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Abstract— Most of the mobile robot control frameworks are 
based on a middleware layer with several independent modules 
that implement primitive actions and report events about their 
state. These modules are usually connected with different inter- 
process communication mechanisms. Here, we propose to use 
hierarchical interpreted binary Petri nets to coordinate the 
activity of these modules. Tasks are described using an 
interpreted Petri net editor and saved in a xml file. A 
dispatcher loads these files and executes the different Petri nets 
under user requests. A monitor that shows the state of all the 
running nets is very useful for debugging and tracing purposes.  
The whole system has been applied to a guide robot (vixiabot) 
that has been guiding users in a public event 
(XuventudeGalicia.net) for three days in April 2007 and is now 
extended to a multirobot surveillance application. 

I. INTRODUCTION 
UILDING mobile robot applications that work for long 
periods of time in a real environment is a difficult task. 

Several research groups have adopted different control 
frameworks solutions [1][2][3]. However, only a very few of 
these projects can finally work without human supervision 
for a long period of time mainly because of their complexity. 
Nevertheless, many simple service and industrial 
applications can benefit from the use of autonomous robots 
for executing typically repetitive tasks performed nowadays 
by humans.   

In order to build robust mobile robot applications, some of 
the solutions that have been successfully used in complex 
industrial manufacturing applications might be adapted. For 
example, programs to control commercial industrial 
manipulators are build from two different kind of basic 
commands: First, a set of basic application independent 
movement functions such as move a manipulator tool to a 
defined point in the workspace describing a defined 
trajectory and, second, a set of application specific functions 
such as activate/deactivate terminator element (grab/release, 
start/stop painting, etc). Regarding the mobile robots 
applications, similar sets of commands can be defined: First, 
a set of general basic application independent navigation 
functions such as move to a defined point in the environment 
and, second, a set of application specific functions such as 
“say text”, “grasp object”, etc. 
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A modular layered approach has proven to be a successful 
paradigm in current mobile robot service applications. The 
majority of control systems for autonomous mobile robots 
are characterized by a three layer architecture [1][2][3]. The 
planning layer obtains plans to achieve high-level goals, the 
executive layer sequences and monitors task execution and, 
finally, the functional (middleware) layer provides the basic 
computational threads for robot action and perception.  

Whereas some details about functionality and names of 
each layer are still matter of discussion [4] [5], the functional 
layer has a uniform structure in all architectures: a set of 
components, communicating with each other and with the 
upper layers. Some of these components provide access to 
sensor data, others send commands to actuators and, finally, 
the last set provides different basic functionalities 
(localization, path planning, obstacle avoidance, etc.) or 
behaviors (follow wall, etc.). Upper layers send request and 
receive information about successful termination or failure 
together with computation results.  

Returning to the manipulators analogy, the functional 
layer implements the basic general functions, the executive 
layer should be the “program” in charge of sequencing the 
activity of the functional layer components and the planning 
layer functionality is mainly done by the programmer. 

Petri net based formulation of tasks for industrial robots 
and other dynamic systems [14] [15] exists, especially for 
manufacturing tasks. The main industrial automation 
companies use IEC 61131-3 compliant programming 
environments that include the Sequential Function Chart 
(SFC), language that can be considered a special case of 
binary interpreted Petri nets.  

In this paper we propose an implementation of the 
executive layer based on Petri nets. Petri nets are a powerful 
tool to model, design and analyze distributed, sequential and 
concurrent systems [6]. This provides several advantages 
building mobile robot applications: 
1) Module reusability. Navigation modules and even some 

application specific modules will remain unchanged 
from application to application. 

2) Reduce development time. In different projects of the 
same kind of applications, most of the modules remain 
without changes and only the edition of the Petri nets 
will be necessary to personalize the application. For 
example, different robot museum projects can be built 
with the same modules changing in the Petri nets the 
places to visit, the texts to say and some other minor 
changes. 
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3) Facilitate maintenance. Tracing and debugging 
problems are easier to settle when the system state can 
be seen looking at the evolution of a Petri net rather than 
monitoring a set of variables. 

4) Training. Almost everybody that has worked or learn to 
use IEC 61131-3 compliant programming environments 
(Siemens S7 Graph, Graphcet, etc.) will be able to 
program with our tool RoboGraph. 

5) Analysis and test. Petri net properties also make them 
good candidates for qualitative (un-timed models) 
performance evaluation and quantitative (timed models) 
performance evaluation of robotic tasks. Significant 
research has been done in this area for industrial 
applications [6][15] and also some in mobile robots 
tasks [7][9]. 

The rest of this paper is organized as follows. Next section 
introduces the works related to this research. The control 
architecture used in our mobile robots is presented in section 
III. After describing the Petri net plan representation in 
section IV, the RoboGraph implementation details are 
shown in section V, while the extension of this framework to 
multirobot applications is specified in section VI. Finally, 
section VII concludes the paper.  

II. RELATED WORKS 
Within the robotics and automation areas, Petri nets have 

been widely used to model and study flexible manufacturing 
systems (FMS) [6][15], where the major applications are the 
modeling, performance analysis and scheduling. Several 
works in this field have already been mentioned in the 
introduction. 

Some researches have already point out that several plan 
representations used in mobile robots can be mapped to Petri 
nets. For example, in [10] a plan representation using 
partially ordered plans (POPs) [11] that include operators as 
in STRIPS [12], ordered constrains and conditional actions 
is converted to a Petri net model. In [16] a methodology for 
automatically transforming conventional task-variable 
graphs representing the execution levels of intelligent 
control architectures in Petri nets is presented. Finally, in 
[13] a Robotic Task Model (RTM) based on Petri nets is 
introduced for a distributed robotic system. 

Some applications based on mobile robots [7][9] use Petri 
nets to model and evaluate plans  at different levels that go 
from motion control [19] to task supervision [14]. A few 
papers have also reported the use of Petri nets in mobile 
robots for coordination, hardware resource handling and 
planning [17] combining some AI planning system with 
Petri nets. 

Most of the works mentioned above use Petri nets to 
modeling, analyze and even testing [18] the control of 
mobile robots. We propose to extend the use of Petri nets as 
a high level task application programming language through 
an IDE, in a similar way industrial automation companies 
use IEC 61131-3 compliant programming environments. 
This way, besides defining the Petri nets to model, analyze 

and test, they will also be used by a dispatcher to control the 
different functional modules of the control architecture. For 
that purpose, a Petri net programming environment named 
RoboGraph has been defined. RoboGraph provides also 
some very useful visual debugging tools that can show in 
real time or reproduce the evolution of the status of the 
different tasks through the evolution of the marks on the 
associated Petri nets.  

III. CONTROL ARCHITECTURE 
ISANAV is a modular control architecture is organized as 

shown in figure 1. Even though the different modules are 
structured in four sets, they can be mapped in the three layer 
architecture popularized by Bonasso de al. [1]. The hardware 
servers and control set implement the functional layer while 
RoboGraph dispatch implements the executive and planning 
layer. Finally, ISANAV includes a set of processes to 
interact with the users and to connect to other process for 
multirobot applications. 

The navigation platform is based on CARMEN [8] and 
some modules, such as localize, navigator and base hardware 
servers remain basically the same. Unlike CARMEN, 
motion control is divided into high-level (strategic) planning 
[20] and lower-level (tactical) collision avoidance using the 
Beam method [21]. CARMEN integrates obstacles in the 
map and plans a new trajectory in order to avoid obstacles. 
Integrating all but the lowest-level motor control into a 
single module can produce optimal plans. However, due to 
the lack of precision in the localization system, the obstacle 
integration process can narrow some openings in the map. 
When the opening is only a little bit wider than the robot 
diameter, this difference can lead the path planning to 
discard  a  possible  path  through that opening. We have ob- 
 

 
Fig. 1.  ISANAV Control architecture. Different modules are divided in 
several sets. The hardware servers set reads sensor data and controls 
actuators. The control set provides several basic functions that can be used 
by other modules of this set and the executive set. 
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served this behavior in several points of our office 
environment using CARMEN, since the robot has to go 
through very narrow doors.The hardware server modules 
handle hardware interaction, providing an abstract set of 
actuator and sensor interfaces and isolating the control 
methods from the hardware details. Most of the hardware 
devices are connected to a CAN bus using RoboCAN [22]. 
Some of these devices are used in navigation, such as the 
laser and sonar while others are specific for the application, 
such as the robot head, sound and speech system, etc. The 
hardware servers also provide low-level control loops for 
rotation and translation velocities. Thanks to this layer, 
changes in hardware components can be made without 
modifying higher layers modules while keeping the same 
interface. 

The control modules integrate sensor and motion 
information to provide improved sensor odometry, offering 
basic navigation capabilities (localization, path planning, 
follow path, etc) and basic application specific functions 
(say text, make expression, etc.). 

Robograph dispatch coordinates the execution of the 
control modules and sequences their functions according to 
the plan defined  as a Petri net.  This module is described in 
detail in the following sections. 

There are several interfaces modules to allow the user to 
interact with the application, debugging control modules and 
exchange information with a web server. Users can also 
connect via web, monitor and interact with the robot. 

Each module in figure 1 is a Linux process that exchanges 
information with other modules using IPC Inter Process 
Communication [23]. Developed at Carnegie Mellon's 
Robotics Institute. IPC provides a publication-subscription 
model. Each application connects with the central server, 
and specifies what types of messages it publishes and what 
types it listens for. Any message that is passed to the central 
server is immediately copied to all other processes 
subscribed. 

The process of building a mobile robot application using 
this framework includes programming on different levels. 
First, hardware server and control modules need to be 
implemented. Modules that execute navigation tasks can be 
used from one application to another. At the next level, the 
executive layer, it is necessary to build a module or 
sequencer that sends requests and receives the outcomes of 
the functional layer modules. This module usually varies 
from one application to another.    

IV. PETRI NET PLAN REPRESENTATION 
Petri nets have been widely used to model, design, 

execute and evaluate tasks in manufacturing dynamic 
systems.  As we have seen in the related work section, some 
researches have also point out that several plan 
representations used in mobile robots can be mapped to Petri 
nets. In this work we use hierarchical binary interpreted Petri 
nets.  

As a simple example, figure 2 shows the Petri nets that 

can be used for the task “GO POINT”. The Petri net on the 
left is the simplest implementations. There is only one initial 
mark in the place labeled “Set Goal”, while the “END” place 
has been selected as a final place (red). The task ends when 
only the final places are marked or there are no marks on the 
Petri net if no final places have been defined.  

Action publish message “set_goal” is assigned to “Set 
Goal” place. The parameters for this message are the goal 
coordinates. Module Navigator (figure 1) is subscribed to 
this message. Every time some module publishes it, the 
navigator will get a copy, plans the path and publishes 
another message “navigator_plan” with the planned path.   

Transition labeled “Path” has associated the event receive 
“navigator_plan” message.  When this event occurs and “Set 
Goal” place is marked, the transition will be fired. 

The place “Go” has the action publish message 
“follow_path” assigned. The BEAM module will handle this 
message, activating the “follow path” behavior. Once the 
goal is reached, the “autonomous_stopped” message is 
issued. This message is associated to transition “STOP”. 
Firing this transition will remove the mark from “Go” place 
and set a mark on “END”. The “END” place is the only final 
place, therefore, the task will finish publishing the 
corresponding “end_task” message. 

Since the robot is working on a real complex dynamic en-
vironment, several problems can arise while following the 
path. A Petri net that takes into account some of these 
problems is shown on the right part of figure 2. While 
following the path (place “Go”), the navigation system can 
publish a message “autonomous_stopped”, but with a 
parameter setting that the goal has not been reached. This 
event is associated to transition “No Goal”. Another 
mechanism to detect possible problems is the use of a time 
out with the maximum time needed to finish the action 
follow path. This is done here using a timer that can be 
initialized  in the transition “Path” and validated in transition  
 
 
 

 
 
 
Fig. 2.  Two different ways to implement the task “GO POINT” with Petri 
nets. The simplest (left) does not tackle any incidence on the follow path 
action. The one on the right show some mechanisms that can be used to 
take into account for problems on the execution of some actions (Go). 

1374



 

 

 
 
Fig. 3.  Petri net that implements the task “SHOW POINT”. Initial place 
includes the execution of task defined in figure 1. When the subnet 
finishes it execution a message is issued and a string return value is used to 
know the outcome of the execution. 
 
“Time out”.  While the “Go” place is marked any of the 
three transitions can be fired. For each of the three 
transitions  there is an action that assigns a different value to 
the global string variable “return” that will be sent as a 
parameter with the message “end_task” when the Petri net 
(task) finishes. This parameter is used in the Petri net of 
figure 3 by transitions OK and ERROR to check if the “GO 
POINT” Petri net has reached the goal. 

Figure 3 defines “SHOW POINT” task that uses the task 
“GO_POINT” defined above. In the initial place a 
“Run_Petri_Net” message is issued with several parameters, 
such as the name of the Petri net (GO_POINT), Petri net 
identity PN1, user identity (by default the same as requested 
“SHOW POINT”), running mode and goal coordinates. 
RoboGraph dispath is subscribed to this message as well as 
the “End_Petri_Net” message. If the “End_Petri_Net” 
message form PN1 is received reporting success in the 
“GO_POINT” task, transition “OK” will be fired and actions 
associated to “say text” and “face people” are executed in 
parallel. Both threads of execution are synchronized in 
transition STOP because places “say wait” and “face wait” 
need to be marked for the transition “STOP” be fired. 

Resource sharing, scheduling, and any other of the nice 
features of Petri nets can be used to define almost any 
complex task. 

V. ROBOGRAPH 
Figure 1 shows the programs that form RoboGraph. The 

GUI (Graphical User Interface) is a development tool that 
make possible to create, edit and monitor the execution of 
the different tasks while the DISPATCH is in charge of 
executing those tasks. 

A. GUI 
This program can work in three different modes and it is 

possible to switch at any time from one to another: Editor, 
Monitor and Play Logger. 

In editor mode, the user can create new tasks using a 
simple and intuitive Petri net graphical editor. Once the Petri 
net is constructed by selecting and dragging different 
elements (places, transitions, arcs and marks), actions, 
associated to places and transitions, and conditions, 
associated to transitions, must be defined for the interpreted 
Petri net.  

Actions can be commands implemented in any module in 
the control architecture of figure 1. These commands can be 
selected from a list automatically generated by the GUI. 
Each command is an IPC message and the user must define 
the command parameters that will automatically appear in a 
new window when that command is selected in the editor. 

When Dispatch executes the Petri net, the IPC messages 
assigned to places and transitions will be published as the 
net progress. 

Conditions can be events produced by any module in 
figure 1 that can be selected from a list generated 
automatically by the GUI. An event can be the arrival of an 
IPC message, a condition on some IPC message parameter 
or any logical expression on several parameters over the 
same or different IPC messages. 

Timers are a tool widely used in automation that comes 
very handy here. In addition, in our applications we have 
also used them as an error detection mechanism in order to 
time some actions of different modules in case they get 
stuck.  Actions can start a timer while conditions can test the 
value of a timer. 

Global variables are used to get starting data and store 
information to share conditions and events in different places 
and/or transitions. 

GUI in monitor mode connects to central (IPC) and 
subscribes to different dispatch messages that show the 
status of the different running or waiting Petri nets. Every 
running Petri nets is shown in a different tab with the actual 
marking. When dispatch evolves a Petri net marking, an IPC 
message is issued and GUI will update the monitor tabs. 
Therefore, using monitor we can see in a snapshot the status 
of the system, since the marking of the running Petri nets 
represents their status. This is a very helpful tool when 
debugging an application. An information window with the 
queued tasks (Petri nets) can also be displayed. 

Mobile robots operating in the real world can fail for 
many reasons because it is almost impossible for the 
programmer to predict all the circumstances that might be 
encountered. In order to be able to trace different problems, 
an XML log file with Dispatch IPC messages is created in 
running time. The system administrator can then run GUI in 
play-logger mode, open the log file and play it at the same 
pace as in the real execution. Different tabs with the running 
Petri nets will be shown as in monitor mode. Besides the 
regular play option, the user can monitor the log file step by 
step, jump to a defined place in “execution” as many 
commercial programming development environments for 

1375



 

 

high level languages (C, Java, C++, etc.). Finally, the user 
can see different details about the IPC messages.  

B. Dispatch 
Dispatch schedules the different actions of the functional 

(basic actions), executive (other Petri nets) and interface 
layer (user and web interfaces), as well as the 
synchronization with the events produced. The interaction 
with other modules in the architecture is performed by 
publishing and subscribing to messages. This way, problems 
in a module, such as a deadlock problem, do not block 
dispatch and we can set up simple mechanisms to detect and 
recover from a failure or exception situation.  

When starting, dispatch subscribes to the task execution or 
cancellation requests. Every requested message has an 
owner, priority and execution mode (serial or parallel). 
Priority and owner define the execution priority and the 
ability to kill or stop a task. Execution requests that cannot 
be executed at the reception time, they are stored in different 
queues according to their priority. A task execution request 
can come from different modules (figure 1), such as user 
interface modules (user requests) or even from the 
RoboGraph dispatch when the task is an action associated to 
some running Petri net. 

The execution of a new task starts loading the interpreted 
Petri net from a XML file, setting the initial marking, 
subscribing to all the IPC messages referenced in the events 
and executing the actions associated to the marked places. 
The Petri net can only progress with the arrival of IPC 
messages or the end of a timer.  

Each time a change in the status of a Petri net (start, stop, 
evolve) or in the waiting queues (new requests added or 
removed) is produced, a new IPC message reporting that 
change is issued for GUI monitor mode and stored in the log 
file for GUI play-logger mode.  

VI. MULTIROBOT ARCHITECTURE 
We have used the architecture described in figure 1 in a 

mobile robotic guide that was working during three days in 
the “Palacio de Congresos y Exposiciones de Galicia”, 
Santiago de Compostela (Spain) for the “Xunventude 
Galicia Net” event. For this application, a modified 
Peoplebot model from Activemedia shown in figure 4 was 
used. 

In this kind of applications the environment is a set of 
stands, most of them mounted a few days before. 
Furthermore, some of the tasks are not fully defined until a 
few hours before the starting of the event. Therefore, a tool 
like RoboGraph to quickly create, change and debug tasks 
becomes necessary. 

Our current research addresses architectures that extend 
the approach described in figure 1 to control several mobile 
robots (figure 5). This work is currently being developed as 
a part of a research project. The project falls within the 
context of surveillance systems using mobile robots. More 
specifically, it is based on a set of robots guided in dynamic, 

 
Fig. 4.  Robot Vixiabot is giving a tour in “Palacio de Congresos y 
Exposiciones de Galicia”, Santiago de Compostela (Spain) for the 
xuventudeGalicia.net event in April 2007. 

 
non-fully specified environments and working under real-
time restrictions. The robots must be able to carry out plans 
remotely and react to unexpected events. 

Figure 5 shows the proposed architecture for two robots 
connected to Ethernet, but it is extensible to multiple robot 
systems. Here RoboGraph is been applied in two different 
levels. The first one is to control each robot as it has been 
described in last sections. The second, at the highest level, is 
used to coordinate the work of different robots.  

The communication system, named JIPC, connects 
different robots, RoboGraph and the graphical user 
interfaces. Graphical user interfaces can be running on the 
robot or a java applet on a web Page for web based 
applications.  JIPC  implements  a  publish-subscribe  policy 
similar to IPC. However, a few changes have been made in 
order  to be  able to select the receiver when publishing mes- 
 

 
 
Fig. 5.  Multirobot control framework. RoboGraph can be used to program 
multirobot applications. 
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-sages, to define an access control mechanism and to remove 
some native libraries to start the graphical interface from any 
web browser. Different robots have the same control 
frameworks and identical messages to start same actions. 
IPC does not allow discerning the sender when subscribing 
to messages or the receiver when publishing a message. The 
web interface module maps IPC messages to JIPC messages. 
The main difference of this new RoboGraph used in 
multirobot programming is the use of a different 
communication interface. Even though now it is necessary to 
define not only the commands but also to know which robot 
should be sent and who request them, these are fields in the 
messages and therefore RoboGraph does not need to be 
changed.  

VII. CONCLUSION 
Through the use of a Petri net based programming 

environment to implement the executive layer of a control 
mobile robot framework we have shown that it is possible to 
build and maintain robust mobile robot applications in a 
quite fast and intuitive way. The programming environment, 
called RoboGraph, has been designed to have similar 
functionalities to other 61131-3 compliant environments 
built for automation companies to program industrial 
applications.  We expect to increase its functionality by 
adding a Petri net formal verification function. 

RoboGraph can be adapted to be used in any mobile robot 
control framework that includes a functional layer with a set 
of components that provide access to sensor data, send 
commands to actuators and different basic functionalities 
(localization, path planning, obstacle avoidance, etc.) or 
behaviors (follow wall, etc.). However, the use of 
frameworks where the modules are implemented in an 
independent way (different processes) communicating with 
each other and with the upper layers via some inter-process 
communication mechanism provide several advantages. For 
example, reusability of modules, robustness since a failure in 
a module does not implies the whole system to fail, and is 
also easier to maintain the system. 
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