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Abstract— In mining operations it is advantageous to be
able to predict the future movements of nearby vehicles.
For autonomous mining, this can be used for localised, short
term path planning and risk assessment. For semi-autonomous
or non-autonomous mining, this can be used for collision
avoidance, situational awareness and risk assessment of maneu-
vers between a human operated vehicle, and another vehicle
(operated by a human or otherwise). This paper introduces
a probabilistic approach to predicting vehicle movements, in
particular, the time until two vehicle paths intersect. Results
are shown using real data collected from the operation of two
separate fleets of vehicles.

I. INTRODUCTION

Predicting the future movements of vehicles is important

in many safety and planning applications, both autonomous

and non-autonomous. This paper presents a new approach

to predicting the movements of surrounding vehicles, and

estimating a timeframe for the interactions between vehicles.

A complete system is introduced that includes detection of

the nearby vehicles, and the probabilistic algorithms to obtain

an estimate of the time when the paths of the vehicles will

intersect.

The first section of this paper examines current approaches

to finding a measure of Time to Intersection (TTI) between

vehicles. In this context, the intersection between vehicles

refers to the point where the two vehicles meet, or pass each

other on a road. To measure the TTI between vehicles, it is

first necessary for the vehicles to be detected. A discussion

into the different approaches to this problem is presented.

Once the surrounding vehicles are detected, it is necessary

to determine the path of the vehicle, and to calculate the

TTI. Vector analysis is the most common form of predicting

TTI, usually used for predicting collisions between vehicles.

In this work, some examples of the shortcomings of this

method are provided.

Section III describes the requirements of the system. One

requirement is to provide a measure of TTI, including the

confidence bounds of the predictions. The confidence is

necessary for determining the estimated worst case scenario,

which is the earliest possible time that the vehicle paths will

intersect. Communication between the vehicles is another

important system requirement. The communication is nec-

essary to transfer motion information between vehicles such

as position, velocity and heading.

The algorithm to predict the vehicle motion and TTI is

defined in Section IV. The first part of this is the modelling

of the system. To include map information into the algorithm,

the velocity is defined as a function of distance. A velocity

profile is generated for each section of road, and this is used

to propagate the vehicle model.

Once the system is modelled, the time to intersection

can be predicted. When it is calculated that two vehicles

have intersecting paths, the position PDF for each vehicle

is calculated. A time based convolution is performed on

these two position PDFs, and the result is a time based

probabilistic measure of the TTI. The outcome of this is

a probabilistic measure of how confident the system is of

the vehicles motion, including the estimated first possible

chance of the vehicles intersecting. This can be used for

planning vehicle maneuvers, or for measuring safety through

calculating a risk of collision.

Results of the new system in operation are provided. Data

was collected from two separate fleets of vehicles, each

operating over several days. A performance analysis of the

new system over many hundreds of vehicle interactions is

provided. Statistics are provided for the performance of the

two main measures of TTI, these being the first possible time,

and the most likely time of an intersection between vehicle

paths.

II. PREDICTING MOVEMENTS OF OTHER VEHICLES

To predict the movement of surrounding vehicles, it is first

necessary that they are detected. Once the other vehicles are

detected, it is then necessary to predict whether the paths of

these vehicles will intersect with the vehicle in consideration.

If it is determined that the paths will intersect, the time

until intersection is calculated, which is useful for predicting

potential collisions, or planning maneuvers in autonomous

vehicles.

Detection of Other Vehicles

It is possible to detect surrounding objects, such as other

vehicles, by fitting sensors such as cameras or radar to a vehi-

cle ([1], [2], [3]). The sensor data can be processed to extract

inferences about the surrounding vehicles motion properties.

This usually includes range or position, and can sometimes

provide heading and/or velocity to some extent. This can be

considered passive detection, because it is not necessary to fit

any equipment to the objects being detected. The advantage

of this method is that all objects visible to the sensor can

potentially be detected, without any special equipment on

the surrounding objects. There are however limitations with

this method, such as finding a unique identifier for individual
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objects, accurately predicting dynamic properties of the

objects, handling obstructed/partially obstructed objects and

dealing with false positives. Also, sensors such as cameras

do not perform well in environments such as dusty roads,

night operation and rain/foggy weather.

An alternative method is to use active detection ([4], [5],

etc). This method involves fitting all vehicles with a form

of communication, and broadcasting the identity, position,

velocity and other information to surrounding vehicles. This

method provides a clear indication of the properties of

the surrounding agents with very low probability of false

positives. An advantage of this system is that wireless

communiation can provide significant range of detection

(> 500m). To some extent, these systems are not bounded

by direct visibility since wireless communication has some

ability to work out of a direct line of sight. The main problem

with this method is that a system must be installed and

working in each vehicle that is to be detected. This is a

problem for operation in public roads, but is feasible in

closed environments such as mines, quarries, ports, private

enterprises, etc. This method was selected for the mining

application outlined in this paper.

Predicting Time To Interaction

Depending on the sensor information available and the

range of prediction required, there are several possible ap-

proaches to the problem of predicting the Time to Intersec-

tion between vehicles. The first approach reviewed here is

by projecting the current vehicle state vector ([4], [5], etc).

This involves considering the heading, position and velocity

of each vehicle, and projecting the vectors to find the point

of intersection, and the time until intersection. This is not

sufficient in many cases, since the road is not taken into

consideration. Figure 1 illustrates several cases where the

vector analysis fails. In some cases (for example, top left in

the Figure 1) the velocity vectors intersect even though the

vehicles are on separate roads, and will not meet. Another

problem (illustrated in the remaining images from Figure 1)

is that the velocity vectors indicate a time to intersection

that does not accurately represent the real situation. Without

integrating map information into the equations, there is no

way to consider many possible road scenarios.

Without the inclusion of map information in the prediction

of future state vectors, the properties of roads that affect

the velocity of the vehicle are ignored. This means that the

models do not consider that vehicles drive at different speeds

depending on the properties of the road, such as gradient,

curvature and visibility. As an example, vehicles travelling

into a sharp curve will slow down, so analysing the vehicle

TTI will give an incorrect result using a constant velocity

model, or other simplistic models.

The second potential approach considered in this paper

regards learning vehicle trajectories, examples of which can

be found in [6] and [7]. This body of research involves using

statistical motion patterns that are learnt using many different

techniques, a comprehensive list of these can be found

in [7]. These techniques have been used to learn vehicle

Fig. 1. Several scenarios are presented here to highlight that a simple
vector analysis to predict the interactions between vehicles is not sufficient.
It is necessary to have map information to correctly predict the outcome.
The dotted lines mark where the roads are in the image, and the arrows
represent the velocity vectors of each vehicle.

trajectories using fixed cameras to track the vehicles. These

learned trajectories have then been used to forward predict

the behaviour of the vehicle. In the context of the problem

outlined in this paper, the focus of this research to date

has been more towards monitoring traffic at intersections,

detecting anomalies, and tracking vehicles around a site.

This paper introduces an alternate vehicle model where the

trajectory of the vehicle is fixed to a known map. The map is

in the form of a graph, resulting in single dimensional roads

and intersections. A velocity model of the roads is learnt

using position/velocity data collected from a fleet of vehicles,

and this road model is integrated into the vehicle model. A

prediction algorithm is used to provide an estimated Time to

Intersection for vehicles over any distance as a PDF.

III. SYSTEM REQUIREMENTS

Measuring TTI

To determine whether a vehicle maneuver is safe, it is

necessary to have a probabilistic measure of TTI. This

measure can be used to plan maneuvers, or calculate the

risk of collision for safety applications. An estimated TTI is

not useful without the inclusion of confidence bounds. The

most important confidence bound is the lower bound, which

is the estimated first possible time to interaction between

vehicles. This can be considered as a “worst case scenario”,

and is the most important measure for determining the safety

of maneuvers.

Communicating between Vehicles
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Fig. 2. An example of the velocity PDF generated, with the probability colour scale shown on the right. On the left of the graph, the vehicle starts from
a very slow speed, then acceleration occurs. At around 300m, there is a section where the vehicles slow down, most likely a sharp corner.

  base

station

   multi hop

data transfer

1st hop

2nd hop

Fig. 3. An overview of the mesh network implemented in the vehicles,
and in a base station.

A mesh network is used for communication between

vehicles, as illustrated in Figure 3. This network allows

the vehicles to transmit their position, velocity and other

data. The mesh network was designed for long range, robust

connections, which is essential for planning and estimation

applications. A base station computer is also fitted to be

a node on the mesh network. This allows the data to be

collected periodically from the vehicles, and also allows for

the transferring of programs, configuration files and updated

digital maps to the vehicles.

A secondary, redundant wireless network working at a

different frequency has been included in the system to in-

crease the reliability of the transmission of information. The

secondary system is a lower bandwidth radio implemented

for location information only, the high bandwidth data (such

as maps, etc) is transmitted only through the mesh network.

IV. PREDICTION ALGORITHM

Modelling the System

A process of incorporating map information into the ve-

hicle model was introduced in [8]. The following subsection

provides an overview to this process, put into the context of

the application defined in this paper.

The digitised map is in the form of a directed graph

(digraph). Each edge of the graph represents a road that

connects the graph nodes, which are the intersections. Each

edge of the graph is unidirectional, meaning that a normal

two lane road is represented by two edges, one for each

direction. An illustration of this can be seen in in [8].

The graph representation means that the state space can

be considered as a single dimension, the distance along the

road. The state space is assigned the value S, and a discrete

representation can be created by dividing the state space into

the set of divisions (si) as described in Equation 1. The

motivation behind using a discretised space is to be able to

represent non-linear, non-parametric velocity functions [8].

The high level vehicle plan (future sequence of graph

edges) is considered to be unknown. This means that for a

vehicle approaching an graph node (intersection), the predic-

tion algorithm considers that the vehicle could travel in any

valid direction, following any possible graph edge leading

away from the node. For a safety application, it is necessary

to assume that the human driver could take any direction at

an intersection, even if the driver was instructed to go in

a particular direction. This could lead to an indication of a

potential interaction between vehicles even if the vehicles do

not eventually meet. In the case of an autonomous system, it

is possible to transmit high level plans between the vehicles

over the network to eliminate this possibility.

S = s1 ∪ s2 ∪ · · · ∪ sm (1)

A velocity profile for each road division (si) is generated

using historical GPS data [8]. This defines the historical

probability (PDF) of vehicle velocity for a given section of

road, meaning that velocity is represented as a function of

distance. This is illustrated in Figure 2, where the combined

velocity PDF for an entire section of road is shown. The
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road speed is usually limited by features such as road

gradient, road curvature, etc, and these properties are built

into the velocity model for the road. Considering velocity as

a function of distance leads to Equation 2.

velocity V = f (S)

P (V |S) = P (V |si) for si ∈ S

= PDF shown in Figure 2 (2)

The motion of the vehicle can then be described as shown

in Equation 3;

distance S =

∫

V dt

St+1 = St + V ∆t (discrete model) (3)

The propagation model for the prediction algorithm comes

from the combination of Equation 2 and 3, shown below;

St+1 = St + V ∆t (discrete model)

P (St+1) = P (St) ∗ P (V |si) for si ∈ S (4)

Equation 4 shows that the posterior is given by the

convolution (∗) of the prior distance PDF with the velocity

PDF. This model is then implemented as a histogram filter,

as described in Worrall [8].

Predicting the TTI

A model has been defined in the previous section for

predicting the location of a vehicle by considering velocity

as a function of distance. Consider now two vehicles both

using this model, where the position of each vehicle is given

by P
(

S1
)

and P
(

S2
)

respectively.

The probability of the vehicles being at the same location

for a given time is defined in Equation 5. Here, P (I) is

the probability of the vehicles being in the same location

over time, and P (it=1) represents the probability of co-

location for a discrete time sample (k). Considering P (I) as

a discretised function, as the time divisions approach zero,

the function approaches the true value. For accuracy, the

optimal time division between samples is dependant on the

speed of the vehicles. For faster vehicles it is necessary to

use closer divisions to accurately represent P (I). The reason

for this will become apparent later in this section.

P (I) = P (it=0) ∪ P (it=1) ∪ . . . (5)

For a specific time, the probability that the two vehicles

will be in the same location is given by the integration of

the two position PDFs multiplied together. This is shown in

Equation 6

P (it=k) =

∫

S

P
(

S1|tk
)

• P
(

S2|tk
)

≈
∑

S

P
(

S1|tk
)

• P
(

S2|tk
)

(6)

This process is a convolution where P (I) is the convo-

lution of the two vehicle position PDFs over time. Each

P (it=k) is a discrete sample from this function, and so the

more samples taken, the closer the result will be to the true

convolution. The reason why more samples are required for

faster vehicles is that the peak value will be higher over the

time domain, and the spread less. With fewer samples, it is

possible to miss the peak value. In any case, the convolution

will not sum to one because the vehicle PDFs are modified

for each time step in the convolution calculation.

The resulting convolution P (I) is the probability that

two vehicles are in the same location over time. The first

significant value in this function represents the earliest time

that the vehicles will meet. The highest value represents the

most likely time that the vehicles will meet. These are the

two important measures, as defined in Section III.
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Fig. 4. This graph shows the result of two trucks moving closer together.
For each time step, the calculation of TTI is plotted with the filter bounds.
The actual measured time until the vehicles intersect is also shown.

When two vehicles establish communication and transmit

their positions and other data, the algorithms can be ini-

tialised, and the times can be calculated. Each corresponding

communication can be used to recalculate the times, and

update the predicted TTI. This will reduce the variance

on the probability P (I). This can be seen in Figure 4,

which demonstrates the output of the algorithms for two

trucks moving closer together. The estimated TTI is updated

each second, and as the vehicles get closer, the variance is

reduced.

V. RESULTS

The following results were taken from two datasets col-

lected from vehicle fleets in two different mines. The data

from several days operation of both vehicle fleets was used

to give the following statistics. The data encompasses many

hundreds of vehicle interactions, at varying speeds and at

different locations in the mines. It is important to point out
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that even with such a variety of locations, headings, distances

and speeds, the results are consistently close to the actual

measured TTI from the data.
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Fig. 5. A histogram showing the error between the estimated TTI and the
actual measured TTI. This includes samples from many different situations,
including different areas of the mine, different speeds, etc.
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Fig. 6. A histogram showing the error between the estimated first possible
TTI and the actual measured TTI. The graph shows that all interactions
measured in the data occured on, or after the time of the estimated first
possible TTI. Again, this graph includes many samples from vehicles at
different speeds, distances and also in different areas of the mine.

The first result shows a comparison between the measured

TTI and the actual TTI, illustrated in 5. This shows the

spread of results from many vehicle interactions at different

speeds, and in different parts of the mine. The measure

is a percentage error, i.e. an error of +10 means that the

actual time to vehicle intersection was 10% greater than

the estimated time. The data was considered only for times

where the vehicles passed after less than 20 seconds.

Figure 6 shows the percentage difference between the

estimated “first possible time” to intersection (as shown in

Figure 4) and the actual TTI. Again, an error of +10 means

that the actual time to vehicle intersection was 10% greater

than the estimated first possible time. The results show that

even with the variety of situations presented in the datasets,

the actual TTI is consistently later than the first possible TTI.

This is important if this measure is to be used for planning

vehicle maneuvers, or detecting unsafe driver behaviour.

VI. CONCLUSION

This paper presents a new approach to predicting future

movements of vehicles, and a method of predicting the time

until the vehicles intersect. Existing methods are inaccurate

in many situations because they do not take into account the

properties of a road, and the velocity that vehicles will travel

at different points along a road. The approach presented in

this paper involved building a velocity profile for each road

using collected GPS data. A model for vehicle motion was

given with velocity as a function of distance along a road.

Results of the new system were provided, showing the

performance of the algorithms implemented. Data collected

from two separate fleets of vehicles, in different locations

was used in the algorithms, and a statistical analysis of the

performance was provided. The new approach was shown to

provide a useful measure of the estimated time until inter-

section, and more importantly, a measure of the estimated

first possible time until intersection. These measures can be

used for path planning, risk assessment, collision avoidance

and many other applications, both autonomous and non-

autonomous.
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