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Abstract— This paper considers the navigation of a three
degrees-of-freedom mobile robot equipped with position and
tactile sensors in an unknown planar environment. The paper
focuses on the contact preserving segments of the robot’s
path. Any contact preserving path can trace a single or two
simultaneous contacts. The paper establishes that motions
involving two contacts induce two types of configuration-space
curves: contractible loops representing passable gaps, and non-
contractible loops representing impassable gaps. The paper
identifies a generic class of contact preserving paths which
requires only single-contact tracings with efficient transitions
at double-contact configurations involving impassable gaps,
and at triple-contact configurations involving both passable
and impassable gaps. A preliminary tactile-sensor navigation
algorithm based on these paths is illustrated with an example.

I. INTRODUCTION

This paper considers the navigation of a three degrees-of-

freedom mobile robot in a planar environment populated

by unknown obstacles. The robot has no apriori informa-

tion about the environment, but may locally acquire this

information using its on-board sensors. This class of on-line

problems has a wide range of applications in unstructured

environments where the robot must detect obstacles during

task execution. Examples are material and mail delivery

in factories and offices [1], medicine distribution in hospi-

tals [6], horticulture duty in greenhouses [8], and planetary

exploration and sample acquisition [10], [14]. Current sensor-

based navigation algorithms usually assume that the robot

moves with two translational degrees of freedom (two excep-

tions are discussed below). However, practical mobile robots

move with three degrees of freedom involving translation

and rotation. Since full maneuverability is often critical for

task completion, there is a need to develop sensor based

navigation algorithms that can plan the robot’s full three

degrees of freedom motions.

Much like the classical sensor based navigation algo-

rithms, this paper focuses on tactile-sensor based navigation.

Two notable algorithms in this area are BUG1/BUG2 [15]

and ALG1/ALG2 [17]. Both algorithms navigate a two

degrees-of-freedom mobile robot in an unknown planar envi-

ronment using position and tactile sensors. These works have

been extended to navigation in planar environments using

vision and laser sensors [11], [14], [18]. However, these

works assume that the robot moves with two translational

degrees of freedom. This paper strives to achieve tactile

based navigation of three degrees-of-freedom mobile robots.
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Cox and Yap consider three degrees-of-freedom naviga-

tion of a rod equipped with position and tactile sensors

in an unknown planar environment [5]. Once the rod hits

a collection of impassable obstacles, it traces a series of

double-contact curves until it can resume its motion toward

the target. Their algorithm requires that the rod follow paths

which maintain two sliding contacts, a demanding task that

can only be implemented with very slow and guarded robot

motions. Under our approach the mobile robot is a general

convex body, and its contact preserving paths involve only

single-contact tracings.

Choset et al. consider three degrees-of-freedom navigation

of a convex robot equipped with position and distance-to-

obstacles sensors in an unknown planar environment [3],

[4]. The robot follows a c-space network of generalized

Voronoi curves corresponding to equidistant configurations

from triplets of obstacles in the environment. While this

approach can be readily implemented, it requires that the

robot be able to continuously observe triplets of obstacles

in order to proceed along the generalized Voronoi curves.

Moreover, these curves do not necessarily form a connected

network, forcing the robot to follow possibly complex con-

nection curves between the network’s distinct components.

Under our approach the robot moves along single obstacles in

the environment, and only the transitions between successive

path segments involve multiple contacts with the environ-

ment. Navigation along a single obstacle at a time seems to

offer significant advantages in terms of path robustness and

ease of implementation.

This paper reports initial results concerning tactile-sensor

based navigation of a three degrees-of-freedom convex robot

moving in a planar environment populated by unknown

polygonal obstacles. The paper focuses on the robot’s contact

preserving path segments, where it attempts to efficiently

circumnavigate collections of impassable obstacles.

The paper’s structure and contributions are as follows.

Section II generalizes a classical result on the existence of

contact preserving paths between two contact configurations

with a collection of impassable obstacles. Section III classi-

fies the robot’s double-contact paths in terms of two types

of configuration-space curves: contractible loops represent-

ing passable gaps, and non-contractible loops representing

impassable gaps. Based on this classification, Section IV

identifies a minimal set of obstacles which supports contact

preserving paths between any two contact configurations

with a collection of impassable obstacles. This section also

describes a generic class of contact preserving paths con-

sisting only of single-contact tracing segments. Section V
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describes a preliminary tactile-sensor based navigation al-

gorithm together with an execution example. The conclud-

ing section discusses the generalization of the approach to

remote-sensing obstacle detection sensors.

II. EXISTENCE OF CONTACT PRESERVING PATHS

This section describes our setup, then establishes a basic

result on the existence of contact preserving paths. The robot

is a strictly convex body denoted A having a piecewise

smooth boundary. The robot moves with three degrees of

freedom in a planar environment populated by stationary

polygonal obstacles denoted B0, . . . ,Bm. The perimeter of

each obstacle is a simple polygonal loop such that one obsta-

cle, say B0, surrounds the environment from the outside. The

robot, having no apriori knowledge of the environment, is re-

quired to navigate to various targets using two sensors which

are assumed ideal. The first is a position-and-orientation

sensor giving the robot’s coordinates with respect to a fixed

reference frame. The second is a tactile sensor mounted

along the robot’s perimeter, giving the robot’s current contact

with the environment while monitoring establishment of new

contacts. Based on these readings, the robot is capable of

executing contact preserving paths as well as changing the

contact being traced at discrete multi-contact configurations.

Next we introduce configuration space terminology. The

mobile robot’s c-space is the three-dimensional space

IR2×S1, where S1 is the unit circle. Points in IR2×S1 are

denoted q = (d, θ), where d = (dx, dy)∈IR2 and θ∈S1 are

the robot’s translational and rotational degrees of freedom.

Let A(q) denote the set occupied by the robot when it is

at a configuration q. The c-obstacle corresponding to Bi,

denoted CBi, is the set of configurations at which A(q)
intersects Bi. The boundary of CBi, denoted bdy(CBi),
consists of configurations at which A(q) touches Bi such

that the bodies’ interiors are disjoint. It can be verified that

CBi is bounded by piecewise smooth surfaces. The free

configuration space, denoted F , is the complement of the

c-obstacles’ interiors.

We now consider a key theorem on the existence of

contact preserving paths. Let the robot’s minimal width,

denoted Dmin, be the minimal distance among all antipodal

points along the robot’s perimeter. A collection of impassable

obstacles is a set of obstacles lying less than Dmin apart, thus

forming a single obstacle from the robot’s perspective (see

Section IV).

Theorem 1: Let a planar robot (not necessarily convex)

move in a bounded planar environment. Let the robot touch

a collection of impassable obstacles at two configurations q1

and q2. If there exists a path between q1 and q2 in F , there

exists a contact preserving path between q1 and q2 in F .

Note that the contact preserving path can maintain contact

with the collection of impassable obstacles as well as other

neighboring obstacles. A version of the theorem for a convex

body moving amidst convex parts appeared in the context of

assembly planning [9]. We provide a general version of the

theorem together with a new proof of the result.

Proof: By assumption q1 and q2 lie in the same connected

component of F . Hence we simply regard F as consisting

of a single connected set. Since the physical environment

is compact the free c-space F is compact in IR2×S1. The

boundary of each c-obstacle consists of connected piecewise-

smooth surfaces. Hence F itself is bounded by compact and

connected piecewise-smooth surfaces, denoted S0 . . .Sp. For

generic obstacle arrangements, each Si is a compact and

connected two-dimensional topological manifold in IR2×S1.

We now invoke the generalized Jordan curve theorem [2].

Every compact and connected two-dimensional topological

manifold in IR2×S1 forms a closed surface which separates

the ambient c-space into two disjoint connected sets: a

bounded interior set enclosed within the surface, and an

unbounded exterior set lying outside the surface. This theo-

rem is formally discussed in Ref. [7] while some intuition is

provided below.

Recall that S0 . . .Sp denote the distinct boundary surfaces

of F . Since F is connected, it lies either within the interior

or within the exterior of each surface Si for i = 0 . . . p.

The set obtained by removing from IR2×S1 the interior of

all surfaces S0 . . .Sp is unbounded. Since F is bounded,

it must lie in the interior of at least one surface, say S0.

All other surfaces are subsets of F and therefore lie within

the interior of S0. The connectivity of F now implies that

it must lie in the exterior of all internal surfaces S1 . . .Sp.

The c-obstacles therefore lie in the exterior of S0 and in the

interior of each Si for i = 1 . . . p.

We now invoke a second result. If an obstacle is connected

in physical space, its c-obstacle is connected in IR2×S1 [13,

Prop. 2.6]. A collection of impassable obstacles induces

overlapping c-obstacles whose union is similarly a connected

set in IR2×S1. The exterior of S0 and the interior of each

Si (i = 1 . . . p) are disjoint sets. Since the union of the c-

obstacles associated with a collection of impassable obstacles

is connected, it lies either in the exterior of S0 or in the

interior of some Si for 1 ≤ i ≤ p. Since q1 and q2 involve

contact with the same collection of impassable obstacles,

they lie on the same boundary surface Si for some 0 ≤
i ≤ p. Since each Si is connected and consists of contact

configurations, there exists a contact preserving path from q1

to q2. �

The original Jordan curve theorem asserts that every loop on

a topological sphere separates the sphere into two sets. The

same result holds for the cylinder IR×S1, which is analogous

to our three-dimensional space IR2×S1. In contrast, the c-

space of a 2R manipulator, being the torus S1×S1, does not

possess such a separation property. Indeed, a 2R manipulator

can touch an obstacle at two configurations connected by a

collision-free path, yet there need not exist a contact preserv-

ing path between the two configurations. The implication

of the theorem for tactile-based navigation is as follows.

Given a target configuration, the mobile robot can initially

move toward the target until it hits a collection of impassable

obstacles. Based on the theorem, a tactile-based path can take

the robot to any desired target along the obstacles’ boundary
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from which the robot can resume its motion towards the

target. The characterization of an efficient contact-preserving

path from a hit configuration to a leave configuration is

discussed in the next section.

III. THE DOUBLE-CONTACT PATHS

We eventually synthesize contact preserving paths consist-

ing of single-contact tracings with discrete transitions at

double and triple-contact configurations. The double-contact

configurations form a collection of curves in the robot’s c-

space. This section establishes that these curves belong to

two topologically distinct classes associated with impassable

and passable gaps.

In order to properly classify the double-contact curves,

we decompose each polygonal obstacle Bi into a union of

overlapping convex polygons. Let Bi consist of the union

Bi = ∪ki

j=1B̃ij
, such that each B̃ij

is convex (i = 0 . . . m).

We require that every pair of overlapping convex pieces inter-

sect transversally, at interior points of non-collinear edges.

Note that there exist efficient algorithms for decomposing

a given polygon into convex pieces [12][pp 197-216]. For

notational simplicity, let B̃1, . . . , B̃k (where k =
∑

m

i=0
ki)

denote the collection of all convex obstacle pieces in the

environment. We also assume that A’s boundary has a well

defined normal at each of its points (the ensuing results hold

true even when A’s boundary is piecewise smooth).

The following lemma asserts that the robot’s contact-

point position with an obstacle induces a partition (or folia-

tion [16]) of the c-obstacle boundary into a family of curves.

Lemma 3.1 (Contact-Point Foliation): Let the robot

A be strictly convex and let B̃i be a convex obstacle-piece.

Then the surface of CB̃i is partitioned into one-dimensional

curves, each associated with a fixed contact point along B̃i’s

boundary:

bdy(CB̃i)=∪
x∈bdy(B̃i)

αx s.t. αx =
{

q :A(q) ∩ B̃i ={x}
}

.

Moreover, each αx is monotonic and periodic in the θ-

coordinate, but is aperiodic in the (dx, dy) coordinates.

Let us make two clarifying remarks. It can be verified that

when A and B̃i are convex, CB̃i is topologically equivalent

to a solid cylinder parallel to the θ axis. Since θ is periodic

in 2π, CB̃i is topologically equivalent to a solid torus in

IR2×S1 (Figure 1). The periodicity of αx in θ implies that it

cannot be contracted to a point along the c-obstacle’s surface.

The aperiodicity of αx in (dx, dy) means that it does not

wrap around the solid cylinder corresponding to CB̃i.

Proof sketch: Every q∈bdy(CB̃i) corresponds to a configu-

ration where A(q) touches B̃i such that the bodies’ interiors

are disjoint. Since A is strictly convex and B̃i is convex, A(q)
touches B̃i only at a single point. Hence every q ∈ bdy(CB̃i)
corresponds to a unique contact point x ∈ bdy(B̃i). It

follows that the sets αx =
{

q : A(q) ∩ B̃i = {x}
}

such that

x ∈ bdy(B̃i) partition the surface of CB̃i into disjoint sets.

A proof that each αx forms a one-dimensional curve appears

in [7]. Monotonicity and periodicity of αx with respect to the

robot’s θ coordinate follows from the fact that both bodies

Fig. 1. (a) A topological model of a double-contact curve associated with
an impassable gap. (b) An infeasible double-contact curve.

are convex—one can monotonically rotate the robot while

retaining contact with any fixed point x∈bdy(B̃i). A proof

that αx cannot wrap around CB̃i also appears in [7].

The following proposition asserts that impassable gaps in-

duce non-contractible loops on the c-obstacles’ surfaces. The

minimal distance between B̃i and B̃j is denoted dst(B̃i, B̃j).

Proposition 3.2 (Impassable Gaps): Let the robot A be

strictly convex, and let B̃i and B̃j be two possibly overlap-

ping convex obstacle-pieces. Then B̃i and B̃j induce double-

contact curves which are monotonic in θ and cross every

fixed-θ slice of the robot’s c-space iff

dst(B̃i, B̃j) < Dmin,
where Dmin is the robot’s minimal width. Moreover, these

double-contact curves are periodic in the θ coordinate but

aperiodic in the (dx, dy) coordinates.

The curve’s periodicity in θ implies that it forms a loop

which cannot be contracted to a point along the surface of

either c-obstacle. The curve’s aperiodicity in (dx, dy) implies

that it cannot wrap around either c-obstacle, see Figure 1.

Due to space constraints, the proof of the proposition is

relegated to Ref. [7]. The next proposition asserts that

passable gaps induce contractible double-contact loops on the

c-obstacles’ surfaces. Let the robot’s maximal width, denoted

Dmax, be the maximal distance over all antipodal points

along the robot’s perimeter.

Proposition 3.3 (Passable Gaps): Let the robot A be

strictly convex, and let B̃i and B̃j be convex obstacle-pieces.

Then B̃i and B̃j induce double-contact curves which cross

only a subset of the fixed-θ slices of the robot’s c-space iff

Dmin < dst(B̃i, B̃j) < Dmax,
where Dmin and Dmax are the robot’s minimal and maximal

widths. Moreover, these double-contact curves form loops

which can be contracted to a point along the surface of either

c-obstacle.

Due to space constraints, the proof of the proposition is also

relegated to Ref. [7]. The following theorem summarizes the

classification of the double-contact curves.

Theorem 2: Let the robot A be strictly convex, and let

B̃i and B̃j be two convex obstacle-pieces. Then B̃i and B̃j

induce two types of c-space double contact curves:

1. Impassable gaps: When dst(B̃i, B̃j) < Dmin the double-

contact curves form loops which cross every θ slice of

IR2×S1, such that each loop is non-contractible on the
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surface of either c-obstacle.

2. Passable gaps: When Dmin < dst(B̃i, B̃j) < Dmax the

double-contact curves form loops which cross only a subset

of the θ slices of IR2×S1, such that each loop is contractible

to a point on the surface of either c-obstacle.

Note that triple-contact configurations, associated with si-

multaneous contact of the robot with three obstacle pieces,

occur at points where three double-contact curves meet.

IV. A CLASS OF SIMPLE CONTACT

PRESERVING PATHS

Recall that we wish to circumnavigate every collection of

impassable obstacles using only single-contact tracings. This

section characterizes a class of such paths which strives to

minimize the number of contact-point transitions during the

robot’s motion. We first define what constitutes a collec-

tion of impassable obstacles. The convex obstacle pieces

B̃1, . . . , B̃m are simply called ‘obstacles’ for the remainder

of the paper.

Definition 1: A single obstacle B̃i is impassable. A

collection of p obstacles B = {B̃1, . . . , B̃p} such that

p > 1 is impassable if ∪p−1
j=1 B̃j is impassable and

dst
(

B̃p,∪
p−1
j=1 B̃j

)

< Dmin, where Dmin is the robot’s

minimal width.

Each collection of impassable obstacles forms a connected

graph. Its nodes are the obstacles of B, and its edges connect

obstacles which either overlap or share an impassable gap.

The next definition augments a collection of impassable

obstacles with triple-contact neighbors.

Definition 2: Let B be a collection of impassable obsta-

cles. The 3-connected set of B, denoted B̄, is constructed

as follows.

1. Initialize B̄ with the obstacles of B.

2. Repeat the following step:

2.1 Add a new obstacle B̃i to B̄ if there exist B̃j , B̃k ∈ B̄

s.t. A can simultaneously touch B̃i, B̃j , B̃k. Then add to B̄

all new obstacles B̃l satisfying dst(B̃l, B̃i) < Dmin.

2.2 Add two new obstacles B̃i, B̃j to B̄ if there exists B̃k ∈ B̄

s.t. A can simultaneously touch B̃i, B̃j , B̃k. Then add to B̄

all new obstacles B̃l satisfying either dst(B̃l, B̃i) < Dmin or

dst(B̃l, B̃j) < Dmin.

3. End when no new obstacles can be added to B̄.

Each step of the construction adds to the current B̄ new

triple-contact neighbors, as well as new obstacles sharing an

impassable gap with the new triple-contact neighbors. The

set B̄ can be represented by a connected graph, denoted

GB̄, as follows. Initially GB̄ consists of the connected

graph representing B. In step 2 we add a node for each

new triple-contact neighbor, together with three edges B̃i–

B̃j , B̃i–B̃k, B̃j–B̃k between the obstacles involved in the

triple contact. Then we add a node for each B̃l with an edge

to the obstacle with which it shares an impassable gap. The

following key theorem asserts that the obstacles of B̄ support

contact preserving paths between the obstacles of B.

Theorem 3: Let q1 and q2 be two contact configurations

of A with a collection of impassable obstacles B. If there

exists a path from q1 to q2 in F, there exists a contact

preserving path from q1 to q2 which maintains contact only

with the obstacles of the 3-connected set B̄.

Moreover, B̄ is minimal in the sense that in some environ-

ments a contact preserving path from q1 to q2 need not exist

once an obstacle is removed from B̄.

Due to space constraints, the proof of the theorem is

relegated to Ref. [7]. The implication of the theorem for

path synthesis is stated in the following corollary.

Corollary 4.1: Let q1 and q2 be two contact configu-

rations of A with a collection of impassable obstacles B.

There exists a path from q1 to q2 consisting only of single-

contact tracings along B̄’s obstacles, with transitions at

configurations where A touches two obstacles of B̄ sharing

an impassable gap, or at configurations where A touches

three obstacles of B̄ sharing passable or impassable gaps.

V. A TACTILE SENSOR BASED NAVIGATION

ALGORITHM

We describe a preliminary navigation algorithm for a three-

degrees-of-freedom convex mobile robot which moves in a

planar environment populated by unknown polygonal obsta-

cles. The robot is equipped with tactile and position sensors,

and has on-board memory which allows storage of the c-

space curves constructed on-line by the algorithm.

We first sketch the global operation of the algorithm. Let S

and T denote the robot’s start and target configurations. Let

P denote the fixed c-space plane parallel to the θ axis and

containing S and T . The robot initially moves within P along

a straight line from S to T , until it encounters a collection

of impassable obstacles at a configuration q1. Let B be this

collection of impassable obstacles, let B̄ be its 3-connected

set, and recall that CB̄ is the union of B̄’s c-obstacles. The

robot next executes a series of single-contact tracings along

the obstacles of B̄ while searching a network of c-space

curves on CB̄’s surface. Using any standard search method

such as DFS, the robot eventually reaches a configuration q2

which lies in P and is closer to T then q1. At this point the

robot resumes its motion toward the target within P , until

it encounters the next collection of impassable obstacles or

reaches the target.

The robot’s tactile sensor allows exploration of CB̄’s

surface as follows. Recall that the contact-point position

along a physical obstacle boundary partitions the c-obstacle’s

surface into one-dimensional curves or leafs (Lemma 3.1).

On the other hand, the double-contact curves partition CB̄’s

surface into two-dimensional sets or cells (each cell lies

on the surface of an individual c-obstacle). Each cell is

therefore a union of disjoint leaf segments, such that each

leaf segment has its endpoints on double-contact curves.

The latter endpoints occur at configurations at which the

robot touches the current obstacle as well as some other

neighboring obstacle. The robot can therefore trace an entire

leaf segment by rotating its body in both directions while
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maintaining the contact point fixed, until its tactile sensor

reports that a new contact has been established. By repeating

this process for each contact point along the physical obstacle

boundary, the robot can explore an entire cell. In practice

each leaf segment can be explored without any physical

motion of the robot: one simply replaces the tactile sensor

with an obstacle detection sensor capable of reporting on

obstacles lying within the disc enclosing the robot at its

current position.

We now focus on the incremental construction of the net-

work of c-space curves on CB̄’s surface, denoted R(B̄). Each

curve of R(B̄) corresponds to a single-contact tracing along

an obstacle of B̄. During this tracing the robot monotonically

advances its contact point, denoted x, along the obstacle’s

boundary. Each position of x is associated with a particular

leaf segment as described above. Using its tactile sensor, the

robot determines for each x the interval [θmin(x), θmax(x)]

which bounds the leaf-segment’s θ coordinate. If at a partic-

ular x the robot can perform full rotation without touch-

ing other obstacles, [θmin(x), θmax(x)] = [0, 2π]. As the

robot traces an obstacle boundary, it moves with orientation

θ(x)∈ [θmin(x), θmax(x)] which minimizes its clearance with

respect to the obstacle’s boundary (Figure 2). The c-space

curve associated with each single-contact tracing forms a

skeletal curve of the current cell.

The vertices of R(B̄) are of the following three types.

The first two types occur when the interval [θmin(x), θmax(x)]

shrinks along a skeletal curve to a single point. This event

occurs when the monotonic tracing of x along the current

obstacle boundary wedges the robot against two or three

obstacles. The first type of vertex occurs when the robot

finds itself wedged against three obstacles. This configuration

becomes a triple-contact vertex of R(B̄). Three double-

contact curves meet at this vertex, and these curves bound

three cells which share the vertex as their common boundary.

Each of the three cells has a skeletal curve emanating from

the vertex. When the robot reaches the vertex, it “jumps”

the contact x to one of the two neighboring obstacles, then

proceeds to trace the neighboring obstacle boundary.

The second type of vertex occurs when the robot reaches

a point where it finds itself wedged against two obstacles.

It can be verified that this event is associated with an

impassable gap. The robot has thus reached a double-contact

curve associated with an impassable gap. The wedging

configuration, denoted q′, becomes a double-contact vertex of

R(B̄). While the leaf segment of the current cell has shrunk

to a single point at q′, a leaf segment on the neighboring c-

obstacle surface also passes through q′. Only one additional

curve of R(B̄) emanates from q′ as follows. This curve

initially follows the leaf segment on the neighboring c-

obstacle surface from q′ to its minimum-clearance con-

figuration on the leaf segment, then continues along the

skeletal curve lying on the neighboring c-obstacle surface.

Physically the robot “jumps” the contact to a new point x

lying on the neighboring obstacle sharing the impassable gap,

rotates against the new obstacle until reaching its minimum-

clearance orientation, then proceeds to trace the neighboring

obstacle boundary.

The third type of vertex occurs when the robot reaches

a point x′′ at which the interval [θmin(x′′), θmax(x′′)] splits

into two intervals which become separated as the robot

continues its tracing of the current obstacle boundary. In

c-space this event occurs when the current skeletal curve

reaches a leaf segment which is tangent to a double-contact

curve at a configuration denoted q′′. As the robot continues

the tracing of x along the current obstacle boundary, the

tangent leaf-segment splits into two separate leaf-segments

on the current c-obstacle surface. The endpoint of the current

skeletal curve becomes a split vertex of R(B̄), and two

new curves of R(B̄) emanate from this vertex. These curves

initially follow the tangent leaf-segment in either direction,

then proceed along the skeletal curves of the two cells lying

on the current c-obstacle surface beyond the tangent leaf-

segment. Physically, when the robot reaches x′′ it detects

for the first time a neighboring obstacle. While the robot can

continue its monotonic tracing of x along the current obstacle

boundary, the neighboring obstacle forces the robot to choose

between two possible θ-intervals in order to proceed with the

tracing beyond x′′. Note that the robot continues the tracing

of x along the current obstacle boundary as it passes through

a split vertex.

To summarize, a network R(B̄) is constructed incremen-

tally on CB̄’s surface starting from a hit configuration q1.

The network’s curves correspond to single-contact tracings.

Its vertices are triple-contact configurations, double-contact

configurations associated with impassable gaps, and split

vertices associated with the appearance of neighboring obsta-

cles. A future paper will formally establish that R(B̄) visits

every cell on CB̄’s surface, and also crosses the plane P at

a configuration q2 which is closer to T than q1.

Execution example: Figure 2 shows an ellipse robot which

has to navigate to a target T in an unknown environment

consisting of a composite obstacle B1 and two convex

obstacles B2 and B3. Note that the 3-connected set of B1

includes both obstacles B2 and B3. The robot initially moves

toward T until it hits B1 at a configuration q1 (Figure 2(a)). It

rotates to a minimum-clearance orientation, then proceeds to

trace the boundary of B1. This motion eventually wedges the

robot against two obstacle-pieces of B1 (Figure 2(a)). This is

a double-contact vertex of R(B̄), and the robot consequently

jumps the contact to the neighboring obstacle-piece of B1.

The robot now follows the boundary of B1 until reaching

a point where it detects a new obstacle B2 (Figure 2(b)).

The double-contact configuration between B1 and B2 is a

split vertex of R(B̄). The robot can now proceed along two

skeletal curves associated with two distinct θ-intervals, and

continues along B1’s boundary as depicted in Figure 2(c).

This motion eventually wedges the robot against two pieces

of B1 and B2 (Figure 2(c)). The wedging configuration

becomes a triple-contact vertex of R(B̄). The vertex is

incident to three skeletal curves associated with the three

obstacles. The robot jumps the contact to B2, then proceeds

to trace its boundary until reaching a second triple-contact
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Fig. 2. (a) Arrival to an impassable gap. (b) Arrival to a split vertex. (c)-(d)
Arrival to first and second triple-contact vertices. (e) Arrival to the target.

vertex of R(B̄), this time associated with the three obstacles

B1, B2, and B3 (Figure 2(d)). One of the skeletal curves

emanating from the new vertex leads into the cavity formed

by B1. The robot jumps the contact to B1, then proceeds

to trace the internal cavity of this obstacle (Figure 2(e)).

During this tracing the robot crosses the plane P containing

S and T . However, the robot is further away from T at this

configuration than at q1. Hence it continues along the current

skeletal curve. The current skeletal curve passes through two

additional double-contact vertices associated with impassable

gaps located at two concave corners of B1 (not depicted). The

skeletal curve leads the robot along B1’s boundary until it

reaches the plane P precisely at the target.

VI. CONCLUSION

The paper considered tactile-sensor based navigation of a

three degrees-of-freedom mobile robot in an unknown planar

environment. In particular, the paper focused on the robot’s

contact preserving paths where it attempts to efficiently

circumnavigate a collection of impassable obstacles. These

paths involve single or double-contact tracings. The paper

provided a full characterization of the double-contact mo-

tions in terms of two types of c-space loops: contractible

loops representing passable gaps, and non-contractible loops

representing impassable gaps. Based on this classification,

the paper identified a generic class of contact preserving

paths consisting of single-contact tracings with efficient tran-

sitions at double-contact configurations involving impassable

gaps, and at triple-contact configurations involving both

passable and impassable gaps. A preliminary tactile-sensor

navigation algorithm based on these paths was described and

illustrated with an execution example.

The paper provides only a preliminary description of the

tactile-sensor based navigation algorithm. A formal proof

of correctness of the algorithm as well as realistic simu-

lations and experimental validation will appear in a future

paper. Two significant extensions of the current work are

as follows. First, the c-space analysis of the robot’s contact

preserving paths relies on a decomposition of the polygonal

obstacles into convex pieces. However, it is not clear wether

this decomposition can be efficiently computed on-line by

the robot. Second, as indicated in Section V, the tactile

sensor can be replaced with a small-range sensor capable of

reporting on obstacles lying within a disc enclosing the robot.

Note that any simple small-range sensor, such as a rotating

sonar beam, can provide these measurements. A challenging

open problem is to establish techniques which would allow

longer-range sensors, such as lasers and radars, to improve

the algorithm’s efficiency.
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