
A Bayesian framework for optimal motion planning with uncertainty

Andrea Censi, Daniele Calisi, Alessandro De Luca, Giuseppe Oriolo

Abstract— Modeling robot motion planning with uncertainty
in a Bayesian framework leads to a computationally intractable
stochastic control problem. We seek hypotheses that can justify
a separate implementation of control, localization and planning.
In the end, we reduce the stochastic control problem to path-
planning in the extended space of poses× covariances; the
transitions between states are modeled through the use of the
Fisher information matrix. In this framework, we consider two
problems: minimizing the execution time, and minimizing the
final covariance, with an upper bound on the execution time.
Two correct and complete algorithms are presented. The first is
the direct extension of classical graph-search algorithms in the
extended space. The second one is a back-projection algorithm:
uncertainty constraints are propagated backward from the goal
towards the start state.

I. INTRODUCTION

This paper considers the problem of planning a safe
path for a mobile robot, in spite of noisy odometry and
sensor readings. The difficulty in approaching this problem
is twofold. Firstly, with respect to the regular path-planning
problem, there is considerable more machinery needed to
formalize uncertainty: this implies some design decisions
even at the modeling stage. Then, the resulting model is a
stochastic control problem which is very hard to solve in the
general case, hence many approximations are needed to turn
it into an approachable problem.

This paper tries to solve the problem by working in the
extended space of poses×covariances, as has already been
done in [1], [2]. The following are the main contributions of
this paper with respect to previous work.

• We model the problem in a Bayesian framework and
we formalize transitions between information states
by using the Fisher information matrix. We look for
the hypotheses that lead to a weak ‘separation princi-
ple’: that is, a theoretical justification for splitting the
stochastic control problem in separate implementations
of planning, localization, and control. In particular, the
use of the information matrix decouples planning and
localization: the planned paths will be safe whatever
localization algorithm is used (Kalman filters, particle
filters, etc.), as long as it is statistically efficient.

• We define our two algorithms as specializations of the
same template, which is defined by a generic dominance
relation ‘!’ and a generic precedence relation ‘"’. We

A. Censi is with the Control & Dynamical Systems department, California
Institute of Technology, 1200 E. California Blvd., 91125, Pasadena, CA.
andrea@cds.caltech.edu

D. Calisi, A. De Luca, G. Oriolo are with the Dipartimento di Informatica
e Sistemistica “A. Ruberti”, Università di Roma “La Sapienza”, via Ariosto
25, I-00185 Rome, Italy. {calisi,deluca,oriolo}@dis.uniroma1.it

believe this leads to clearer analysis and implementa-
tion.

• We extend the forward search algorithm first described
in [1]. The robot is given the option to stay still for
better localizing itself, and we use a more powerful
dominance heuristics. Moreover, in addition to the
minimum-time problem, we solve also the minimum-
final-covariance problem.

• We describe another optimal algorithm for the
minimum-time problem. It can be considered a back-
projection algorithm: uncertainty constraints are propa-
gated backward from the goal towards the start state. Its
search tree can be re-utilized as long as the goal state
remains the same. Interestingly, these two correct and
complete algorithms often find distinct solutions.

Due to space constraints, proofs of the propositions are
omitted; they can be found in [3]. The full C++ source
code and datasets are available for download at the website
http://purl.org/censi/2007/ppu. At the same site,
there are animations of the search process in the Flash
format.

II. RELATED WORK

There have been many approaches to robot motion plan-
ning with uncertainty. In this section, we first discuss the
different formalizations used, and then we provide a cursory
sample of the literature on the subject, in a more-or-less
chronological order.

Which problem to solve. Different works attempted to
solve different problems. This paper is concerned with two
problems: minimizing the execution time, or minimizing the
final covariance (with a bound on the execution time). Some
approaches (e.g., [4], [5]) tried to solve a simpler problem:
finding an admissible plan, without optimality properties.
Other works ([6]) try to maximize the collected information,
with free final pose. The approach in [7] maximizes the
probability of success. Finally, many works do not explicitly
model the uncertainty evolution in time, and only minimize
a traversal cost, which is based on some “localizability”
measure (e.g., [8]).

Representation of the uncertainty. There are two main op-
tions for representing uncertainty: a probabilistic representa-
tion, in terms of covariances, or a set-membership approach.
In the set-membership approach ([5], [4]), the uncertainty is
represented by a pose q̂(t) and a set SU(t). The assumption
is that the true pose q(t) belongs to the set obtained by
enlarging q̂(t) by the set SU(t): q(t) ∈ q̂(t) ⊕ SU(t) (here
⊕ denotes morphological dilatation).

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1798

path planning stochastic control problem path planning in extended space
state space poses probability distribution on poses poses×covariances

start q!(0) = qstart (1) q(0) ∼ assigned p.d. (2) q!
0 = qstart Σ!

0 = Σstart (3)

safety q!(t) ∈ Cfree (4) P(q(t) ∈ Cfree) ≥ 1− ε (5) ∀k : ∀Mi ∈ CONSTRAINTS(q!
k) : Σ!

k ≤ Mi (6)

goal q!(tf) ∈ Ctarget (7) P(q(tf) ∈ Ctarget) ≥ 1− ε (8) q!
tf
∈ Ctarget Σ!

tf
≤ Σmax (9)

transition
Compatible with
kynematic/dynamic
constraints.

Given stochastic models of actions
and sensing, the belief evolves ac-
cording to Bayes’ rule.

qk
δ→ qk + δ (10)

Σk
δ→

ˆ
I(qk, δ, ∆t) + [Σk + Ξ(δ)]−1˜−1

(11)

solution A function q!(t). A map from belief to actions. A function q!
k, which implies a certain Σ!

k.

optimality Minimizing a functional
of q!(t).

Minimizing the expectation
of a functional of q(t).

Two problems considered: 1) minimizing the final
time 2) Minimizing the final covariance.

Fig. 1. Comparison of the three formalizations discussed in this paper: simple path planning (first column), the full stochastic control problem (second
column), reduction of the stochastic control problem to path-planning in the extended space (third column).

The other option is to employ a probabilistic represen-
tation. The straightforward possibility is to propagate the
mean/covariance of the distribution (e.g., [1], [9]). Some
methods operate in a reduced information space ([10]), in
which the belief is compressed by using a small set of pa-
rameters. For simplicity and computational advantages, some
works use an isotropic representation of uncertainty ([4], [9])
— this might or might not be a limiting choice, depending on
the other assumptions about the sensors and the environment.

Modeling of sensing actions. Modeling of the sensing
actions can be done in a number of ways. One can have
essentially blind robots, with only a limited form of odom-
etry ([11]), or proximity sensors ([10]), or one may employ
complex models of exteroceptive sensors ([12]). As for the
exteroceptive sensors, one can choose to model the fact that
a sensor is a source of continuous information, and the
robot collects new information also by just standing still;
this is the model used in this paper. Or, one could model
an exteroceptive sensor as a device that allows a bounded
uncertainty in its working zone, but this uncertainty does
not decrease with time ([5]). Another sensing option is the
use of “safe areas” (e.g., [13]). If the robot arrives in one of
those areas, its uncertainty is reset to zero (or a small value),
and it stays constant to that value while the robot remains in
the area.

Plan representation. In general, the solution of a planning
with uncertainty problem must be a “policy”: a map from the
history of observations to the action space. In some cases,
the plan is a function from the compressed belief space to
the actions [10]. In some other cases ([1]), the plan is a
reference trajectory, along which the motion is guaranteed
to be safe, in spite of uncertainty — this is also our case.
Finally, the output of some methods ([13], [4]) is a ‘sensor-
based motion’: a sequence of action/termination condition,
where the condition depends on the sensory input (“walk
until you see the wall”).

Planning algorithm. The methods reviewed here have

solved the problem in a variety of ways, covering most,
if not all, known planning methods: back-projection [13],
value/policy iteration [10], gradient descent [5], analytic
closed-form solution [6], multi-sine optimization [14], clas-
sical graph search [1], dynamic programming [15], RRT [2],
POMDPs [16].

In chronological order, the main family of approaches in
the literature have been pre-image back-chaining [17], [13],
[18]; sensory uncertainty fields [8], [19], [20], [21]; sensor-
based planning [22], [4], [23]; the Information Space ap-
proach [10]; the set-membership approach [24], [5]; stochas-
tic dynamic programming [15], [25]; and classical search
strategies in an extended space [12], [1], [9], [26], [27].
The latter is the family to which this paper belongs. These
methods try to solve the problem in the extended space of
poses×covariances by applying classical search strategies,
such as A! and RRT.

III. MODELING MOTION PLANNING WITH UNCERTAINTY

In this section, we show how taking into account uncer-
tainty into a classic path-planning problem leads to a stochas-
tic control problem; then we introduce the hypotheses and
approximations that allow to reduce the problem to classic
path-planning in the extended space of poses×covariances.

The table in Fig. 1 shows side-by-side the equations (1)–
(11) used in the different formalizations. In the following,
let q be the robot configuration. Bold uppercase letters refer
to matrices: Σ is the covariance of the estimate of q, I is
the Fisher information matrix.

A. From path-planning to the stochastic problem.

Path-planning can be formulated as minimizing a certain
functional over a set of functions that respect constraints (1),
(4), (7), plus any applicable kinematic and dynamic con-
straint. Note in particular that (1) and (7) impose that the
initial and final states belong to prescribed sets, and that

1799

(4) guarantees safety of the path by avoiding collisions with
obstacles.

Uncertainty can be introduced by modeling the result of
actions and sensing using stochastic equations. Instead of an
initial state, one considers an initial probability distribution
for the state. Now that the configuration is uncertain, one
should replace the deterministic constraints (4)-(7) by the
probabilistic constraints (5)-(8). Optimality criteria can be
specified as the minimization of the expectation of a certain
functional; for example, if in path-planning one minimizes
the time to the goal, in the stochastic version one minimizes
the expected time to the goal.

The solution of the stochastic control problem consists of
two parts [28]: 1) an observer, which produces a probability
distribution for the system state and 2) a control policy: a
map from probability distributions to action.

The observer is the “easy” part, because, assuming the
system is Markov, and given the state transition model
p(qk|qk−1,uk) and the sensor model p(zk|qk), one can
explicitly write the evolution of the belief Bel(qk):

Bel(qk) ∝ p(zk|qk)
∫

p(qk|qk−1,uk)Bel(qk−1)dqk−1 (12)

In this expression, uk is the odometry data, and zk is the sen-
sory input. Of course, having an explicitly expression is often
only of theoretical interest, because the equation is typically
not solvable in closed form, except in the linear(ized) case,
which corresponds to the (Extended) Kalman Filter. Particle
filters solve the equation by approximating the integral by
sampling [29].

The planning part is the “difficult” part: one must antici-
pate every possible belief, and even if the configuration space
is finite-dimensional, the belief space is infinite-dimensional.
There are algorithms that solve this problem in a generic way,
typically discretizing the action and sensing space (policy
iteration), but they suffer from the curse of dimensionality:
the time required grows with the length of the plan and the
number of possible actions and sensing events.

B. Simplifying the model
The goal of this section is to reduce the stochastic control

problem to a deterministic problem in an extended space.
The key to somehow decouple localization and planning is
to be able to predict at planning time the uncertainty of the
robot along a given path. This is only possible if the model is
adequately simplified and additional hypotheses are needed
on the environment and the localization algorithm.

In this paper, we are focusing on modeling the sensing
aspect in a sound way, because it is the dominant part of the
problem. As such, we ignore the dynamics and kinematics of
the robot. In particular, we assume that an action δ moves
the robot configuration from q to q + δ + e, where e is
a zero mean Gaussian variable with covariance Ξ(δ). If
also the distribution the sensor model p(zk|qk) is Gaussian,
then (12) transforms a Gaussian 〈q̂k−1,Σk−1〉 to another
Gaussian 〈q̂k,Σk〉, with q̂k = q̂k−1 + δ, and Σk given by:

Σk =
[
Σ−1

q|z + [Σk−1 + Ξ(δ)]−1
]−1

(13)

The term Σ−1
q|z represents the information that the mea-

surements z provide about q. It is possible to estimate this
term using the Cramér–Rao bound (CRB): Σ−1

q|z ≤ I(qk),
where I(qk) is the Fisher information matrix for the sensor
— some regularity hypotheses are needed for the bound to be
valid; we refer the reader to [30] for the technicalities. There-
fore, the following bound (sometimes called the “Bayesian”
Cramér–Rao bound) holds for the updated covariance:

Σk ≥
[
I(qk) + [Σk−1 + Ξ(δ)]−1

]−1
(14)

The inequality in (14) can be substituted by an equality if
the CRB is strict and the localization algorithm is unbiased
(E{q̂} = q) and statistically efficient.

Note that the information matrix depends on the sensor
model, that is on the distribution p(z|q), and it depends on
the actual pose qk, but it does not depend on the actual
measurements. This means that it can be computed a priori,
before taking the measurements, if one knows qk. But at
planning time we just know our planned pose q!

k: the best we
can do is to assume I(qk)) I(q!

k), that is the complexity
of the environment (variability of I in space) is low with
respect to the localization and control errors that make up
the difference q − q! = (q − q̂) + (q̂ − q!).

Let us recapitulate the assumptions we needed:
• The distribution of q̂ is well approximated by a Gaus-

sian during the optimal motion.
• The localization algorithm is unbiased and statistically

efficient. No other hypothesis is needed on the localiza-
tion algorithm, that can be a (Extended) Kalman filter,
a particle filter, etc.

• The uncertainty of the pose is low with respect to the
environment complexity. We express this as a condition
on the information matrix: I(q)) I(q!).

If these are satisfied, given a path {q!
k}, we can recover the

sequence of the covariance {Σ!
k} by using the transitions

defined in (10), (11). Now, given a planned path {〈q!
k,Σ!

k〉},
it is possible to evaluate whether it respects the safety con-
straints. Hence the stochastic control problem is reduced to
path-planning in the extended space of poses × covariances.

In the following, we will define some other mundane
details about the transitions, and how the safety constraints
can be transformed into obstacles in the extended space.

C. Defining admissible states
From now on, we will indicate couples 〈q,Σ〉 as states.

For characterizing admissible states, we note that (2), (5), (8),
in the case of a polygonal world, are approximately equiv-
alent to linear constraints on the covariance (Fig. 2). This
model is similar to the one employed in [15].

We discretize the configuration space in cells, and for
each cell q we define a set of matrices CONSTRAINTS(q) =
{Mi}. The state 〈q,Σ〉 is admissible if Σ ≤ Mi for all
Mi in CONSTRAINTS(q). We use some of the elements of
CONSTRAINTS(q) to ensure safety of the motion (Fig. 2); but
also arbitrary limits can be put in CONSTRAINTS according
to the application requirements. We set CONSTRAINTS(q) to
{0} (an impossible constraint to satisfy) if q /∈ Cfree.

1800

D. Modeling sensor information and odometry uncertainty.

In our implementation, we assume that the odometry error
due to a step δ is proportional to the step size |δ|: Ξ(δ) =
k|δ|I. The quantity of information acquired by the robot,
during the motion from q to q + δ is assumed to be

I(q, δ,∆t) = ∆t · sensor_freq · (I(q) + I(q + δ)) /2

where I(q) is the information matrix for one sensor reading.
Note that these expressions are valid also when the robot
does not move (δ = 0): if the robot is in a zone where it
senses something (I(q) += 0), its uncertainty will decrease.

Ultimately, the matrix I(q) depends on the particular
sensor used. In the Section VII, we use range finders. For
such sensors, the information matrix was studied in [31],
along with matters of efficiency: it turns out that, in this
case, the Cramér-Rao bound is a good approximation to the
feasible localization accuracy.

E. Which problem to solve?

In this paper, we focus on two problems, of the many that
could be defined in this framework:

Problem 1: PPU-T: Minimize the execution time, while
remaining localized:

min tf , subject to Σ(t) ≤ Σmax

Problem 2: PPU-COV: Minimize the final uncertainty,
with a limit on the total time allowed:

min≤ Σ(tf) subject to tf ≤ tmax

We refer to these two problems as ‘PPU’ (path planning
with uncertainty), as opposed to ‘PP’ for simple path-
planning. PPU has a number of interesting features.

Number of solutions: A solution for PPU might not exist
even if it does for PP— for example, any case in which
there is not enough information to remain localized. Also,
it is common for PPU to have a continuum of solutions.
For example, for PPU-COV, the final covariance depends
on all the information acquired along the path, as a rather
complicated non-linear functional of I(q). Fix a path q(t)
with final covariance Σ(tf). In typical cases, small per-
turbations of q(t) produce another final covariance Σ̃(tf)
such that neither Σ̃(tf) ≤ Σ(tf) nor Σ(tf) ≤ Σ̃(tf), and
therefore the perturbed path is another, different, solution for
the problem.

point impact
segment impact

Fig. 2. A set of matrices CONSTRAINTS(q) is associated to each cell q.
The constraints are obtained by considering the possible collisions of the
robot with the environment, due to its uncertainty.

Time is important: A property of PP is that, if one ignores
dynamic constraints, time is merely one of the possible
parameterizations for the path; instead, the right timing is
essential for PPU, as sensors have a well-defined acquisition
frequency: a given path could be feasible only if performed
slowly enough, as a faster pace would result in less sensor
readings than needed to remain localized.

Another feature of PPU is that the solution might include
moments when the robot stays still to acquire more informa-
tion at a particular point; in general, the projection to q of
the q ×Σ trajectory might contain loops.

IV. GENERIC SEARCH FRAMEWORK

All the algorithms described in the following sections
are specializations of the same generic template (see, for
example, [27]), enriched by a dominance relation !, which
is used to discard useless nodes. To instantiate the template,
one needs to define the state space, the function SUCC(n)
which generates the successors of n, the predicate IS_GOAL,
and the two dominance and precedence relations ! and ".

Algorithm 1 Generic search algorithm
1: VISITED: a !-poset of length 1.
2: OPEN: a !-poset of length 1, ordered by ".
3: Put n0 in OPEN.
4: while OPEN is not empty do
5: Pop first (according to ") node n from OPEN.
6: for all s in SUCC(n) do
7: Report success if IS_GOAL(s).
8: Ignore s if it is !-dominated in VISITED.
9: Discard nodes in VISITED !-dominated by s.

10: Put s in VISITED.
11: Discard nodes in OPEN !-dominated by s.
12: Put s in OPEN.
13: end for
14: end while
15: Report failure.

The partial order1 ! is used to define node “dominance”
and therefore discard nodes. If nodes n1 and n2 are present,
and (n1 ! n2) is true, then n2 is discarded. Algorithm 1
guarantees that, at any moment, no node dominates any other,
in either OPEN or VISITED – both sets are posets2 of length 1.

The total order3 " is used to order the list of open nodes.
In a totally ordered set, there is always a “minimum”; this
property is needed in Algorithm 1 at line 5, in which the
“first” element is extracted from OPEN.

V. FORWARD SEARCH

This section describes a forward search algorithm in the
extended space of poses×covariances. We describe it by
defining the variable parts of the generic template.

1A partial order is a reflexive, antisymmetric, and transitive relation.
2A poset is a set with a partial order defined on it. The length of a poset

is the size of the longest chain n1 ! n2 ! . . . ! nn.
3A total order is a partial order where any two elements are comparable.

1801

Nodes. A node n is a tuple 〈q,Σ, t〉, whose intuitive
meaning is: “It is possible to go from start to q in time
t with final covariance Σ.”. Successors to a node are created
using (10), (11).

Definition of the ‘!’ relation. When a search algorithm
like A! is used to solve PP, a dominance relation is implic-
itly defined. In PP, nodes are couples containing the pose
and the time 〈q, t〉; a node is discarded if it reaches the
same pose of another one, but in more time (cost). This
is the resulting dominance relation for PP: (n1 ! n2) ⇔
(q1 = q2) ∧ (t1 ≤ t2). The direct extension of this to PPU
is (n1 ! n2) ⇔ (q1 = q2)∧ (t1 ≤ t2)∧ (Σ1 = Σ2); better
yet is to exploit the ≤ relation for matrices4, by defining

(n1 ! n2) ⇔ (q1 = q2) ∧ (t1 ≤ t2) ∧ (Σ1 ≤ Σ2) (15)

In simple PP, ‘!’ is a total order: all the nodes with
the same q are comparable according to their cost (time),
therefore there is, at most, one node per cell. This is not true
in PPU, as ! is only a partial order on nodes: it is common
that during the search there will be many nodes for the same
cell because their covariances are not comparable (neither
Σ1 ≤ Σ2 nor Σ2 ≤ Σ1, as in Fig. 3, left), or one has better
time, but worse covariance (Fig. 3, right).

Trading time for information. The ‘!’ relation can be
further extended to possibly discard a node in the latter
case. Let the two nodes n1 and n2 have the same pose
(q1 = q2), with n1 having better time (t1 < t2) and n2

having better covariance (Σ2 ≤ Σ1). Consider node n1: to
dominate n2, it needs to compensate the difference in the
covariance in a time ∆t = (t2 − t1). If the environment is
such that I(q1) += 0, the robot might remain still and acquire
measurements to decrease its covariance. After waiting for
∆t, its covariance will be

WAIT(q1,Σ1,∆t) #
[
Σ−1

1 + ∆t · sensor_freq · I(q1)
]−1

Therefore, there is a strategy (waiting) that generates the
node n′

1 = 〈q1, WAIT (q1,Σ1, (t2 − t1)) , t2〉 as a successor
to n1. The node n′

1 might, in turn, be comparable to n2,
because it has the same time t2. Hence, the node n2 can
be discarded if WAIT(q1,Σ1, t2 − t1) ≤ Σ2. Finally, we can
update the definition of ! as follows:

(n1 ! n2) ⇔ (q1 = q2) ∧ (t1 ≤ t2)∧ (16)

4A ≤ B ⇔ A− B is negative semidefinite.

t2 = t1

t1

(a) Same time, non comparable Σ.

t2

t1 < t2

(b) Better time but worse Σ.

Fig. 3. Examples of nodes that are not comparable according to the relation
defined by (15). Nodes in (b) could be comparable with the relation defined
in (16).

(Σ1 ≤ Σ2 ∨ WAIT(q1,Σ1, t2 − t1) ≤ Σ2)

Solving PPU-T. We solve the PPU-T problem using A!.
In this case, ‘"’ is defined as:

(n1 " n2) ⇔ t1+h(q1, qgoal) ≤ t2+h(q2, qgoal) (17)

In this expression h(q, qgoal) must be an ‘admissible’ heuris-
tic. The choice of the heuristic is tied only to the cost function
being minimized. Because the cost function (time spent) is
the same in PP and PPU-T, the heuristic does not change,
and the covariance plays no role in it.

Solving PPU-COV . We solve PPU-COV using wave-
front expansion. With respect to the use of A! in the last
section, the relation ! remains the same, while the relation "
and the termination condition will change. The relation "
is modified to expand nodes generation by generation in
successive waves. The search does not terminate immediately
if a state is found in qgoal, because there could be a path with
longer time but better covariance. At the end of the execution
there will be, in general, more than one node at qgoal,
and all will have different times and covariances. At this
point, one should take the minimal subset according to this
relation: (n1 ! n2) ⇔ (Σ1 ≤ Σ2): after the exploration,
nodes with low times and big covariances (that had to be
preserved), are not interesting anymore and can be safely
discarded.

VI. BACKWARD SEARCH

This section describes a search algorithm to solve the
PPU-T problem, backward. In the previous section, states
were propagated forward through actions, here constraints
are propagated backward through the inverse of the actions.
Unfortunately, because we represent uncertainty by a full
matrix, instead of a single number, the computations get a
bit tricky: in this paper, proofs and some details have been
omitted and can be found in [3].

Nodes. A node is a tuple 〈qk, {Mi}, tg〉, whose intuitive
meaning is “There is a path from pose qk to the goal,
in time tg (time-to-goal), if the covariance is such that
∀i : Σ ≤ Mi”. The first node to be put into the OPEN
list is the node relative to qgoal and the constraints to be
respected there: n0 =

〈
qgoal, CONSTRAINTS(qgoal), 0

〉
: this

node represents the goal states.
Successors. Consider a node 〈qk, {Mi}, tg〉. For any pos-

sible forward action δ, the successor to n are generated by
applying the inverse action −δ. The successor to the node
will be n−δ = 〈qk − δ, · , tg + ∆t〉. The set of constraints
will be transformed from {Mi} to

{Mi}
−δ→ {back-proj(Mi)} ∪ CONSTRAINTS(qk − δ) (18)

The back-projection of a single constraint Mi is that
matrix back-proj(Mi) such that Σk−1 ≤ back-proj(Mi) is
equivalent to Σk ≤ Mi. By algebraically manipulating the
covariance update equation (11), one obtains that Σk ≤ Mi

is equivalent to the following:

Σk−1 ≤
[
Mi

−1 − I(q, δ,∆t)
]−1 −Ξ(δ)

1802

and therefore one can define back-proj(Mi) as[
Mi

−1 − I(q, δ,∆t)
]−1 −Ξ(δ).

However, there are many special cases that must be taken
care of. It could happen that the constraint is trivial to satisfy:
this is the case when

[
Mi

−1 − I(q, δ,∆t)
]
≤ 0; if the

constraint is trivial, it can be removed from the constraint set.
It could happen that the constraint is impossible to satisfy:
this is the case when at least one eigenvalue of back-proj(Mi)
is negative; if the constraint cannot be satisfied, the successor
is discarded.

Simplification of the constraints set. A recursive applica-
tion of (18) make the number of constraints grow indefinitely,
as it “collects” geometry constraints along the reverse path.
Therefore, it is important to find criteria to simplify this set of
constraints, when possible. In practice, the following criteria
allow to keep the number of constraints as low as 3-4 per
node in environments similar to that used in Section VII.

In the following, let RESP({Mi}) be the set of covariance
matrices that respects all the constraints {Mi}:

Definition 1: RESP({Mi}) # {Σ |∀i : Σ ≤ Mi}
Formally, we define the simplification problem as

Problem 3: (Constraints simplification) Given a set {Mi},
find a smaller set {Nj} such that RESP({Mi}) =
RESP({Nj}).
From the following proposition, we conclude that, in order
to simplify the constraints, we only need to discard some
matrices from {Mi}.

Proposition 1: If two constraints sets {Mi} and {Nj} de-
fine the same admissible set of covariances (RESP({Mi}) =
RESP({Nj})) , then one is a subset of the other.
A first idea is for the simplification is to exploit the partial
order induced by ≤ on the matrices. In the following exam-
ple (a), the set {M1, M2, M3, M4} can be reduced to {M1}.
This case is lucky because there exists only one ≤-minimum.
In case (b), there are two minima, {M1, M2}, which must
be kept.

3
1

4 2 n
M1 ≤

M2

M3
≤ M4

o

(a) One ≤-minimum

3
1

4 2 n M2

M1 ≤ M3
≤ M4

o

(b) Two ≤-minima

Using covariance intersection. There is, however, a more
powerful heuristics using covariance intersection. Covari-
ance Intersection (CI) is a statistical tool that allows to
perform data-fusion of measurements having unknown cor-
relation [32].

Definition 2: Given a set of positive definite matri-
ces {Mi}, and a vector ω such that

∑
i ωi = 1, define the

covariance intersection as CI({Mi},ω) #
[∑

ωiM−1
i

]−1
.

Here, we use only a geometric property of CI:
Proposition 2: A matrix Σ belongs to RESP ({Mi}) iff it

is smaller than the covariance intersection of {Mi} for all
values of ω:

Σ ∈ RESP ({Mi}) ⇔ ∀ω : Σ ≤ CI({Mi},ω)
The following is an example with three matrices. The three
matrices do not dominate each other according to ≤, there-
fore they cannot be simplified using the previous criterion.

But it is the case that CI({M1, M3}, 0.5) ≤ M2, and
therefore M2 can be discarded.

M1
M2

M3

ci(M1,M3)

M1

M2

M3

With the CI trick, the simplification problem is reduced to
the following.

Problem 4: Given a set {Mi} and a matrix N, is there a
vector ω such that CI({Mi},ω) ≤ N?
This is an open problem for us. In the implementation,
when it is needed to check for this condition, the covariance
intersection is done for only a finite number of values for ω:
with only one element set to 1: ω = 〈. . . , 0, 1, 0, . . .〉; with
two elements set to 0.5: ω = 〈0.5, 0.5, 0, . . .〉; with all
elements set to (1/n): ω = 〈1/n, . . . , 1/n〉.

Design of the ‘"’ relation. To use an A!-like algorithm,
define " as

(n1 " n2) ⇔ tg1 + h(qstart, q1) ≤ tg2 + h(qstart, q2)

Note that, this time, the heuristics must estimate the distance
to the start, instead of to the goal, as in (17).

Design of the ‘!’ relation. A node n1 !-dominates n2

if its time is better or equal, and all covariances admissible
for n2 are also admissible for n1, that is, the set RESP({Nj})
is a subset of RESP({Mi}). Formally, the relation ! is defined
as

(n1 ! n2) ⇔ (t1 ≤ t2) ∧ (RESP({Mi}) ⊇ RESP({Nj}))

Now we need a way to check whether RESP({Mi}) ⊇
RESP({Nj}). To start things off, if for all constraints in {Mi}
there is a stricter constraint in {Nj}, then the condition is
met: this holds in the following example (left). However,
the inverse implication does not hold: a counter-example
is shown (right); in this case, RESP({Nj}) is contained
in RESP({Mi}) but the matrices in {Mi} are not bigger than
those in {Nj}.

{Mi}

{Nj}

N1 ≤ M1

N2 ≤ M2

ff

{Mi}

{Nj}

N1 M1

N2 M2

ff

Covariance intersection gives, once again, a more powerful
criterion:

Proposition 3: If for every matrix Mi there is a covari-
ance intersection of the matrices {Nj} which is smaller
than Mi, then RESP({Nj}) is contained in RESP({Mi}).

∀i∃ω : CI({Nj},ω) ≤ Mi ⇒ (RESP({Mi}) ⊇ RESP({Nj}))
Therefore, also the design of the ! relation is reduced to
solving Problem 4.

1803

only y observable

both observable

only x observable

(c) Information in the environment

PPU-T
forward

A!

PPU-T
backward

A!

PP
forward

A!

PPU-
COV

forward
wave

PP
forward
wave

created nodes 5 474 10 110 369 11 956 1 943
popped nodes 4 211 7 321 229 9 830 1 536

active nodes 4 477 7 337 328 9 767 1 500
epochs - - - 109 58

matrix comparisons 106 252 1 021 156 - 233 874 -
time - G4 (seconds) 0.51 2.13 0.04 5.01 0.10
time - P4 (seconds) 0.23 1.06 0.02 2.50 0.05

(d) Performance comparison

goal

start

Detours to
re-localize

motion
safe

(e) Minimum-time solution (forward algorithm)

back-projection

constraints

of constraints

at goal

different

start

detours

(f) Minimum-time solution (backward algorithm)

start

goal

this time

waits

waits
robot no detour

robot

(g) Minimum-final-covariance solution

Fig. 4. Legend for the table: created nodes: Number of nodes that entered the OPEN or VISITED set. This number does not include nodes that got created
by SUCC but were immediately discarded because they were dominated; popped nodes: number of nodes that were popped out of OPEN and then expanded;
active nodes: Number of nodes contained in VISITED when the simulation stopped; epoch: Number of generations expanded; matrix comparisons number
of times that it was needed to check for a matrix inequality; time - G4 1.5GHz: CPU time needed on a PowerPC G4 1.5GHz; time - P4 2.8GHz: CPU
time needed with a Pentium 4 Xeon 2.8GHz. In both cases, the program was compiled with GCC 3.3 with options -02.

VII. EXAMPLES

For illustrative purposes, we show here the results for a
simple environment/sensor for which the three algorithms
give very different results. We assume the robot to have 4
range sensors mounted in direction N,S,W,E, and the walls
are only in the N-S or W-E directions: in this way, the
environment is partitioned in four kinds of zones (Fig. 4(c)):
where the robots receives no sensing, x observable, y ob-
servable, both x and y observable. For this configuration,
the resulting paths are easily interpreted.

Fig. 4(e) and 4(f) show the PPU-T solutions found by the
forward and backward algorithm. They have the same time
(up to the cell discretization), but the paths are different. In
fact, PPU-T has, in general, a continuum of solutions. The
typical case is that the robot must make a detour to relocalize:
in Fig. 4(e)-4(f) one can see the detour about half-way
along the path; choosing when to make this detour produces
different solutions. It is common that the two algorithms
produce different (optimal) solutions, as their search is biased
in different ways.

Fig. 4(g) shows the solution for PPU-COV found by
the forward wavefront-expansion algorithm; this solution is
topologically different from the PPU-T solution. Here, there
are two points where the robot stays still to acquire more

information: in the middle of the path, to relocalize before a
difficult passage, and at the end: when the robot arrives at the
goal, the best option is to stay still and acquire information
until the available time expires.

From the table in Fig. 4(d), we see that the backward
search expands more nodes than the forward search (about
twice as much) and takes more time (it is about four times
slower). However, because they start their search at different
places, it is easy to construct examples where any of the two
perform very badly with respect to the other.

Also note that the backward search provide more infor-
mation: its search tree can be reused for the next query if
the goal state remains the same. Moreover, the output of the
backward algorithm contains the bounds {Mi} at each step
(the purple ellipses in Fig. 4(f)): if, for any reason, during
the motion, the covariance of the estimate is bigger than the
planned covariance — e.g., because of unexpected occlusions
in the environment — one can compare the new covariance
to the bounds in the plan: if the bounds are still respected,
than the plan is still valid and still optimal.

On the website http://purl.org/censi/2007/ppu,
there are Flash animations of the search process for all
methods, for this and other environments.

1804

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we modeled motion planning with uncer-
tainty using a Bayesian framework. We sought hypotheses
that justify a separate implementation of localization, con-
trol, and planning. Under those hypotheses, the intractable
stochastic control problem can be reduced to path-planning
in the extended space of poses×covariances.

Unfortunately, this fine formalization leads to complicated
computations. The problem is that the set of covariances is
only partially ordered by the relation ≤. If one used a one-
parameter representation, as in [26], the relation ‘≤’ would
be a total ordering, and one could throw away all the exotic
propositions in Section VI. Nevertheless, we believe it is
worth keeping this formalization, as it is the same currently
used in localization/SLAM research.

We considered two problems: minimizing the final time,
and minimizing the final covariance. For the first problem we
proposed two algorithms, both optimal, which are defined as
two different specializations of the same generic template.

The first algorithm is a classic forward search. With
respect to previous work, we allow the robot to stay still,
and we formulate a more powerful dominance relation.

The second algorithm propagates constraint sets from the
goal towards the start. For a single query, it is slower in
typical cases, but its search tree can be re-utilized as long as
the goal remains the same. The fact that these two optimal
algorithms often give different solutions is an experimental
validation that the problem admits a continuum of solutions.

The second problem, minimizing the final covariance, is
the one that we think will provide a bridge to the SLAM
problem. For an effective exploration strategy, the robot
must be well localized in the known map, before sensing
the unknown territory; so PPU-COV could be seen as a
sub-problem of optimal planning for SLAM. In this paper,
we solved the PPU-COV in a very naive way, by using
wavefront expansion. At the moment, it is not clear to us
how to design an effective " relation which will lead to a
more efficient search: that is part of future work.

REFERENCES

[1] A. Lambert and D. Gruyer, “Safe path planning in an uncertain-
configuration space,” in Proc. of the IEEE Intl. conf. on Robotics &
Automation, vol. 3, pp. 4185–4190, Sept. 2003.

[2] R. Pepy and A. Lambert, “Safe path planning in an uncertain-
configuration space using RRT,” in Proc. of the IEEE/RSJ Intl. conf.
on Intelligent Robots and Systems, pp. 5376–5381, Oct. 2006.

[3] A. Censi, “Robot motion planning with uncertainty,” Master’s thesis,
Università di Roma ‘La Sapienza’, May 2007.

[4] B. Bouilly, T. Siméon, and R. Alami, “A numerical technique for plan-
ning motion strategies of a mobile robot in presence of uncertainty,”
in Proc. of the IEEE Intl. conf. on Robotics & Automation, 1995.

[5] L. A. Page and A. C. Sanderson, “A path-space search algorithm
for motion planning with uncertainties,” in Proceedings of the IEEE
International Symposium on Assembly and Task Planning, (Pittsburgh,
PA, USA), pp. 334–340, Aug. 1995.

[6] F. Lorussi, A. Marigo, and A. Bicchi, “Optimal exploratory paths
for a mobile rover,” in Proc. of the IEEE Intl. conf. on Robotics &
Automation, pp. 2078–2083, 2001.

[7] R. Alterovitz, T. Siméon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with markov motion
uncertainty,” in Proceedings of Robotics: Science and Systems, (At-
lanta, GA, USA), June 2007.

[8] H. Takeda and J.-C. Latombe, “Sensory Uncertainty Field for mobile
robot navigation,” in Proc. of the IEEE Intl. conf. on Robotics &
Automation, (Nice, France), pp. 2465–2472, May 1992.

[9] J. P. Gonzalez and A. T. Stentz, “Planning with uncertainty in position:
An optimal and efficient planner,” in Proc. of the IEEE/RSJ Intl. conf.
on Intelligent Robots and Systems, pp. 2435 – 2442, August 2005.

[10] J. Barraquand and P. Ferbach, “Motion planning with uncertainty:
The Information Space approach,” in Proc. of the IEEE Intl. conf.
on Robotics & Automation, 1995.

[11] J. M. O’Kane, “Global localization using odometry,” in Proc. of the
IEEE Intl. conf. on Robotics & Automation, 2006.

[12] A. Lambert and N. L. Fort-Piat, “Safe task planning integrating
uncertainties and local maps federations,” International Journal of
Robotics Research, vol. 19, pp. 597–611, Jun 2000.

[13] A. Lazanas and J.-C. Latombe, “Landmark-based robot navigation,” in
Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI-92), (San Jose, California), pp. 816–822, AAAI Press, 1992.

[14] L. Mihaylova, J. D. Schutter, and H. Bruyninckx, “A multisine
approach for trajectory optimization based on information gain,” in
Proc. of the IEEE/RSJ Intl. conf. on Intelligent Robots and Systems,
(Lausanne, Switzerland), 2002.

[15] L. Blackmore, H. Li, and B. Williams, “A probabilistic approach to
optimal robust path planning with obstacles,” in Proceedings of the
AIAA Guidance, Navigation and Control Conference, 2006.

[16] K. Hsiao, L. Kaelbling, and T. Lozano-Pérez, “Grasping pomdps,” in
Proc. of the IEEE Intl. conf. on Robotics & Automation, pp. 4685–
4692, 2007.

[17] T. Lozano-Pérez, M. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” International Journal of Robotics
Research, vol. 3, no. 1, 1984.

[18] T. Fraichard and R. Mermond, “Path planning with uncertainty for car-
like robots,” in Proc. of the IEEE Intl. conf. on Robotics & Automation,
pp. 27–32, 1998.

[19] P. E. Trahanias and Y. Komninos, “Robot motion planning: Multi-
Sensory Uncertainty Fields enhanced with obstacle avoidance,” in
Proc. of the IEEE/RSJ Intl. conf. on Intelligent Robots and Systems,
1996.

[20] N. A. Vlassis and P. Tsanakas, “A Sensory Uncertainty Field model
for unknown and non-stationary mobile robot environments,” in Proc.
of the IEEE Intl. conf. on Robotics & Automation, 1998.

[21] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in
Advances in Neural Information Processing Systems (NIPS), 1999.

[22] R. Alami and T. Siméon, “Planning robust motion strategies for
a mobile robot,” in Proc. of the IEEE Intl. conf. on Robotics &
Automation, 1994.

[23] M. Khatib, B. Bouilly, T. Siméon, and R. Chatila, “Indoor navigation
with uncertainty using sensor-based motions,” in Proc. of the IEEE
Intl. conf. on Robotics & Automation, vol. 4, (Albuquerque, NM,
USA), pp. 3379–3384, Apr. 1997.

[24] L. A. Page and A. C. Sanderson, “Robot motion planning for sensor-
based control with uncertainties,” in Proc. of the IEEE Intl. conf. on
Robotics & Automation, vol. 2, (Nagoya, Japan), pp. 1333–1340, May
1995.

[25] L. Blackmore, “A probabilistic particle control approach to optimal,
robust predictive control,” in Proceedings of the AIAA Guidance,
Navigation and Control Conference, 2006.

[26] J. P. Gonzalez and A. Stentz, “Planning with uncertainty in position
using high-resolution maps,” in Proc. of the IEEE Intl. conf. on
Robotics & Automation, (Rome, Italy), April 2007.

[27] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[28] J. M. O’Kane, B. Tovar, P. Cheng, and S. M. LaValle, “Algorithms for
planning under uncertainty in prediction and sensing,” in Autonomous
Mobile Robots: Sensing, Control, Decision-Making, and Applications,
Series in Control Engineering, ch. 13, Marcel Dekker, 2006.

[29] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[30] H. L. V. Trees and K. L. Bell, Bayesian Bounds for Parameter
Estimation and Nonlinear Filtering/Tracking. Wiley-IEEE Press, 2007.

[31] A. Censi, “On achievable accuracy for range-finder localization,” in
Proc. of the IEEE Intl. conf. on Robotics & Automation, (Rome, Italy),
pp. 4170–4175, April 2007.

[32] J. Uhlmann, S. Julier, and M. Csorb, “Nondivergent simultaneous map
building and localization using covariance intersection,” in Proceed-
ings of the SPIE Aerosense Conference, pp. 3087–, Apr 1997.

1805

