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Abstract— In this work we tackle the road sign problem
with Reservoir Computing (RC) networks. The T-maze task
(a particular form of the road sign problem) consists of a robot
in a T-shaped environment that must reach the correct goal (left
or right arm of the T-maze) depending on a previously received
input sign. It is a control task in which the delay period between
the sign received and the required response (e.g., turn right or
left) is a crucial factor. Delayed response tasks like this one
form a temporal problem that can be handled very well by
RC networks. Reservoir Computing is a biologically plausible
technique which overcomes the problems of previous algorithms
such as Backpropagation Through Time - which exhibits slow
(or non-) convergence on training. RC is a new concept that
includes a fast and efficient training algorithm. We show that
this simple approach can solve the T-maze task efficiently.

I. INTRODUCTION

An increasing number of research groups have raised their

attention to the fields of intelligent autonomous systems

and learning robots. These systems are usually designed

by computational intelligence techniques which provide a

rich ground for achieving learning capabilities as well as

robustness to noise and environment changes. The biolog-

ical foundation of these techniques comes from several

areas and includes: computational models of the brain [8],

evolutionary-based systems [12], swarm intelligence tech-

niques [5] and reinforcement learning systems [4].

The road sign problem, which is tackled in this work,

constitutes a particular temporal task which is defined in

[24]. In this problem, an artificial agent (robot) which is

driving along a corridor receives a temporal sign that must

be remembered for future correct decision making. The T-

maze task is the most common form of such problem: the

robot drives along an environment whose shape resembles

the letter T (see Fig. 3). The robot’s task is to drive from the

initial position located at the bottom of the longest corridor,

reach the T-junction and then turn to the correct goal (left or

right). The correct turning decision at the T-junction depends

on the previous input sign received while driving along the

corridor (usually a sign at the left/right side of the corridor

indicates that the goal is at the left/right arm of the T-maze).

Several systems designed to solve such task represent

the robot’s environment as a discrete world [4] in order to

make the task easier to be solved. Sometimes the world’s

representation is not discrete, but instead the models are

designed with event extraction mechanisms which work on
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the robot sensory cues in order to provide abstract signals to

the control module [14]. Recent work has tackled the road

sign problem with a continuous world representation [18],

[26], [12]. Most approaches to the road sign problem are

based on recurrent neural networks [24], [18], [26]. The work

in [26] is based on neuromodulation of synaptic weights in

higher-order Recurrent Neural Networks (RNNs) to solve the

T-maze task. This means that the sensory-motor mapping

(synapses) can be modified while the robot is navigating as a

mechanism of short-term memory. This synaptic plasticity is

evolved by a standard genetic algorithm. However, for simple

T-mazes the resulting controller became purely reactive and

followed the left wall as soon as the light sign appeared at the

left (in contrast to the current work which does not yield wall

following behaviors). In [12], evolutionary multi-objective

optimization is used to evolve finite state controllers for the

T-maze task, whose control task is simplified by forcing the

robot to first reach the T-junction. In that work, a detailed

analysis of the required internal memory for the T-maze task

is accomplished. Reinforcement learning with Long Short-

Term Memory (LSTM) is the approach used in [4] to solve

non-Markovian tasks with long-term dependencies between

relevant events (such as the T-maze task). A specific RNN

architecture is used to approximate the value function of a

reinforcement learning algorithm. The environment of the

agent is discrete (made up of connected squares) and it can

execute one out of 4 actions: move North, East, South or

West.

New computational models of the brain have been pro-

posed in the literature [16], [8] under the name of Liquid

State Machines (LSMs). This technique uses a reservoir

of spiking neurons that has fixed random weights and is

sparsely connected. The reservoir is a RNN which produces

rich dynamics of temporal nature (because of the recurrent

connections in the reservoir). The states of the reservoir are

mapped onto a readout output layer (see Fig. 1). The training

is only accomplished for the connection weights in the read-

out output layer with standard linear regression techniques.

The engineering counterpart of the LSM is the Echo State

Network (ESN) , which was created independently by [11].

In [25], both LSM and ESN (as well as BackPropagation

DeCorrelation [22]) are compared and termed jointly as

Reservoir Computing (RC) because of their great similarities.

Reservoir Computing has been applied successfully in

several applications, such as: mobile robot control [19],

[6], robot localization and event detection [2], time series

prediction [13], generation of music sequences [7] and learn-

ing grammatical structures [23]. There are also promising
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Fig. 1. Reservoir Computing network. The reservoir is a dynamical system
of recurrent nodes. Solid lines represent connections which are fixed. Dashed
lines are the connections which can be trained.

applications of ESNs in the domains of system identification

or as low-level plant controllers [10].

This work uses Reservoir Computing as an efficient tool

for training robot controllers to solve the T-maze task. The

main advantages of our approach are threefold: simplicity of

the approach; efficient and fast training of controllers; and

integration of reactive and sequential behavior in a single

control module. The first point is related to the easing of the

design task by just employing the RC networks to perform

the T-maze task by imitation learning (i.e., it is a black-box

approach with high performance which facilitates a complex

design task). The next point corresponds to the efficient and

fast training of ESNs by standard linear regression methods

[25] which is superior to previous methods and avoids

convergence related problems like Backpropagation Through

Time. Finally, there is no separation between reactive and

sequential (deliberative) behavior (i.e., there is only one

control module), which forces the RC network to learn the

whole task by imitation learning. In this way, the robot has

to learn to move in its environment (reactive part) but it also

should learn the sequential task of reaching the T-junction

and turn to the correct goal depending on the previous cue

received (deliberative part).

The next section presents the Reservoir Computing ap-

proach used for this work as well as the autonomous robot

simulator and robot model. The accomplished experiments

and associated results are presented in Section III. Finally,

the last section summarizes and concludes this work.

II. METHODS

A. Reservoir Computing

The current work uses the Echo State Network approach

as a learning system for the road sign problem. The random,

recurrent neural network (or reservoir) is composed of sig-

moidal neurons and is modeled by the following state update

equation:

x(t + 1) = f(Winu(t) + Wx(t)), (1)

where: Win is the connection matrix from input to reser-

voir; W is the weight matrix for the recurrent connections

between internal nodes; f is the hyperbolic tangent function;

and u(t) is the input vector at time t. The initial state is

x(0) = 0.

The output y(t) of the network at time t is given by

y(t) = Wout

[

x(t)
1

]

, (2)

where Wout is the readout matrix.

The readout matrix Wout is created by solving (in the

mean square sense) the following equation:

MWout = Ŷ, (3)

where M is the matrix containing the internal states x(n)
for n = 1, 2, . . . , ns (which are collected after stimulating

the network with input data); Ŷ contains the corresponding

teacher outputs; ns denotes the total number of time samples.

We use the Reservoir Computing Toolbox (RCT Toolbox 1

[25]) for training robot controllers in a Matlab environment.

B. Autonomous Robot Simulator

The simulation of the road sign problem in the form

of a T-maze task is accomplished using a sophisticated

autonomous robot simulator developed in C++ [1]. The

environment of the robot is composed of several objects,

each one of a particular color. Obstacles are represented by

blue objects whereas the light sign in the T-maze is simulated

by a red object. The robot model is shown in Fig. 2. The

robot interacts with the environment by distance and color

sensors; and by two actuators which control the movement

direction (turning) and speed. Sensor positions are distributed

uniformly over the front of the robot (from -90◦ to +90◦).

Each position holds two virtual sensors (for distance and

color perception) [1]. The following experiments consider

that the robot model has either 3 or 7 sensor positions (see

Fig. 2). The distance sensors are limited in range (i.e., they

saturate for distances greater than 300 distance units (d.u.))

and are noisy (they exhibit Gaussian noise on their readings).

A value of 0 means near some object and a value of 1 means

far or nothing detected. The color sensor is calculated as the

normalization of the component Hue of the Hue-Saturation-

Value (HSV) color system. At each iteration the robot is able

to execute a direction adjustment to the left or to the right

in the range [0, 15] degrees and the speed is limited to [0,

17] distance units (d.u.).

III. EXPERIMENTS

A. Introduction

In this work, we use the Reservoir Computing (RC)

paradigm to enable a simulated mobile robot to solve the

T-maze task. The environments used for the experiments are

shown in Fig. 3. The task of the robot is to drive from the

initial position until the T-junction and then turn left/right

if the sign previously appeared at the left/right side of the

longest corridor. Environment B has a longer corridor (2x)

than in environment A. This will enable us to see how the

1This is an open-source Matlab toolbox for Reservoir Computing which
is freely available at http://www.elis.ugent.be/rct
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Fig. 2. Robot model.

task is solved when a longer delay between the cue (light

sign) and the subsequent response (turning) is required.

The experiments are divided in three stages: acquisition of

the training dataset; training the RC-based robot controller;

and testing of the resulting robot controllers. These three

steps are executed for each environment (i.e., a controller

trained with data from environment A is only tested in the

same environment). The first stage consists of using the robot

simulator to generate a dataset with samples of the robot’s

sensory inputs and actuators by driving the robot through the

T-maze with a simple set of rules (e.g., go from the initial

position until the T-junction, then turn left if the sign was

at the left side). The dashed line in Fig. 4 represents an

example of a correct trajectory generated by such algorithm.

We collect around 50 examples for the training dataset which

considers random robot starting positions (in the range [-

10,10] d.u. for X and Y coordinates) and robot heading (in

the range [-15,15] degrees). After data acquisition, the second

stage consists of performing imitation learning with the RC

network by using the previous collected examples to train the

controller, characterizing a generalization process. The RC

network is trained to output the desired turning and speed

values for solving the robot task (in the Matlab environment).

The last stage is the performance testing of the RC-based

controller in the T-maze task, which is based on the real-time

communication between the Matlab process and the robot

simulator (implemented by TCP/IP sockets). The previous

work [3] only considered off-line testing on pre-recorded

sensory inputs from the simulator (not real-time).

The average number of timesteps for the realization of the

T-maze task by the algorithm which generates the training

dataset is 26.3 timesteps for environment A (standard devia-

tion of 1.6) and 34.9 timesteps for environment B (standard

deviation of 1.5). In the testing stage, the T-maze task has to

be accomplished in 38 and 46 timesteps for environments A

and B, respectively (this was arbitrarily set). These values do

not include the first 20 timesteps in which the robot stays still

in the data acquisition stage as well as in the testing phase.

During these first timesteps, the reservoir starts at the initial

state x(t) = 0 and follows an undesired transient response

to the input. The reservoir reaches a steady state after some

transient interval. So the training of the readout output layer

discards the first 20 timesteps of the data which are used only

Fig. 3. Environments used for the experiments. The robot only sees 1 sign
at a time. A sign at the left (right) indicates that the goal is at the left arm,
in G1 (right arm, in G2).

for initializing the state of the reservoir (this is called warm-

up drop in the literature). At each timestep, Gaussian noise is

added to the robot’s actuators from the distributions N(0,2)

for the robot turning (in degrees) and from N(0,0.5) for the

robot speed (in d.u.). This noise on actuators is considered

in the data acquisition stage as well as in the testing stage.

The reservoir configuration is as follows for all experi-

ments in this work. The inputs to the network are distance

and color sensors totalling either 6 inputs (if the robot

model has 3 distance sensors and 3 color sensors) or 14

inputs (if the robot model has 7 distance sensors and 7

color sensors) which can range from 0 to 1. The reservoir

is composed of 500 sigmoidal nodes, scaled to a spectral

radius2 of |λmax| = 0.9 [9], which approximately sets the

reservoir at the edge of stability (sometimes referred to as the

edge of chaos). The readout layer has 2 output units which

correspond to the robot actuators (i.e., robot turning and

speed). The connection matrix from input to the reservoir is

initialized at the values -0.1, 0.1 and 0 with probabilities 0.1,

0.1 and 0.8, respectively. This parameter setting for weight

matrices are not critical for the tasks in this work.

The robot sensors on the training datasets are 5% noisy

(Gaussian noise from N(0, 0.05) which means effectively

N(0, 15) in distance units) and on color sensors (Gaussian

noise from N(0, 0.05)) ([18] only considers noise-free data

for a particular version of the road sign problem solved with

Elman networks). The performance tests consider either 1%

or 5% Gaussian noise on the robot sensors (this will be stated

accordingly in the text).

B. Results

In this section, we will investigate how the number of

sensors in the robot model and the noise level on the

sensor readings affect the performance of the RC-based

controller on the T-maze task. This analysis is made for both

environments A and B.

An example of the robot’s trajectory in the T-maze of

environment A is shown on Fig. 4(a). The solid line which

connects the robot positions at each timestep represents the

2The spectral radious λmax is the eigenvalue of the matrix W with the
largest absolute value.
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Fig. 4. Plots for the robot trajectory (a), robot sensors (b) and actuators (c) when the sign appears at the left side of the corridor in the T-maze of
environment A. The desired path takes 26 timesteps whereas the controlled robot path takes 38 timesteps. The robot model has 7 distance sensors and
7 color sensors which are 1% noisy. (a) The solid line is the real robot trajectory driven by the RC network. The dashed line is an example of desired
trajectory. (b) The 14 inputs to the network (i.e., 7 distance sensors and 7 color sensors readings) in the testing stage for 30 timesteps. (c) The robot’s
actuators given by the RC network (solid line; for 30 timesteps) and given by the desired path (dashed line; for 26 timesteps).

real trajectory of the robot (driven by the output of the

RC network) whereas the dashed line which connects small

boxes represents an example of a desired trajectory. The

corresponding sensory inputs and robot actuators are given

in Fig. 4(b) and Fig. 4(c), respectively.

Fig. 4 shows that the control task is smoothly performed

by a single control module (i.e., the RC network). In that

example, the trajectory shows that both reactive and sequen-

tial behaviors are achieved with our simple approach. After

training, the RC network can drive the robot exclusively

based on sensor data and can hold the past information for

posterior decision making. The recurrent pathways in the

reservoir yield a fading memory which is crucial for solving

the T-maze task. Traditional feedforward neural networks are

not capable of this [18]. Furthermore, we can see that it

takes at least 5 timesteps between the last perception of the

sign in the corridor (timestep 9) and the start of the turning

movement (timestep 14) for this short environment.

The robot trajectory given by the trained RC network in

the T-maze of environment B is shown in Fig. 5. We can

observe that the time gap between the cue received in the

corridor and the decision making at the T-junction can be

even greater (18 timesteps) while the task is still solved

correctly.

In order to know the repeatability of the performance of

the experiments, we generate statistics for environments A

and B, for different noise levels on sensor readings (1% or

5%), and for distinct robot models (with 3 or 7 sensors).

The summarized results for each combination are presented

on Tables I and II. The results are calculated after executing

the experiment for 10 different reservoirs, each one being

evaluated 30 times. So, each combination results from 300

runs on the T-maze (150 runs for each goal). The numbers

in the tables show the percentage of examples (trajectories)

that are classified as successful for solving the T-maze task.

We consider that the run was successful if the robot reached

the inner part of the correct arm at the final timestep. For

instance, the run on Fig. 5 was successful because the last

point of the trajectory has an abscissa which is lower than

the abscissa (300) of the left side of the main corridor (so

the left and right sides of the corridor are delimiters).

The tables show that a robot model with 7 sensors provides

important additional information for solving the T-maze task

appropriately when compared to a robot model of 3 sensors.

The model with 7 sensors increases performance over the

model with 3 sensors by 37% for environment A and by

45% for environment B (figures for the left goal - see

Table I). It is also possible to observe that the effect of

increasing the noise level on the sensor readings mainly

affects the experiments on environment B, specially the ones

considering the robot model with 7 sensors. In this case, the

degradation in performance is up to 13%. We conclude that

the experiments in a longer T-maze (environment B) take
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Fig. 5. Plot for robot trajectory driven by RC network in environment
B. Circles represent the moment in which the robot loses the sight of the
sign and the starting time of the turning at the T-junction. This time gap
corresponds to 18 timesteps. The robot model has 7 distance sensors and 7
color sensors which are 1% noisy.
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TABLE I

PERCENTAGE OF CORRECT TRAJECTORIES FOR 1% NOISE ON SENSORS

3 sensors 7 sensors

Env A Left: 58% Right: 62% Left: 95% Right: 93%

Env B Left: 37% Right: 33% Left: 82% Right: 81%

TABLE II

PERCENTAGE OF CORRECT TRAJECTORIES FOR 5% NOISE ON SENSORS

3 sensors 7 sensors

Env A Left: 67% Right: 70% Left: 93% Right: 87%

Env B Left: 28% Right: 26% Left: 69% Right: 69%

more advantage of the addition of extra information in the

form of more sensors in the robot model. Furthermore, higher

noise levels negatively influence difficult T-maze tasks (the

difficulty is directly related to the size of the main corridor,

i.e., the time gap between cue and required response).

Part of the statistics summarized in the aforementioned

tables is available visually in Fig. 6 and Fig. 7. These figures

show the coordinates of the robot in its environment at the

final timestep of each run. The robot model with 7 sensors

and a noise level of 1% are considered here. Observe that

we only look at the final position of the robot, while it can

sometimes still collide against a wall during the intermediate

steps (a collision will cause a step back and a small change

on the direction of movement). There are 300 points for each

figure which represent distinct runs through the respective

T-maze. A circle/asterisk means that the sign appeared in

the right/left side of the corridor for the corresponding run.

We can note that circles are concentrated on the right arm

whereas asterisks are located mainly on the left arm, as

expected.

IV. CONCLUSION AND FUTURE WORK

In this work we presented a simple approach to the

road sign problem by employing Reservoir Computing (RC)

networks in the modeling of the robot controller. RC is

a simple technique which provides easy and fast training

of recurrent neural networks. The reservoir is a dynamical

system whose states are mapped in the readout output layer.

This mapping is learned through standard linear regression

techniques, which makes this technique very powerful, avoid-

ing the convergence problems of previous algorithms like

Backpropagation Through Time as well as the need to unfold

the network in time as in [18]. The technique is biologically

plausible [8], what is in line with the most recent advances

in intelligent autonomous systems which seek models with

more and more biological foundations.

The road sign problem is a type of delayed response task,

where relevant input information gathered in the past (e.g.,

the light sign) determines adequate output decisions (e.g.,

turn right or left) after some delay period. The T-maze task

is the most common form of the road sign problem and is

tackled in this work. The difficulty of this task relies on

the time gap which exists between the cue/sign received
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Fig. 6. Distribution of ending points in environment A. Each point
represents the final robot position after 38 timesteps in which the RC
network drives the robot. There are 300 points (generated by 10 different
reservoirs which run 30 examples each). Asterisks and circles represent left
and right goals for the current task, respectively.
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Fig. 7. Distribution of ending points in environment B. Each point
represents the final robot position after 46 timesteps in which the RC
network drives the robot. There are 300 points (generated by 10 different
reservoirs which run 30 examples each). Asterisks and circles represent left
and right goals for the current task, respectively.

and the appropriate required response. Only a single control

module is used for solving this task so that reactive and se-

quential behaviors are integrated and learned simultaneously.

Furthermore, we show that the control task is accomplished

successfully with time gaps of up to 18 timesteps between

the cue and the response.

This work is a significant extension of previous exper-

iments developed in [3]. In the current paper, the testing

of robot controllers is done in real-time in contrast to the

offline testing on pre-recorded sensory inputs in [3]. Other

differences for the current work include: the speed is not

constant and is controlled by the RC network, the sensor data

are not resampled and the robot model has a limited number

of sensors. We generate statistics for the experiments in this

work, making it possible to draw reliable conclusions.
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Further study on longer T-maze environments which re-

quire longer delay periods for the postponed response is left

as future work. In this case, the design of an unsupervised

method for adapting the timescale of the reservoir to the

input flow may be an interesting approach that would work

for arbitrary delay periods. For instance, by lowering the

timescale of the reservoir when the input is slowly varying

(when the robot drives in a straight line along the main

corridor) and increasing this timescale back otherwise, the

performance can greatly be enhanced for long delay periods

because the memory of the reservoir is increased with this

new scheme[15]. These ideas of working with the timescale

of reservoirs can find applications in other areas such as

speech recognition [20], [21]. We also plan to validate the

current work on a real robotic setup using the mobile robot

e-puck [17].
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