

Using hierarchical binary Petri nets to build robust mobile robot
applications: RoboGraph

Joaquín L. Fernández, Member, IEEE, Rafael Sanz, Enrique Paz and Carlos Alonso

Abstract— Most of the mobile robot control frameworks are
based on a middleware layer with several independent modules
that implement primitive actions and report events about their
state. These modules are usually connected with different inter-
process communication mechanisms. Here, we propose to use
hierarchical interpreted binary Petri nets to coordinate the
activity of these modules. Tasks are described using an
interpreted Petri net editor and saved in a xml file. A
dispatcher loads these files and executes the different Petri nets
under user requests. A monitor that shows the state of all the
running nets is very useful for debugging and tracing purposes.
The whole system has been applied to a guide robot (vixiabot)
that has been guiding users in a public event
(XuventudeGalicia.net) for three days in April 2007 and is now
extended to a multirobot surveillance application.

I. INTRODUCTION
UILDING mobile robot applications that work for long
periods of time in a real environment is a difficult task.

Several research groups have adopted different control
frameworks solutions [1][2][3]. However, only a very few of
these projects can finally work without human supervision
for a long period of time mainly because of their complexity.
Nevertheless, many simple service and industrial
applications can benefit from the use of autonomous robots
for executing typically repetitive tasks performed nowadays
by humans.

In order to build robust mobile robot applications, some of
the solutions that have been successfully used in complex
industrial manufacturing applications might be adapted. For
example, programs to control commercial industrial
manipulators are build from two different kind of basic
commands: First, a set of basic application independent
movement functions such as move a manipulator tool to a
defined point in the workspace describing a defined
trajectory and, second, a set of application specific functions
such as activate/deactivate terminator element (grab/release,
start/stop painting, etc). Regarding the mobile robots
applications, similar sets of commands can be defined: First,
a set of general basic application independent navigation
functions such as move to a defined point in the environment
and, second, a set of application specific functions such as
“say text”, “grasp object”, etc.

This work was supported in part by the Spanish Comisión
Interministerial de Ciencia y Tecnología, CICYT, project DPI2005-06210.
The. Authors are with the Dep. Ingeniería de Sistemas y automática,
University of Vigo, 36200 Vigo, Spain (phone: +34 986 812222; fax:
+34986 814014; e-mail: joaquin@uvigo.es, rsanz@uvigo.es,
epaz@uvigo.es).

A modular layered approach has proven to be a successful
paradigm in current mobile robot service applications. The
majority of control systems for autonomous mobile robots
are characterized by a three layer architecture [1][2][3]. The
planning layer obtains plans to achieve high-level goals, the
executive layer sequences and monitors task execution and,
finally, the functional (middleware) layer provides the basic
computational threads for robot action and perception.

Whereas some details about functionality and names of
each layer are still matter of discussion [4] [5], the functional
layer has a uniform structure in all architectures: a set of
components, communicating with each other and with the
upper layers. Some of these components provide access to
sensor data, others send commands to actuators and, finally,
the last set provides different basic functionalities
(localization, path planning, obstacle avoidance, etc.) or
behaviors (follow wall, etc.). Upper layers send request and
receive information about successful termination or failure
together with computation results.

Returning to the manipulators analogy, the functional
layer implements the basic general functions, the executive
layer should be the “program” in charge of sequencing the
activity of the functional layer components and the planning
layer functionality is mainly done by the programmer.

Petri net based formulation of tasks for industrial robots
and other dynamic systems [14] [15] exists, especially for
manufacturing tasks. The main industrial automation
companies use IEC 61131-3 compliant programming
environments that include the Sequential Function Chart
(SFC), language that can be considered a special case of
binary interpreted Petri nets.

In this paper we propose an implementation of the
executive layer based on Petri nets. Petri nets are a powerful
tool to model, design and analyze distributed, sequential and
concurrent systems [6]. This provides several advantages
building mobile robot applications:
1) Module reusability. Navigation modules and even some

application specific modules will remain unchanged
from application to application.

2) Reduce development time. In different projects of the
same kind of applications, most of the modules remain
without changes and only the edition of the Petri nets
will be necessary to personalize the application. For
example, different robot museum projects can be built
with the same modules changing in the Petri nets the
places to visit, the texts to say and some other minor
changes.

B

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1372

3) Facilitate maintenance. Tracing and debugging
problems are easier to settle when the system state can
be seen looking at the evolution of a Petri net rather than
monitoring a set of variables.

4) Training. Almost everybody that has worked or learn to
use IEC 61131-3 compliant programming environments
(Siemens S7 Graph, Graphcet, etc.) will be able to
program with our tool RoboGraph.

5) Analysis and test. Petri net properties also make them
good candidates for qualitative (un-timed models)
performance evaluation and quantitative (timed models)
performance evaluation of robotic tasks. Significant
research has been done in this area for industrial
applications [6][15] and also some in mobile robots
tasks [7][9].

The rest of this paper is organized as follows. Next section
introduces the works related to this research. The control
architecture used in our mobile robots is presented in section
III. After describing the Petri net plan representation in
section IV, the RoboGraph implementation details are
shown in section V, while the extension of this framework to
multirobot applications is specified in section VI. Finally,
section VII concludes the paper.

II. RELATED WORKS
Within the robotics and automation areas, Petri nets have

been widely used to model and study flexible manufacturing
systems (FMS) [6][15], where the major applications are the
modeling, performance analysis and scheduling. Several
works in this field have already been mentioned in the
introduction.

Some researches have already point out that several plan
representations used in mobile robots can be mapped to Petri
nets. For example, in [10] a plan representation using
partially ordered plans (POPs) [11] that include operators as
in STRIPS [12], ordered constrains and conditional actions
is converted to a Petri net model. In [16] a methodology for
automatically transforming conventional task-variable
graphs representing the execution levels of intelligent
control architectures in Petri nets is presented. Finally, in
[13] a Robotic Task Model (RTM) based on Petri nets is
introduced for a distributed robotic system.

Some applications based on mobile robots [7][9] use Petri
nets to model and evaluate plans at different levels that go
from motion control [19] to task supervision [14]. A few
papers have also reported the use of Petri nets in mobile
robots for coordination, hardware resource handling and
planning [17] combining some AI planning system with
Petri nets.

Most of the works mentioned above use Petri nets to
modeling, analyze and even testing [18] the control of
mobile robots. We propose to extend the use of Petri nets as
a high level task application programming language through
an IDE, in a similar way industrial automation companies
use IEC 61131-3 compliant programming environments.
This way, besides defining the Petri nets to model, analyze

and test, they will also be used by a dispatcher to control the
different functional modules of the control architecture. For
that purpose, a Petri net programming environment named
RoboGraph has been defined. RoboGraph provides also
some very useful visual debugging tools that can show in
real time or reproduce the evolution of the status of the
different tasks through the evolution of the marks on the
associated Petri nets.

III. CONTROL ARCHITECTURE
ISANAV is a modular control architecture is organized as

shown in figure 1. Even though the different modules are
structured in four sets, they can be mapped in the three layer
architecture popularized by Bonasso de al. [1]. The hardware
servers and control set implement the functional layer while
RoboGraph dispatch implements the executive and planning
layer. Finally, ISANAV includes a set of processes to
interact with the users and to connect to other process for
multirobot applications.

The navigation platform is based on CARMEN [8] and
some modules, such as localize, navigator and base hardware
servers remain basically the same. Unlike CARMEN,
motion control is divided into high-level (strategic) planning
[20] and lower-level (tactical) collision avoidance using the
Beam method [21]. CARMEN integrates obstacles in the
map and plans a new trajectory in order to avoid obstacles.
Integrating all but the lowest-level motor control into a
single module can produce optimal plans. However, due to
the lack of precision in the localization system, the obstacle
integration process can narrow some openings in the map.
When the opening is only a little bit wider than the robot
diameter, this difference can lead the path planning to
discard a possible path through that opening. We have ob-

Fig. 1. ISANAV Control architecture. Different modules are divided in
several sets. The hardware servers set reads sensor data and controls
actuators. The control set provides several basic functions that can be used
by other modules of this set and the executive set.

1373

served this behavior in several points of our office
environment using CARMEN, since the robot has to go
through very narrow doors.The hardware server modules
handle hardware interaction, providing an abstract set of
actuator and sensor interfaces and isolating the control
methods from the hardware details. Most of the hardware
devices are connected to a CAN bus using RoboCAN [22].
Some of these devices are used in navigation, such as the
laser and sonar while others are specific for the application,
such as the robot head, sound and speech system, etc. The
hardware servers also provide low-level control loops for
rotation and translation velocities. Thanks to this layer,
changes in hardware components can be made without
modifying higher layers modules while keeping the same
interface.

The control modules integrate sensor and motion
information to provide improved sensor odometry, offering
basic navigation capabilities (localization, path planning,
follow path, etc) and basic application specific functions
(say text, make expression, etc.).

Robograph dispatch coordinates the execution of the
control modules and sequences their functions according to
the plan defined as a Petri net. This module is described in
detail in the following sections.

There are several interfaces modules to allow the user to
interact with the application, debugging control modules and
exchange information with a web server. Users can also
connect via web, monitor and interact with the robot.

Each module in figure 1 is a Linux process that exchanges
information with other modules using IPC Inter Process
Communication [23]. Developed at Carnegie Mellon's
Robotics Institute. IPC provides a publication-subscription
model. Each application connects with the central server,
and specifies what types of messages it publishes and what
types it listens for. Any message that is passed to the central
server is immediately copied to all other processes
subscribed.

The process of building a mobile robot application using
this framework includes programming on different levels.
First, hardware server and control modules need to be
implemented. Modules that execute navigation tasks can be
used from one application to another. At the next level, the
executive layer, it is necessary to build a module or
sequencer that sends requests and receives the outcomes of
the functional layer modules. This module usually varies
from one application to another.

IV. PETRI NET PLAN REPRESENTATION
Petri nets have been widely used to model, design,

execute and evaluate tasks in manufacturing dynamic
systems. As we have seen in the related work section, some
researches have also point out that several plan
representations used in mobile robots can be mapped to Petri
nets. In this work we use hierarchical binary interpreted Petri
nets.

As a simple example, figure 2 shows the Petri nets that

can be used for the task “GO POINT”. The Petri net on the
left is the simplest implementations. There is only one initial
mark in the place labeled “Set Goal”, while the “END” place
has been selected as a final place (red). The task ends when
only the final places are marked or there are no marks on the
Petri net if no final places have been defined.

Action publish message “set_goal” is assigned to “Set
Goal” place. The parameters for this message are the goal
coordinates. Module Navigator (figure 1) is subscribed to
this message. Every time some module publishes it, the
navigator will get a copy, plans the path and publishes
another message “navigator_plan” with the planned path.

Transition labeled “Path” has associated the event receive
“navigator_plan” message. When this event occurs and “Set
Goal” place is marked, the transition will be fired.

The place “Go” has the action publish message
“follow_path” assigned. The BEAM module will handle this
message, activating the “follow path” behavior. Once the
goal is reached, the “autonomous_stopped” message is
issued. This message is associated to transition “STOP”.
Firing this transition will remove the mark from “Go” place
and set a mark on “END”. The “END” place is the only final
place, therefore, the task will finish publishing the
corresponding “end_task” message.

Since the robot is working on a real complex dynamic en-
vironment, several problems can arise while following the
path. A Petri net that takes into account some of these
problems is shown on the right part of figure 2. While
following the path (place “Go”), the navigation system can
publish a message “autonomous_stopped”, but with a
parameter setting that the goal has not been reached. This
event is associated to transition “No Goal”. Another
mechanism to detect possible problems is the use of a time
out with the maximum time needed to finish the action
follow path. This is done here using a timer that can be
initialized in the transition “Path” and validated in transition

Fig. 2. Two different ways to implement the task “GO POINT” with Petri
nets. The simplest (left) does not tackle any incidence on the follow path
action. The one on the right show some mechanisms that can be used to
take into account for problems on the execution of some actions (Go).

1374

Fig. 3. Petri net that implements the task “SHOW POINT”. Initial place
includes the execution of task defined in figure 1. When the subnet
finishes it execution a message is issued and a string return value is used to
know the outcome of the execution.

“Time out”. While the “Go” place is marked any of the
three transitions can be fired. For each of the three
transitions there is an action that assigns a different value to
the global string variable “return” that will be sent as a
parameter with the message “end_task” when the Petri net
(task) finishes. This parameter is used in the Petri net of
figure 3 by transitions OK and ERROR to check if the “GO
POINT” Petri net has reached the goal.

Figure 3 defines “SHOW POINT” task that uses the task
“GO_POINT” defined above. In the initial place a
“Run_Petri_Net” message is issued with several parameters,
such as the name of the Petri net (GO_POINT), Petri net
identity PN1, user identity (by default the same as requested
“SHOW POINT”), running mode and goal coordinates.
RoboGraph dispath is subscribed to this message as well as
the “End_Petri_Net” message. If the “End_Petri_Net”
message form PN1 is received reporting success in the
“GO_POINT” task, transition “OK” will be fired and actions
associated to “say text” and “face people” are executed in
parallel. Both threads of execution are synchronized in
transition STOP because places “say wait” and “face wait”
need to be marked for the transition “STOP” be fired.

Resource sharing, scheduling, and any other of the nice
features of Petri nets can be used to define almost any
complex task.

V. ROBOGRAPH
Figure 1 shows the programs that form RoboGraph. The

GUI (Graphical User Interface) is a development tool that
make possible to create, edit and monitor the execution of
the different tasks while the DISPATCH is in charge of
executing those tasks.

A. GUI
This program can work in three different modes and it is

possible to switch at any time from one to another: Editor,
Monitor and Play Logger.

In editor mode, the user can create new tasks using a
simple and intuitive Petri net graphical editor. Once the Petri
net is constructed by selecting and dragging different
elements (places, transitions, arcs and marks), actions,
associated to places and transitions, and conditions,
associated to transitions, must be defined for the interpreted
Petri net.

Actions can be commands implemented in any module in
the control architecture of figure 1. These commands can be
selected from a list automatically generated by the GUI.
Each command is an IPC message and the user must define
the command parameters that will automatically appear in a
new window when that command is selected in the editor.

When Dispatch executes the Petri net, the IPC messages
assigned to places and transitions will be published as the
net progress.

Conditions can be events produced by any module in
figure 1 that can be selected from a list generated
automatically by the GUI. An event can be the arrival of an
IPC message, a condition on some IPC message parameter
or any logical expression on several parameters over the
same or different IPC messages.

Timers are a tool widely used in automation that comes
very handy here. In addition, in our applications we have
also used them as an error detection mechanism in order to
time some actions of different modules in case they get
stuck. Actions can start a timer while conditions can test the
value of a timer.

Global variables are used to get starting data and store
information to share conditions and events in different places
and/or transitions.

GUI in monitor mode connects to central (IPC) and
subscribes to different dispatch messages that show the
status of the different running or waiting Petri nets. Every
running Petri nets is shown in a different tab with the actual
marking. When dispatch evolves a Petri net marking, an IPC
message is issued and GUI will update the monitor tabs.
Therefore, using monitor we can see in a snapshot the status
of the system, since the marking of the running Petri nets
represents their status. This is a very helpful tool when
debugging an application. An information window with the
queued tasks (Petri nets) can also be displayed.

Mobile robots operating in the real world can fail for
many reasons because it is almost impossible for the
programmer to predict all the circumstances that might be
encountered. In order to be able to trace different problems,
an XML log file with Dispatch IPC messages is created in
running time. The system administrator can then run GUI in
play-logger mode, open the log file and play it at the same
pace as in the real execution. Different tabs with the running
Petri nets will be shown as in monitor mode. Besides the
regular play option, the user can monitor the log file step by
step, jump to a defined place in “execution” as many
commercial programming development environments for

1375

high level languages (C, Java, C++, etc.). Finally, the user
can see different details about the IPC messages.

B. Dispatch
Dispatch schedules the different actions of the functional

(basic actions), executive (other Petri nets) and interface
layer (user and web interfaces), as well as the
synchronization with the events produced. The interaction
with other modules in the architecture is performed by
publishing and subscribing to messages. This way, problems
in a module, such as a deadlock problem, do not block
dispatch and we can set up simple mechanisms to detect and
recover from a failure or exception situation.

When starting, dispatch subscribes to the task execution or
cancellation requests. Every requested message has an
owner, priority and execution mode (serial or parallel).
Priority and owner define the execution priority and the
ability to kill or stop a task. Execution requests that cannot
be executed at the reception time, they are stored in different
queues according to their priority. A task execution request
can come from different modules (figure 1), such as user
interface modules (user requests) or even from the
RoboGraph dispatch when the task is an action associated to
some running Petri net.

The execution of a new task starts loading the interpreted
Petri net from a XML file, setting the initial marking,
subscribing to all the IPC messages referenced in the events
and executing the actions associated to the marked places.
The Petri net can only progress with the arrival of IPC
messages or the end of a timer.

Each time a change in the status of a Petri net (start, stop,
evolve) or in the waiting queues (new requests added or
removed) is produced, a new IPC message reporting that
change is issued for GUI monitor mode and stored in the log
file for GUI play-logger mode.

VI. MULTIROBOT ARCHITECTURE
We have used the architecture described in figure 1 in a

mobile robotic guide that was working during three days in
the “Palacio de Congresos y Exposiciones de Galicia”,
Santiago de Compostela (Spain) for the “Xunventude
Galicia Net” event. For this application, a modified
Peoplebot model from Activemedia shown in figure 4 was
used.

In this kind of applications the environment is a set of
stands, most of them mounted a few days before.
Furthermore, some of the tasks are not fully defined until a
few hours before the starting of the event. Therefore, a tool
like RoboGraph to quickly create, change and debug tasks
becomes necessary.

Our current research addresses architectures that extend
the approach described in figure 1 to control several mobile
robots (figure 5). This work is currently being developed as
a part of a research project. The project falls within the
context of surveillance systems using mobile robots. More
specifically, it is based on a set of robots guided in dynamic,

Fig. 4. Robot Vixiabot is giving a tour in “Palacio de Congresos y
Exposiciones de Galicia”, Santiago de Compostela (Spain) for the
xuventudeGalicia.net event in April 2007.

non-fully specified environments and working under real-
time restrictions. The robots must be able to carry out plans
remotely and react to unexpected events.

Figure 5 shows the proposed architecture for two robots
connected to Ethernet, but it is extensible to multiple robot
systems. Here RoboGraph is been applied in two different
levels. The first one is to control each robot as it has been
described in last sections. The second, at the highest level, is
used to coordinate the work of different robots.

The communication system, named JIPC, connects
different robots, RoboGraph and the graphical user
interfaces. Graphical user interfaces can be running on the
robot or a java applet on a web Page for web based
applications. JIPC implements a publish-subscribe policy
similar to IPC. However, a few changes have been made in
order to be able to select the receiver when publishing mes-

Fig. 5. Multirobot control framework. RoboGraph can be used to program
multirobot applications.

1376

-sages, to define an access control mechanism and to remove
some native libraries to start the graphical interface from any
web browser. Different robots have the same control
frameworks and identical messages to start same actions.
IPC does not allow discerning the sender when subscribing
to messages or the receiver when publishing a message. The
web interface module maps IPC messages to JIPC messages.
The main difference of this new RoboGraph used in
multirobot programming is the use of a different
communication interface. Even though now it is necessary to
define not only the commands but also to know which robot
should be sent and who request them, these are fields in the
messages and therefore RoboGraph does not need to be
changed.

VII. CONCLUSION
Through the use of a Petri net based programming

environment to implement the executive layer of a control
mobile robot framework we have shown that it is possible to
build and maintain robust mobile robot applications in a
quite fast and intuitive way. The programming environment,
called RoboGraph, has been designed to have similar
functionalities to other 61131-3 compliant environments
built for automation companies to program industrial
applications. We expect to increase its functionality by
adding a Petri net formal verification function.

RoboGraph can be adapted to be used in any mobile robot
control framework that includes a functional layer with a set
of components that provide access to sensor data, send
commands to actuators and different basic functionalities
(localization, path planning, obstacle avoidance, etc.) or
behaviors (follow wall, etc.). However, the use of
frameworks where the modules are implemented in an
independent way (different processes) communicating with
each other and with the upper layers via some inter-process
communication mechanism provide several advantages. For
example, reusability of modules, robustness since a failure in
a module does not implies the whole system to fail, and is
also easier to maintain the system.

ACKNOWLEDGMENT
We would like to thank all the people that have influenced

this work. In particular to Reid Simmons for his helpful
advices about the use of IPC.

REFERENCES
[1] R. Bonasso, D. Kortenkamp, D. Miller and M. Slack, “Experiences

with an architecture for intelligent, reactive agents”. Journal of
Artificial Intelligence Research Vol 9(1), pp: 237-256, 1997

[2] E. Gat. On three-layer architecture. In D. Kortenkamp, R. P.
Bonnasso, and R. Murphy, editors, Artificial Intelligence and Mobile
Robots, pages 195–210. AAAI Press, Boston, MA, 1998.

[3] R. Simmons, R. Goodwin, K. Haigh, S. Koenig and J. O’Sullivan, “A
layered architecture for office delivery robots”. In Proc. First
International Conference on Autonomous Agents. 1997.

[4] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. “The
CLARAty architecture for robotic autonomy”. In IEEE Aerospace
Conference 2001, Big Sky, MT, 2001.

[5] S. Caselli, F. Monica, and M. Reggiani, “YARA: A Software
Framework Enhancing Service Robot Dependability”. In Proceedings
of the 2005 IEEE International Conference on Robotics and
automation. Barcelona, Spain, April 2005

[6] M.C Zhou and K. Venkatesh.”Modeling, simulation, and control of
felxible manufacturing systems”. World Scientific, 1999.

[7] F. Y. Wang, K.J. Kyriakopoulos, A. Tsolkas and G. N. Saridis, “A
Petri-Net Coordination Model for an Intelligent Mobile Robot”. IEEE
Transactions on Systems, man and cybernetics, Vol. 21, No. 4,
July/august, 1991.

[8] M. Montemerlo , N. Roy, S. Thrun, “Perspectives on Standardization
in Mobile Robot Programming : The Carnegie Mellon Navigation
(CARMEN) Toolkit”, Proceedings. 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, (IROS 2003). 27-31
Oct. 2003. Vol. 3, pp: 2436- 2441

[9] G. Kim, W. Chung, M. Kim and C. Lee, “Control architecture Design
and Integration of the Autonomous Service Robot PSR”, Proceedings
of the 11th International Conference on Computer Applications
(ICCAS 2002) pp: 2379-2384.

[10] J. King, R. K. Pretty, and R G. Gosine, “Coordinated Execution of
Tasks in a Multiagent Environment”, IEEE Transactions on Systems,
Man and Cybernetics –Part A: Systems and Humans, Vol. 33, No. 5,
September 2003

[11] S. Russell and P. Norvig, “Artificial Intelligence: A Modern
Approach”. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[12] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem,” Artif. Intell., vol. 59, no.
1–2, pp. 227–232, 1971.

[13] D. Milutinovic and P. Lima, “Petri net models of robotic tasks,” in
Proc., IEEE International Conference on Robotics and Automation
(ICRA), 2002, pp: 4059 – 4064.

[14] A. Lehmann, R. Mikut, T. Astour, “Petri nets for task supervision in
humanoid Robots“, VDI BERICHTE, 2006, VOL 1956, pp: 71-72.

[15] J. Flochova, “A Petri net based supervisory control implementation”
in Proc., IEEE International Conference on Systems, Man and
Cybernetics, 2003. Volume: 2, On page(s): 1039- 1044

[16] M. Caccia, P. Coletta, G. Bruzzone, G. Veruggio, “Execution control
of robotic tasks: a Petri net-based approach”, Control Engineering
Practice, 13 (8), p.959-971, Aug 2005.

[17] T. Asfour, D. Ly, K. Regenstein, and R. Dillmann, “Coordinated task
execution for humanoid robots,” in Experimental Robotics IX, ser.
STAR, Springer Tracts in Advanced Robotics. Springer, 2005.

[18] A. Chandler, A. Heyworth, L. Blair, D. Seward, “Testing Petri Nets
for Mobile Robots using Groebner basis”, 21st International
Conference on Application and Theory of Petri Nets Aarhus,
Denmark, June 26-30, 2000

[19] K. Kobayashi, A. Nakatani, H. Takahashi, and T. Ushio, “Motion
planning for humanoid robots using timed Petri net and modular state
net,” in Proc., IEEE International Conference on Systems, Man and
Cybernetics, 2002.

[20] A.R. Diéguez, J.L. Fernández, R. Sanz, “A global motion planner that
learns from experience for autonomous mobile robots”, Robotics &
CIM Vol. 23 pp: 544–552 (2007), Ed. Elsevier.

[21] J.L. Fernández, R. Sanz, J.A. Benayas and A.R. Diéguez, “Improving
collision avoidance for mobile robots in partially known
environments: the beam curvature method.” Robotics and
Autonomous Systems. vol. 46, pp. 205-219, April 2004.

[22] Fernández, J.L., Souto, M.J., Losada, D.P., Sanz, R., Paz, E.,
“Communication framework for sensor-actuator data in mobile
robots”, Proceedings of ISIE 2007. IEEE International Symposium on
Industrial Electronics, 2007. pp: 1505-1507

[23] R. Simmons, “The interprocess communications system (IPC).
http://www.cs.cmu.edu/afs/cs/project/TCA/www/ipc/ipc.html.
Accessed: 2007-08-29.

1377

