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Abstract— This paper presents a laser-based obstacle detec-
tion facility for off-road robotics in vegetated terrain. In the
context of this work the mobile off-road platform RAVON was
equipped with a 3D laser scanner and accompanying evaluation
routines working on individual vertical scans. Identified terrain
characteristics are used to build up a local representation
of the environment. Introducing the abstraction concept of
virtual sensors the transparent integration of additional terrain
information on the basis of standardized behavior modules can
be achieved.

I. INTRODUCTION

Environment perception is a crucial point in autonomous

navigation and is subject to constant scientific research.

Navigation through vegetated off-road terrain in particular

requires elaborate obstacle detection facilities relying on

special sensor systems which tend to have a rather limited

field of vision. In [1] the authors proposed a biologically

inspired approach to cover blind angles of sensor systems by

introducing short term memories. Especially during maneu-

vering in narrow driving situations such local representations

provide valuable information.

In this paper an obstacle detection facility for vegetated

off-road terrain based on 3D laser data shall be presented.

Furthermore a generic approach for covering blind angles

through the concept of virtual sensors is proposed. This

method is compatible with the behavior-based fusion mech-

anism for extending control software systems in a transpar-

ent fashion as introduced in [2]. The laser-based obstacle

detection system subject to this paper was implemented

and evaluated on the mobile off-road platform RAVON
1

developed in the Robotics Research Lab at the University

of Kaiserslautern.

II. STATE OF THE ART

Obstacle detection is an important problem to be solved

when building autonomous vehicles. In this domain a lot of

success was already achieved for man-made [3] and dessert-

like [5], [6] outdoor scenarios whereas intensely vegetated

off-road terrain still holds many difficulties in stock. In rough

terrain obstacles are no longer distinct entities which reside

above or back into the ground. Obstacles rather tend to

integrate into the environment such that they are difficult

to discover. A rugged piece of terrain may still be passable

at low speeds yet a single stone may be a threat to the

robot on a severe slope. Furthermore vegetation may obstruct

passages or cover hindrances such that a binary decision
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for traversability will no longer suffice for autonomous

navigation.

Due to the precise nature of measurement laser range

finders deliver valuable data for load-bearing surface anal-

ysis and vegetation discrimination. Comparing the types of

analyzing 3D scans in outdoor environments, two different

approaches can mainly be found. Scans are either evaluated

independently [7], [8] or accumulated to a point cloud before

being processed [9], [10], [4]. Processing point clouds is

usually computationally very expensive and tends to require

a stop-and-go mode of operation due to the registration

problem2. Traditionally such approaches rather come from

the research area of SLAM where precise metric data is re-

quired. For obstacle detection the aggregation of local terrain

information suffices. Therefore an on-the-move evaluation of

independent scans similar to [8] was adopted with several

extensions for coping with vegetated off-road terrain.

In [11] vegetation is explicitly considered as obstructing

the load-bearing surface. On the basis of 3D point clouds

the ground level is estimated and when the robot passes the

scanned area the actual load-bearing surface is detected using

vehicle terrain interaction. That way the robot shall learn to

make better estimates in the future. Coming from the field

robotics area this approach does not assume that hindrances

may be hidden in high grass yet the idea of load-bearing

surface extraction as a first step in obstacle detection was

adopted in the approach presented here.

Note that the approaches mentioned above can be sorted

into two groups. Either a complete map of the environment

is built up or only the most current measurements are taken

into account. The former in particular in difficult terrain

needs a lot of memory or has to be abstracted such that

valuable information is lost. The latter makes maneuvers in

narrow driving situations very complicated as no information

about regions currently not covered by the sensor systems is

available.

III. THE MOBILE OFF-ROAD PLATFORM RAVON

The off-road platform RAVON features a variety of sen-

sor systems for obstacle detection [12]. Two horizontally

mounted planar laser range finders (front and rear) monitor

close range safety zones. A stereo camera system and a 3D

laser scanner at the front side of the robot provide terrain

information up to a distance of 15 m. Furthermore a spring-

mounted bumper system is used to detect hindrances on

a tactile basis. That way the robot may discover shortcuts

2Registration Problem → Problem of integrating data over time with
precise pose information.
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Fig. 1. Top-level concept of the obstacle detection facility.

in high vegetation which cannot be detected with visual

sensors alone. If structures ahead have been classified as

dense yet flexible vegetation the robot drops to creep velocity

(about 5 cm
s

). The deflection of the spring-mount is constantly

monitored as an indicator for rigid structures hidden in the

vegetation. In such cases the robot backs off and tries to

find another path. For cases of emergency the tactile facility

is equipped with an industrial safety system which directly

stops the robot.

The robot’s 4WD with four separate motors and inde-

pendent front and rear steering allow for advanced driving

maneuvers like small radii or parallel steering. RAVON has

the dimensions of a city car, weighs about 650 kg and can

ascend and descend slopes of 45◦ at a max. velocity of 2 m/s.

IV. 3D-LASER-BASED OBSTACLE DETECTION

The 3D scanner on RAVON is built up using a planar

Sick lms291 (180◦, angular resolution: 0.5◦) mounted on a

panning mechanism (active pan angle: +/- 65◦, update rate:

1 Hz) such that the scanning plane is perpendicular to the

ground. Every scan yields a vertical section of the terrain

(see Fig. 2) which allows for a meaningful interpretation

on the basis of the immanent ground references. Fig. 1

depicts the conceptual basis of the 3D laser obstacle detection

facility. At first individual scans are analyzed as to ground

and obstacle structures in step Sensor Processing. After that

abstract terrain information is aggregated into the Short-

term Memory which is then cast into independent Views

by generic Virtual Sensors. Note that Virtual Sensors can

monitor different aspects and cover arbitrary sections of

the terrain separating distinct concerns. That way a generic

interface for the robot’s behavior-based control system is

provided.

V. ANALYSIS OF INDIVIDUAL SCANS

Vertical sections of the terrain usually consist of ground

and obstacle structures. First of all the load-bearing surface

is estimated taking into account the vehicle’s climbing ca-

pability. This results in a potentially drivable terrain contour

relative to which obstacles can be judged in further process-

ing steps.

The individual scan analysis is carried out in the scanner

local coordinate frame as indicated in Fig. 2. To reflect the

vehicle capabilities in an absolute context the pan angle as
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Fig. 2. Load-bearing surface analysis.

well as vehicle roll and pitch are applied to the scanner data.

The angular resolution of the scanner limits the effective

range of the adopted approach to approx. 20 m as the sample

density becomes too low. Therefore, coordinates which are

far away from the vehicle are discarded. Note that this is not

a limitation given the max. vehicle velocity of 2 m/s. The

remaining samples are sorted ascending by x-distance.

A. Load-bearing Surface Extraction

The ground may (partially) be hidden by vegetation. How-

ever, as long as the vegetation is not too dense samples orig-

inating from penetrating laser beams permit the approxima-

tion of the load-bearing surface by iterative determination of

ground representatives (gri). As a reference the ground point

gr0 is introduced which resides beneath the front wheels

as these are assumed to have ground contact. Starting from

the predetermined ground representative gr0 all following

representatives are determined in relation to their respective

predecessor (see Equation Set 1 and Fig. 2). Based on the

current representative gri the points with greater x-distance

within the vehicle’s climbing limit αmax are considered

(Mi). The candidate set Ci is filled with points from Mi

within the search distance dmin. If no candidates is in this

interval the search continues until a suitable point is found

or no points remain in Mi. From the set of candidates Ci

the point with the least slope and the point with the smallest

y-value are identified. The point with the largest x-distance

then becomes the following ground representative. That way

a uniform distribution of ground representatives is achieved.

Mi = {p ∈ SP | grix < px ∧ |α(p, i)| < αmax}

Ci =
{
p ∈ Mi | px ≤ max(grix + dmin, xmin(Mi))

}
gri+1 = xmax(αmin(Ci, i), ymin(Ci)) (1)

where

p = (px, py), gri = (grix, griy)

α(p, i) = tan
(

griy−py

grix−px

)
xmin(M) = p with px ≤ bx ∀ b ∈ M

αmin(M, i) = p with α(p, i) ≤ α(b, i) ∀ b ∈ M

ymin(M) = p with py ≤ by ∀ b ∈ M

xmax(p1, p2) =

{
p1, if p1x > p2x

p2, else

(2)

Based on the distance to the lines defined through succes-

sive ground representatives the remaining points are assigned

to five classes (See Fig. 3). In general sky points can

be ignored as the robot can pass under the structure in

question. Points labeled as ground mean no harm to the
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Fig. 3. Ground distance as classification criterion.
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Fig. 4. Solid obstacle (a) vs. flexible vegetation (b).

vehicle either but are used to estimate the terrain roughness.

Representatives labeled as beneath ground potentially belong

to negative obstacles. Both terrain roughness and negative

obstacle analysis is described in Section V-C. Members of

class near ground represent structures which are traversable

at low speeds whereas members of class far ground mark

insurmountable entities. Both classes are subject to the

further classification in the vegetation discrimination step

which determines the severity of corresponding structures.

B. Vegetation Discrimination

In off-road environments vegetation is one of the key

issues to be addressed in obstacle detection. Flexible veg-

etation covering the ground is drivable, solid obstacles in

contrast are not. Therefore, it is necessary to distinguish

between these entities. Vegetation as far as it is not too

dense is partially penetrable by laser beams whereas solid

obstacles shadow large parts of the ground (see Fig. 4). The

maximum obstacle height h can be approximated employing

the intercept theorem. If the shadowed ground indicates that

an obstacle exceeds the capabilities of the vehicle all scan

points between the two bordering ground points are marked

as solid. Note that points near ground classified as vegetation

can be traversed by the robot without harm. For points

labeled as far ground the context of further clustering has

to be taken into account as such entities may cause damage

to the sensor phalanx.

C. Terrain Roughness Analysis

To estimate the roughness of the terrain regression lines

are successively fit into subsets of the ground representatives

which can be covered with one vehicle length each. Note

that these subsets will represent overlapping sections of the

terrain. For each section the variance of the ground points to

the regression line is computed as a measure for the terrain

roughness.
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Fig. 5. Negative obstacle (a) and positive step (b).

Based on the preclassification introduced above, negative

obstacles and steps can be determined as follows (see Fig. 5).

Points classified as beneath ground represent a negative

obstacle if the length dneg of such a region exceeds half

the wheel diameter (i.e. 40 cm for RAVON). If the slope

of the flanking ground representatives exceeds the maximal

descending capability of the robot a negative obstacle is

registered, as well.

Steps are regions with positive slope including points not

labeled as ground exceeding the robots’ climbing capabili-

ties.

D. Clustering Of Dense Regions

Subsequent to the classification, all points except ground

points are clustered using the DBSCAN algorithm [14]. Note

that the clustering radius in this implementation increases

with distance to reflect the polar nature of laser scanner data.

Furthermore the algorithm was extended with compatibility

rules which allows for mixed clusters if the following criteria

are met.

If a region of far ground points is both close-by ground

and sky an insurmountable positive obstacle cluster is reg-

istered. If a region of far ground points is standalone or

has contact to sky an overhanging obstacle was detected.

Vegetation detection via the tactile facilities is forbidden

as the bumper will pass under the structure in question.

Even if penetration analysis indicates flexible vegetation both

of these obstacle types have to be considered as critical

because they might damage the 3D laser scanner or the

camera systems. A region of far ground points exclusively

close-by ground is surmountable in case the entity represents

flexible vegetation and is no threat to the sensor phalanx.

Even if such a structure is not classified as vegetation a

tactile investigation is possible as the bumper is bound to

hit a potentially harmful entity forcing the robot to back off.

VI. SHORT TERM MEMORY

In order to retain information about the ground contour

and obstacles detected by the sensor system a representation

of the vicinity of the vehicle is necessary. This information is

the basis for the control system’s evasive behaviors. Inspired

by the multi level approach presented in [13] the short term

memory for RAVON’s horizontally mounted laser scanners

[1] was extended such that detailed obstacle information

– as provided by the analysis of the vertical scans – can

be stored. For complicated ranking maneuvers in narrow

driving situations a frequently updated representation of

the local terrain is mandatory. In contrast global metric

knowledge (i.e. a long term memory) is not necessary and
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Fig. 6. Structure of the grid map.

tends to be more difficult to handle due to update effort and

error sources like localization deviation over time. For these

reasons the authors propose to restrict the monitored area

which furthermore avoids problems concerning the amount

of required storage and computational costs for data retrieval.

A. Absolute Local Grid Map

Fig. 6 shows the structure of the grid map used for

terrain representation. The orientation of the map is fixed and

coaxial with the absolute working coordinate system (WCS)

of the robot. Ground and obstacle structures are stored in

the corresponding map elements on the basis of coordinates

in the WCS. The map is scrolled row-wise or column-wise

every time the robot crosses the scroll border such that the

vehicle always resides in the center of the absolute map.

Oscillation is avoided by setting the center area slightly

larger than one map element. Scrolling is implemented using

simple modulo arithmetic in combination with clearing the

row or column in question. Each map element was chosen

to have a side length of 1 m to achieve a suitable scrolling

granularity with respect to the robot dimensions and velocity.

By dividing every element into 25 fields the final grid size is

20 cm2 which corresponds to the contact area of one wheel.

B. Filling the Map

After the scan analysis representatives for ground and

obstacle structures are determined and assigned to the map

elements. In that context information of consecutive scans is

be merged and older data is updated. Each of the 25 fields

in one map element can either be in status unknown or filled

with information about roughness, slope and elevation. In

addition to the ground information, fields can contain ob-

stacle information which is grouped to objects if applicable.

Fields with obstacle information originating from the same

cluster of one scan (see Section V-D) are always grouped.

Neighboring fields of different scans are grouped if their

obstacle characteristics are the same. Fields representing

traversable entities are never merged with fields reflecting

obstacle structures. Both aspects are stored in separate super

adjacent objects as indicated in Fig. 7. At the moment object

merging is limited to the scope of one map element. The

not scanned

ground

ground

z
X

Y

Z

object
height

object3

object2

ground
distance

object1

negative
obstacle

Fig. 7. Example of a filled grid element.

objects contain the ground distance, the height over ground

and classification information as well as the result of the

vegetation estimation.

VII. VIRTUAL SENSORS AS INTERFACE TO THE

BEHAVIOR-BASED NETWORK

On the one hand, there is the grid map keeping detailed

information about the vicinity of the robot. On the other

hand, there are a lot of behavior modules requiring only

particular aspects of this information. Furthermore they do

not monitor the whole map but only regions relative to the

robot. So a second representation layer, in the following

called virtual sensors, is used as an interface to the behavior-

based network. These virtual sensors are defined relatively to

the robot. Each sensor evaluates a part of the grid map and

considers different aspects of the stored information. As data

structure for these virtual sensors a sector map is used. The

implementation of this map allows the definition of different

sector types like Cartesian and polar ones, containing the

shortest distance to an obstacle, a rating, and further infor-

mation required by a corresponding behavior. Each region is

observed by two sensors i.e. two maps per region are created.

One map is for critical obstacles only, the other is for all

obstacle types. This fragmentation of information permits

the usage of one and the same behavior module for different

aspects. The impact on the vehicle motion, which must of

course be different for critical and non-critical obstacles, is

then determined by the arrangement of behavior modules

inside the behavior-based control network. Therefore, by us-

ing these maps the behavior modules are independent of the

lower representation structures or real sensors. This provides

further advantages like better integrability, traceability and

testability.

VIII. EXPERIMENTAL RESULTS

A. Static Forest Scene

Fig. 8 shows RAVON at the border of a forest. The

corresponding grid map – recorded while driving to this

position – can be seen in Fig. 9. For better visualization

the content of the map is split up into four parts. Map (a)

contains all scanned ground fields (circles) and objects near

ground (dots). These objects are traversable without risk.

Map (b) shows obstacles having contact to the ground. If

their height is no threat to the sensor systems (circles), a

926



Fig. 8. RAVON located at the border of a forest
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Fig. 11. Path of the autonomous driving experiment

tactile creep maneuver is allowed, even if the structures are

classified as solid. Overhanging obstacles (circles) and large

obstacles with contact to ground and sky like trees (dots) are

plotted in (c). Map (d) shows overhanging clusters which are

nonhazardous as these have ground distance above the robot

height.

Based on the grid map, the sector maps shown in Fig. 10

are derived. Maps (a) and (b) contain the shortest distance to

any obstacle per sector accompanied with a severity rating

independent of the obstacle type. Obstacles with a rating

below 0.5 (light gray) are traversable at reduced speed.

Obstacles rated above 0.5 (dark gray) may be tested in

a tactile maneuver. Maps (c) and (d) contain only critical

obstacles which have to be evaded in any case.

B. Autonomous Driving Experiment

The process of building up the local obstacle map and

the evaluation of vehicle reaction on terrain properties is

the focus of the second experiment. Here the vehicle drives

autonomously on a path through a forest area as shown in

Fig. 11. Three checkpoints are given which are referred to

in Fig. 12 showing an image of the scene and the corre-

sponding obstacle maps. Checkpoint (1) shows the start of

the experiment. The obstacle map is filled only in front of the

robot showing several objects identified as critical obstacles.

Additionally the terrain roughness estimation shows the edge

of the path in front of the vehicle. The figures also show the

affected sectors at the front indicated by gray (normal) and

black (critical) lines.

At checkpoint (2) a high degree of vegetation forces the

robot into the tactile creep mode making it squeeze through

the tight path. A large area containing critical obstacles

is perceived to the right of the robot, as well. Between

checkpoint (2) and (3) vegetation causes the vehicle again

to drop to creep velocity. As the bumper detects an obstacle

hidden in the grass the robot backs off and through a slight

correction of the path the robot manages to evade the obstacle

continue its path. Finally, checkpoint (3) shows the end of the

run with well distinguishable critical and non-critical areas.

IX. CONCLUSION AND FUTURE WORK

In this paper a method for obstacle detection in 3D laser

data was proposed. A load-bearing surface analysis followed

by the classification of points into obstacle classes – which

are finally clustered – makes explicit filtering of outliers

unnecessary. That way the integral nature of obstacles in

vegetated off-road terrain is accounted for. Furthermore the

concept of a short term memory was successfully adopted in

order to cover blind angles of the sensor system. Using the

concept of virtual sensors monitoring different aspects and

ranges of the short term memory a generic abstraction layer

was introduced which supports transparent integration into

the robot’s control software according to [2].

The implemented system was evaluated using the semi-

autonomous tele-operation mode in the challenging non-

urban scenario during the second ELROB3. RAVON was the

only vehicle featuring autonomous obstacle avoidance in the

field and acquired a respectable third place. Furthermore

several kilometers of test runs were carried out fully au-

tonomously yielding robust results in obstacle avoidance and

maneuvering.

In combination with the bumper system the proposed

vegetation discrimination approach is a powerful tool to

detect shortcuts on a tactile basis. Yet the robot is in

creep mode still very slow. In order to compensate this an

additional evaluation unit for the laser data is currently under

development. Rather than considering the laser sample points

only a statistical voxel penetration analysis shall be used to

tell flexible from solid entities.
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[2] H. Schäfer, M. Proetzsch, K. Berns. Extension Approach for the
Behaviour-Based Control System of the Outdoor Robot RAVON Au-

tonome Mobile Systeme, Stuttgart, Germany 2005

[3] Z. Sun, G. Bebis, R. Miller. On-road vehicle detection using optical
sensors: a review IEEE/ITSC International Conference on Intelligent

Transportation Systems, Washington, D.C.,USA 2004

[4] N. Vandapel, D. Huber, A. Kapuria, M. Hebert. Natural Terrain Clas-
sification using 3-D Ladar Data. IEEE/ICRA International Conference

on Robotics and Automation, New Orleans, USA 2004.

[5] David Bonnafous, Simon Lacroix, Thierry Simon. Motion generation
for a rover on rough terrain. IEEE/RSJ International Conference on

Intelligent Robots and Systems 2001.

3ELROB → European Land Robot Trial – http://www.c-elrob.eu/

927



� �

��� ��� ��� ���

Fig. 9. Terrain characteristics contained in the grid map during the forest scenario

� �

��� ��� ��� ���

Fig. 10. Sector maps of the forest scenario: polar (a) and Cartesian (b) sector map containing shortest distance to any obstacle per sector; polar (c) and
Cartesian (d) sector map containing shortest distance to critical obstacles

Fig. 12. Images and obstacle maps of the autonomous path scenario.

[6] K. Patel, W. Macklem, S. Thrun, M. Montemerlo. Active Sensing for
High-Speed Offroad Driving. IEEE/ICRA International Conference on

Robotics and Automation, Barcelona, Spain 2005.

[7] T. Hong, M. Abrams, T. Chang, M. Shneier. An Intelligent World
Model for Autonomous Off-Road Driving. Computer Vision and Image

Understanding 2000.

[8] P. Batavia, S. Singh. Obstacle Detection in Smooth High Curvature
Terrain. IEEE/ICRA International Conference on Robotics and Au-

tomation, Washington D.C., USA 2002.

[9] A. Nüchter, K. Lingemann, J. Hertzberg. Extracting Drivable Surfaces
in Outdoor 6D SLAM. Proceedings of the 37rd International Sympo-

sium on Robotics (ISR) 2006.

[10] C. Brenneke, O. Wulf, B. Wagner. Using 3D Laser Range Data for
SLAM in Outdoor Environments. IEEE/IROS International Confer-

ence on Intelligent Robots and Systems, Las. Vegas, USA 2003.

[11] C. Wellington, A. Stentz. Online Adaptive Rough-Terrain Navigation
in Vegetation. IEEE/ICRA International Conference on Robotics and

Automation, New Orleans, USA 2004.
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