · x (2)

which n is odd, and x ∈ [0, 1]. The odd coeffi-

cients of the polynomial are arbitrary positive number,

an, an−2, . . . , a1 > 0, that sum up to one, an + an−2 +
. . . + a3 = 1. The even coefficients are negative and are

chooser as follows an−1 = − n
n−2 · an, . . . , a2 = −3 · a3,

and a1 = n ·
(

n−1
n−2 − 1

)

· an + . . . + 3 · a3.

The exact form of this function depends on the choice

of n and on the distribution of the odd parameters

an, an−2, . . . , a3.

Lemma 1: For any P as in (2), P ′(x) > 0, ∀x ∈ [0, 1).
Lemma 2: For all x ∈ (0, 1), P (x) > 0.

Lemma 3: P ′′(1) = 0.

V. PROOF OF CORRECTNESS

A. 2D Sphere World

In this section we will formally show that the function

ϕ, constructed in the previous section is indeed a navigation

function. Let the workspace W with obstacles O =
⋃

Oi,

where i = 1, . . . ,M , with M the number of obstacles.

Furthermore, define the free space, as the space remains after

removing all the obstacles from the workspace F , W−O.

Lemma 4: Let ν, δ be at least twice differentiable, and

define ρ , ν
δ

. At a critical point c of ρ, [12]

∇2ρ |c=
1
δ2

[

δ∇2ν − ν∇2δ
]

The goal configuration qd is a non-degenerate local mini-

mum of the navigation function.

Proposition 1: If the workspace is valid, the destination

point, qd, is a non-degenerate local minimum of ϕ.

We can assume by using coordinate transformation, that

the obstacle is located (the center of obstacle) at qi =
(0 , yi), yi > 0. We define a new coordinate system, using

polar coordinates, as depicted in Fig. 1, with r measuring the

distance from the obstacle’s center, and with ϑ measuring the

angle associated with the point. The coordinate transforma-

tion is given by

x = r sin ϑ
y = yi + r cos ϑ

(3)

Function γd becomes

γd = y2
i + r2 + 2ryi cos ϑ (4)

Fig. 1. Coordinate frame around one
obstacle.

Fig. 2. Navigation Function around
two obstacles.

We define the obstacle function βi that has the properties

of i) vanishing on obstacle’s boundary, ii) increasing as the

agent is moving away from the obstacle, and iii) is identically

1, when the agent reach a predefined distance εi from the

obstacle. Our obstacle function is the following

βi =

{

P (zi) , ρi ≤ r ≤ ρi + εi

1 , r > ρi + εi

where zi = r−ρi

εi
(it holds that, for r = ρi, zi = 0 , and for

r = ρi + εi, z1 = 1), ρi is the radius of ith obstacle, and

εi is a positive constant. This function is smooth because

P (1) = 1 (Lemma 2), and C2 since P ′(1) = P ′′(1) = 0
(Lemma 1, 3, respectively).

The gradient of γd is computed as ∇γd =
[

2r + 2yi cos ϑ −2yir sinϑ
]T

and the Hessian of

γd can be computed as

∇2γd =

[

2 −2yi sin ϑ
−2yi sinϑ −2yir cos ϑ

]

(5)

Furthermore, the gradient and the Hessian of βi are

respectively ∇βi =
[

∂βi

∂r
0

]T
and

∇2βi =

[

∂2βi

∂r2 0
0 0

]

(6)

We can compute the derivatives of βi:

∂βi

∂r
= βr =

{

P ′(zi) , ρi ≤ r ≤ ρi + εi

0 , r > ρi + εi

∂2βi

∂r2 = βrr =

{

P ′′(zi) , ρi ≤ r ≤ ρi + εi

0 , r > ρi + εi

where

P ′(zi) = 1

εi
·
�
n · an · zn−1

i + . . . + 2 · a2 · z + a1

�

P ′′(zi) = 1

ε2

i

·
�
n · (n − 1) · an · zn−2

i + . . . + 6 · a3 · zi + 2 · a2

�

In the next proposition we show that the navigation func-

tion ϕ is a Morse function (all critical points are saddles).

Proposition 2: For every εi > 0, all the critical points of

ϕ are non-degenerate.

3727

B. Multi-Dimensional Sphere Worlds

As shown the function constructed is indeed NF for a

plane sphere world (a world defined on a subset of R
2). We

can easily generalize this result for a R
n sphere world. The

general form of the function defined remain the same, with

the norms now being defined on R
n. As the influence of each

obstacle is only local, by appropriately choosing the depth

of each individual obstacle field (εi) we can construct a NF

such that the robot will only be influenced by either exactly

one or exactly zero obstacles. Therefore, it suffices to check

the NF properties for checking a single obstacle.

We will first show that the proposed control law, the

motion of the agent -while traversing a single obstacle-

is bound on a single hyperplane of the workspace, the

hyperplane defined by the goal configuration, the position

of the agent and the center of the obstacle.

We use hyper-spherical coordinates, introducing the fol-

lowing coordinate transformation x1 = r cos φ1, . . . , xn =
r sinφ1... sinφn−2 sinφn−1. The center of the obstacle is

located at pc = [0 0 ... 0]T and that the goal configuration

is at pd = [−d 0... 0]T . Thus the goal hyperspherical

coordinates are pd = [−d 0 ... 0]T . Obviously, the function

βi is a function of coordinate r. We examine the behavior of

γ. Function γ in a random point p ∈ R
n with hyperspherical

coordinates p = [r φ1 ... φn−1]
T .

We have that γ2(p) = (r cos φ1 + d)2 +
(r sinφ1 cos φ2)

2 + ... +(r sin φ1 ... sinφn−2 cos φn−1)
2 +

(r sinφ1 ... sin φn−2 sin φn−1)
2. It is not hard to

see that the two last terms of the second part of the

equality can be combined using the basic trigonometric

equality, and recursively the final result will be γd =
(r cos φ1 + d)2 + (r sin φ1)

2 → γd = d2 + r2 + 2dr cos φ1.

Thus, both functions that comprise the NF ϕ, namely the

goal function γ and the obstacle function β are functions

only of r and φ1 which are by construction the coordinates

of the plane generated by the goal configuration, the center

of the obstacle and of the current point.

Since the motion of the robot is along the gradient of the

NF, and since the gradient is zero along φi, i 6= 1, the robot

does not move along φi, i 6= 1 but only along r and φ1.

Moreover, in this plane, function ϕ is exactly equal with the

NF that would have been produced if the robot was bound

on this plane. Therefore, function ϕ is a NF in R
n, since ϕ

is in essence locally 2D.

VI. CONVEX OBSTACLE WORKSPACE

In this section we will show how the NF defined above can

be used in the case of a workspace populated with convex

obstacles. We will stick to the 2-D case and we will assume

that the obstacle set is also smooth.

The main idea is to transform each convex set to a circle,

to calculate the NF on the transformed workspace, and then

to compute the NF on the original workspace. This approach

is based on the approach suggested by Rimon and Koditschek

in their work [11] and can work, as the navigation function

properties are preserved under a C2 diffeomorphism. So, the

approach, depicted in Fig. 3 works in the following way

• Around each obstacle, a patch of the workspace is

chosen, so that the workspace is divided into patches

that do not intersect, and that each contains a single

obstacle.

• A diffeomorphism is calculated that transforms each

patch, to patch with the same outer boundary, but

in which the inner boundary -corresponding to the

obstacle- becomes a circle.

• Outside the patch, the diffeomorphism becomes the

identity map.

• The composition of all these diffeomorphisms defines a

global diffeomorphism that renders the convex obstacle

workspace to a sphere world.

• This diffeomorphism can be computed locally.

• The complete construction is a C2 diffeomorphism,

ensuring that the NF properties are inherited from the

sphere world to the actual workspace

A. Derivation of the diffeomorphism

We will assume that obstacle Oi is described by function

bi(q) with the following properties bi(q) = 1 for q ∈ ∂Oi,

bi(q) > 0 for q /∈ Oi, and ∂b
∂r

≤ 1. One final assumption, is

that the sets βi(q) = µ, for µ > 1 corresponds to a closed

line, having the same shape as the internal obstacle (Fig. 3).

We will use for this part only polar coordinates, and as we

stick to the 2-D case, q = [ρ θ]T . The patch around the

obstacle that will be transformed is defined by the equation

Pi = {q : biq ≤ µi}, µi > 0. Our goal is to transform Pi into

a set with the same outer boundary, but where the internal

boundary -i.e. the obstacle- will be a circle. In order to do

so, we introduce the real valued function

S(x) =

1, x ≤ 0
−6 · x5 + 15 · x4 − 10 · x3 + 1, 0 < x < 1

0, x ≥ 1

We can easily verify S is C2 everywhere in R. This function

acts as a smooth switch, between 0 and 1. We assume that

we know the radius ρ of a circle that can be inscribed into

the obstacle. The following function transforms the boundary

of the obstacle to a circle of radius ρ

τi :

[

r
θ

]

→

[

b · ρ
θ

]

, while the rest of the workspace is also shrunk. The complete

transformation is defined as

Ti(r, θ) =

�
T 1

T 2

�

=

�
S(b−µ1

µ−µ1

)b · ρ + (1 − S(b−µ1

µ−µ1

)) · r
θ

�

where µ1 is a positive constant µ > µ1 > 1 that represents a

slice of Pi in which the shrinking transformation “fades out”

to the identity map. The rationale behind this transformation

is to shrink the obstacle diffeomorphically to a disk, to shrink

the part of Pi that is outside Oi and to leave untouched the

outer border of Pi where the transformation becomes (in a

C2 way) equal to the unity map. In this way, only the “patch”

of the workspace containing the obstacle is transformed,

while the rest of the workspace remains the same. Using this

transformation, we can compute locally the diffeomorphism

3728

as outside Pi the diffeomorphism becomes the unity map.

We proceed on showing that it is a diffeomorphism. This is

obviously a bijection, and to establish it as a diffeomorphism

it suffices to show that its Jacobian is always invertible.

JT =

[

T 1
r T 1

θ

T 2
r T 2

θ

]

=

[

T 1
r T 1

θ

0 1

]

.

Due to the form of the Jacobian, its invertibility is equivalent

to T 1
r > 0,∀(r, θ). By a direct computation of T 1

r we have

that (κ = 1
µ−µ1

),

T 1
r = κ · S′ · b · br · ρ + S · br · ρ + 1 − κ · S′ · r − S.

It holds that S ·br ·r > 0 as all terms are positive, 1−S > 0
since S by definition is between 0 and 1. Finally we have

that as b is a shrinking operation b · ρ < r. Formally this

comes from the fact that the circle to which we transform to

is inscribed into the convex shape and by the fact that br ≤ 1.

So we have that κS′(b · br · ρ − r) ≥ 0 as S′ ≤ 0. So all

terms of T 1
r are positive, and therefore the jacobian is always

invertible. This completes the proof. The transformation is

depicted in Fig. 3. Point A is transformed to point A′. The

NF in the transformed domain is given by φ̃A′ and the its

by ∇φ̃A′ . In the original domain, the navigation function

and the associated gradient are given by φA = φ̃A′ , and

∇φA = DTT |A · ∇φ̃A′ .

Fig. 3. Transformation from Pi to a set with the same external boundary
but with a spherical obstacle. The circle to which the obstacle is transformed
to is inscribed into the obstacle. Point A is transformed to point A′, and
1 < µ1 < µ2.

Fig. 4. NF field around an convex obstacle. The repulsive field is smooth,
steers the robot around the obstacle to the goal, and it is exactly zero away
from the obstacle.

VII. SIMULATION RESULTS

To validate our approach, we present some simulation

results, that clearly show how our proposed NF can handle

a very large number of obstacles, for a spherical world.

The methodology can handle spherical obstacle of arbitrary

radius. The workspace is considered to be disk-like, and the

robotic agent is considered omni-directional.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

Fig. 5. Navigating in a workspace of ∼ 500 obstacles.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

Fig. 6. Navigating in a ∼ 250 convex obstacle workspace.

Fig. 5 represents a navigation in a sphere world of ∼ 500
obstacles. The initial configuration of the robot is at the upper

right corner, and the final configuration at the lower left

cornet. This simulation clearly depicts the local behavior of

our NF. The system “slides along” each obstacle it perceives

in its immediate neighborhood. No global knowledge of the

workspace is required, except the clearance between any two

obstacles.

Fig. 6 depicts a simulation of a navigational task in a large

workspace comprised of ∼ 250 convex obstacles. The locally

computable diffeomorphism is utilized to map -locally- each

obstacle to a circle, and the navigation function is computed

in the sphere world.

VIII. CONCLUSIONS AND FUTURE WORKS

In this work we presented a new locally computable NF,

extending our previous result. We derived a new class of NF

that combine local computability, along with rational func-

tions (polynomial function, and therefore easily computable).

Our NF is constructed as a combination of a large number

of individual obstacle functions, one for each obstacle, and

a global attraction potential. The obstacle functions are

designed to have no effect outside a zone surrounding each

obstacle, and the scheme is easily proven to be a NF as each

obstacle NF has all the necessary requirements. We have

shown that a large family of Polynomial functions can be

used as NF, allowing us, for example, to tune the gradient of

the NF using the width of the sensing zone, the order of the

polynomial function and the magnitude of the coefficients of

the polynomial.

3729

We have also presented a locally computable diffeomor-

phism, between convex obstacles -although star shaped could

also work- and sphere worlds. The diffeomorphism works

exactly using the same design as the NF. A C2 switch is used

to nullify the diffeomorphism outside a zone surrounding the

obstacles, instead of using analytic switches.

This approach is not completely local (i.e. knowledge of

an ǫ region around a point does not suffices to build the

NF) but it is local on the sense that it requires complete

information only for the current and the adjacent obstacles,

making it local in a graph theoretic way. Our current research

focuses exactly on making the approach strictly local, i.e.

constructing the NF and the transformation field based only

on sensor measurements.

APPENDIX

A. Proof of Lemma 1

The first and the second order derivatives of P (x) are

calculated as P ′(x) = n ·an ·x
n−1 + . . .+2 ·a2 ·x+a1, and

P ′′(x) = n·(n−1)·an·x
n−2+. . .+6·a3·x+2·a2. First of all,

P ′′(x) < 0, ∀x ∈ [0, 1], since by the parameters definition

(substituting the even parameters from Definition 1) it holds

that, n ·(n−1) ·an ·x
n−2+(n−1) ·(n−2) ·an−1 ·x

n−3 < 0,

. . . , 6 · a3 · x + 2 · a2 < 0.

Thus, P ′(x) is strictly decreasing. Furthermore, as

P ′(1) = n · an +(n− 1) · an−1 + . . .+3 · a3 +2 · a2 + a1 =

n · an ·
(

1 − n−1
n−2

)

+ . . . + 3 · a3 · (1 − 2) + a1 = 0. On the

other hand, P ′(0) = a1 > 0, by definition. Thus, P ′(x) > 0,

∀x ∈ [0, 1].

B. Proof of Lemma 2

It holds that P ′(x) > 0 (Lemma 1). Thus, P (x) is strictly

increasing for x ∈ [0, 1]. Also, P (0) = 0 and P (1) = an +
. . .+a1. By taking the pairs of odd and even terms, we have

that, an+an−1 =
(

1 − n
n−2

)

·an, . . . , a3+a2 = (1−3)·a3,

and from Definition 1, it holds that,
(

1 − n
n−2

)

· an + n ·
(

n−1
n−2 − 1

)

· an = an, . . . , (1 − 3) · a3 + 3 · a3 = a3.

Therefore, P (1) = an+an−2+. . .+a3 = 1. Thus, P (x) > 0,

∀x ∈ [0, 1].

C. Proof of Lemma 3

We have that P ′′(1) = n · (n− 1) · an + (n− 1) · (n− 2) ·
an−1 + . . . + 6 · a3 + 2 · a2. By using the pairs of add and

even terms according to Definition 1, it holds that, n · (n −
1) · an +(n− 1) · (n− 2) · an−1 = 0, . . . , 6 · a3 +2 · a2 = 0.

Thus, P ′′(1) = 0, ∀x ∈ [0, 1].

D. Proof of Proposition 1

The gradient of function ϕ of (1) is ∇ϕ(qd) =
1

(γd+β)2
[(γd + β)∇γd − γd∇(γd + β)] |qd

= 0 since, both

γd and ∇γd vanish at qd. The Hessian of ϕ at qd, by using

Lemma 4, will be

∇2
ϕ =

1

(γd + β)2
�
(γd + β)∇2

γd − γd∇
2(γd + β)

�
|qd

(7)

Since, γd vanish at qd and it holds that ∇2γd = 2I , we

have that ∇2ϕ = 2β−1I , which implies that qd is a non-

degenerate local minimum of ϕ.

E. Proof of Proposition 2

The critical points of the NF are located on the line

connecting the goal with the center of the obstacle -as only

on this line the gradient of the two fields are anti-parallel. By

appropriate choosing the beginning of the local coordinate

frame, we have on the critical points ϕ = 0. According to

(7), we can take the numerator, and by using (5), and (6),

we have that:
(

βi∇
2γd − γd∇

2βi

)

|Cϕ
=

βi|Cϕ

[

2 0
0 −2yir

]

− γd|Cϕ

[

βrr 0
0 0

]

=

[

2βi|Cϕ
− γd|Cϕ

βrr 0
0 −2βi|Cϕ

yir

]

It is a diagonal matrix. Since we are at a critical point, and

γd > 0, and βi > 0 (since P ′(x) > 0, by Lemma 2), and

βrr ≤ 0 (since P ′′(x) < 0, by Lemma 1), we conclude that

2βi|Cϕ
−γd|Cϕ

βrr > 0. Moreover, since βi > 0, yi > 0, r >
0, we conclude that −2βi|Cϕ

·yi ·r < 0. Thus, the Hessian of

ϕ at the critical point is a diagonal matrix, with one positive

and one negative element. The eigenvalues of this matrix are

therefore positive and negative. Therefore, the critical point

is not a local minima, but a saddle point.

REFERENCES

[1] J. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[2] S. M. LaValle, Panning Algorithms. Cambridge University Press,
2006.

[3] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots.” International Journal of Robotics Research, vol. 5, no. 1, pp.
90–98, 1986.

[5] D. Dimarogonas, S. Loizou, K. Kyriakopoulos, and M. Zavlanos, “De-
centralized feedback stabilization and collision avoidance of multiple
agents,” NTUA, http://users.ntua.gr/ddimar/TechRep0401.pdf, Tech.
Report, 2004.

[6] H. Tanner and A. Kumar, “Towards decentralization of multi-robot
navigation functions,” 2005 IEEE International Conference on Robot-

ics and Automation, 2005.
[7] H. Tanner, “Switched uav-ugv cooperation scheme for target detec-

tion,” IEEE International Conference on Robotics and Automation,

2007 pp. 3457-3462, pp. 3457–3462, 2007.
[8] D. V. Dimarogonas, K. J. Kyriakopoulos, and D. Theodorakatos, “To-

tally distributed motion control of sphere world multi-agent systems
using decentralized navigation functions,” Proceedings of the 2006

IEEE International Conference on Robotics and Automation, 2006.
[9] H. G. Tanner and A. Kumar, “Formation stabilization of multiple

agents using decentralized navigation functions,” Robotics: Science

and Systems I, p. pp 4956, 2005.
[10] G. Lionis, X. Papageorgiou, and K. Kyriakopoulos, “Locally com-

putable navigation functions for sphere worlds,” 2007 IEEE Interna-

tional Conference on Robotics and Automation, pp. 1998–2003, 2007.
[11] E. Rimon and D. Koditschek, “The construction of analytic dif-

feomorphisms for exact robot navigation on star worlds,” Trans. of

the American Mathematical Society, vol. 327, no. 1, pp. 71–115,
September 1991.

[12] D. Koditschek and E. Rimon, “Robot navigation functions on man-
ifolds with boundary,” Advances Appl. Math., vol. 11, pp. 412–442,
1990.

3730

