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Abstract— Mobile robots rely on the ability to sense the geo-
metry of their local environment in order to avoid obstacles or
to explore the surroundings. For this task, dedicated proximity
sensors such as laser range finders or sonars are typically
employed. Cameras are a cheap and lightweight alternative to
such sensors, but do not directly offer proximity information.
In this paper, we present a novel approach to learning the
relationship between range measurements and visual features
extracted from a single monocular camera image. As the
learning engine, we apply Gaussian processes, a non-parametric
learning technique that not only yields the most likely range
prediction corresponding to a certain visual input but also
the predictive uncertainty. This information, in turn, can be
utilized in an extended grid-based mapping scheme to more
accurately update the map. In practical experiments carried
out in different environments with a mobile robot equipped
with an omnidirectional camera system, we demonstrate that
our system is able to produce proximity estimates with an
accuracy comparable to that of dedicated sensors such as sonars
or infrared range finders.

I. INTRODUCTION

Cameras have become popular sensors in the robotics

community. Compared to proximity sensors such as laser

range finders, they have the advantage of being cheap,

lightweight, and energy efficient. The drawback of cameras,

however, is the fact that due to the projective nature of the

image formation process, it is not possible to sense depth

information directly. From a geometric point of view, one

needs at least two images taken from different locations

to recover the depth information analytically. An alternative

approach, that requires just one monocular camera and that

we follow in this work, is to learn from previous experience

how visual appearance is related to depth. Such an ability

is also highly developed in humans who are able to utilize

monocular cues for depth perception [22].

As a motivating example, consider Figure 1, which depicts

the (warped) image of an office environment. Overlayed

in white, we visualize the most likely area of free space

that is predicted by our approach. We explicitly do not

try to estimate a depth map for the whole image, as for

example Saxana et al. [18]. Rather, we aim at learning the

function that, given an image, maps measurement directions

to their corresponding distances to the closest obstacles. We

believe that such a function can be utilized to solve various

tasks of mobile robots including local obstacle avoidance,

localization, mapping, exploration, or place classification.
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Fig. 1. Our approach estimates proximity information from a single image
after having learned how visual appearance is related to depth.

In this paper, we formulate the range estimation task as

a supervised regression problem, in which the training set

is build by acquiring images of the environment as well

as proximity data provided by a laser range finder. We

discuss how appropriate visual features can be extracted

from the images using algorithms for edge detection and

dimensionality reduction. We apply Gaussian processes as

the learning framework in our proposed system, since this

technique is able to model non-linear functions, offers a

direct way of estimating uncertainties for its predictions, and

it has proven successful in previous work involving range

functions [15].

The paper is organized as follows. After discussing related

work, we formalize our problem and introduce the proposed

learning framework in Section III. In Section IV we then

discuss appropriate visual features and how they can be

extracted from images. Section V presents the experimental

evaluation of our algorithm as well as an application to the

mapping problem. Finally, we conclude in Section VI and

give an outlook to future research.

II. RELATED WORK

The problem of recovering geometric properties of a

scene from visual measurements is one of the fundamental

problems in computer vision and is also frequently addressed

in the robotics literature. Stereo camera systems are widely

used to estimate the missing depth information that single

cameras cannot provide directly. Stereo systems either requi-

re a careful calibration to analytically calculate depth using

geometric constraints or, as Sinz et al. [20] demonstrated,
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can be used in combination with non-linear, supervised

learning approaches to recover depth information. Often, sets

of features such as SIFT [12] are extracted from two images

and matched against each other. Then, the feature pairs are

used to constrain the poses of the two camera locations

and/or the point in the scene that corresponds to the image

feature. In this spirit, the motion of the camera is considered

by [5], [21]. Sim and Little [19] present a stereo-vision based

approach to the SLAM problem, which also includes the

recovery of depth information. Their approach contains both

the matching of discrete landmarks as well as dense grid

mapping using vision cues.

An active way of sensing depth using a single monocular

camera is known as depth from defocus [8] or depth from

blur. Corresponding approaches typically adjust the focal

length of the camera and analyze the resulting local changes

in image sharpness. Torralba and Oliva [24] present an

approach for estimating the mean depth of full scenes from

single images using spectral signatures. While their approach

is likely to improve a large number of recognition algorithms

by providing a rough scale estimate, the spatial resolution of

their depth estimates does not appear to be sufficient for the

problem studied in this paper. Dahlkamp et al. [3] learn a

mapping from visual input to road traversability in a self-

supervised manner.

The problem dealt with in this paper, is closely related

to the work of Saxena et al. [18], who utilize Markov

random fields (MRFs) for reconstructing dense depth maps

from single monocular images. An alternative approach that

predicts 2D range scans based using reinforcement learning

techniques has been presented by Michels et al. [13]. Com-

pared to these methods, our Gaussian process formulation

provides the predictive uncertainties for the depth estimates

directly, which is not straightforward to achieve in an MRF

model. Hoiem et al. developed an approach to monocular

scene reconstruction based on local features combined with

global reasoning [11]. Whereas Han and Zhu presented a

Bayesian method for reconstructing the 3D geometry of wire-

like objects in simple scenes [10], Delage et al. introduced

an MRF model on orthogonal plane segments to recover the

3D structure of indoor scenes [6].

As mentioned above, one potential application of the

approach described in this paper is to learn occupancy grid

maps. This type of maps and an algorithm to update such

maps based on ultrasound data has been introduced by

Moravec and Elfes [14]. In the past, different approaches

to learn occupancy grid maps from stereo vision have been

proposed [23], [17]. If the positions of the robot are unknown

during the mapping process, the entire task turns into the

so-called simultaneous localization and mapping (SLAM)

problem. Vision-based techniques have been proposed by

Elinas et al. [7] and Davison et al. [5] to solve this problem.

In contrast to the mapping approach presented in this paper,

these techniques mostly focus on landmark-based represen-

tations.

III. LEARNING DEPTH FROM MONOCULAR VISION

FEATURES

The goal of this work is to learn the relationship between

visual input and the extent of free space around the robot. By

using a regular range sensors, it is comparably easy to acqui-

re training data for this task, so that we can formulate the pro-

blem as a supervised learning problem. Figure 2 (a) depicts

the configuration of our robot used for data acquisition. An

omnidirectional camera system (catadioptric with a parabolic

mirror) is mounted on top of a SICK laser range finder. This

setup allows the robot to perceive the full surrounding area

at every time step as the two example images in Figure 2 (b)

and (c) illustrate. The omnidirectional images can be mapped

directly to the laser scans, since both measurements can be

represented in a common, polar coordinate system. Note that

our approach is not restricted to omnidirectional cameras

in principle. However, the correspondence between range

measurements and omnidirectional images is a more direct

one and the field of view is considerably larger compared to

standard perspective optics.

A. A Gaussian Process Model for Range Functions

We extract for every viewing direction α a vector of

visual features x from the images and phrase the problem as

learning the range function f(x) = y that maps the visual

input x to distances y. We learn this function in a supervised

manner using a training set D = {xi, yi}
n
i=1

of observed

features xi and corresponding laser range measurements yi.

If we place a Gaussian process (GP) prior [16] on the non-

linear function f , i.e., we assume that all range samples y
indexed by their corresponding feature vectors x are jointly

Gaussian distributed, we obtain

f(x∗) ∼ N (µ, σ) (1)

with

µ = k
∗T

(K + σ2

nI)−1y (2)

σ = k(x∗,x∗)− k
∗T

(K + σ2

nI)−1k
∗ (3)

as the predictive distribution for the range function at new

query points x∗. Here, K denotes the n × n-dimensional

covariance matrix constructed as Kij = k(xi,xj) using a

covariance function k, which is parameterized by a set of

hyper-parameters θ. The term y denotes the vector of given

target values from the training set, k∗ stands for the vector of

covariances between the new query point x∗ and the training

points with k
∗

i = k(x∗,xi). Finally σn denotes a global noise

parameter. In this work, we apply the often-used squared

exponential covariance function

k(xp,xq) = σ2

f · exp

(

−
1

2ℓ2
|xp − xq|

)

, (4)

which depends on the Euclidian distance between points

xp and xq as well as on the amplitude parameter σ2

f and

the length-scale ℓ. These parameters as well as the noise

parameter σn in Eq. (2) and (3) can be learned from data.

Starting from an initial guess, we apply conjugate gradient-

based optimization to find the values for {ℓ, σ2

f , σ2

n} that
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(a) (b) (c)

Fig. 2. The left diagram depicts our experimental setup: the training set was recorded using a mobile robot equipped with an omnidirectional camera
(monocular camera with a parabolic mirror) as well as a laser range finder. The next two images illustrate two typical omnidirectional images recorded at
the University of Freiburg (b) and at the DFKI in Saarbruecken (c).

minimize the negative log marginal likelihood of the GP

model.

A particularly useful property of Gaussian processes for

our application is the availability of the predictive uncertainty

(see Eq. (3)) at every query point. This means, that visual

features x∗, which lie close to points x of the training set

result in more confident predictions than features, which fall

into a less densely sampled region of feature space.

IV. FEATURES IN OMNIDIRECTIONAL IMAGES

The part of an omnidirectional image which is most

strongly correlated with the distance to the nearest obstacle in

a certain direction α is the strip of pixels oriented in the same

direction and going from the center of the image to its marg-

ins. With the type of camera used in our experiments, such

strips have a dimensionality of 420 (140 pixels, each having

a hue, saturation, and a value component). In order to make

these strips easier accessible to filter operators, we warp the

omnidirectional images (e.g., see Figure 2 (b) and (c)) into

panoramic views (e.g., see Figure 5 (a)), such that angles in

the polar representation now correspond to column indices in

the panoramic one. This transformation allows us to replace

complicated image operations in the polar domain by easier

and more robust ones. In the following, we describe several

ways of extracting useful low-dimensional feature vectors x

from the 420-dimensional image columns, which can then

be directly used to index the training and test targets in the

GP framework.

1) Unsupervised Dimensionality Reduction: As a classic

way of reducing the complexity of a data set, we applied

the principle component analysis (PCA) to the raw 420-

dimensional pixel vectors that are contained in the columns

of the panoramic images. The PCA is implemented using

eigenvalue decomposition of the covariance matrix of the

training vectors. It yields a linear transformation which

brings the input vectors into a new basis such that their

dimensions are now ordered by the amount of data-set

variance they carry. In this way, we can truncate the vectors

to a few components without losing a large amount of
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Fig. 3. The amount of variance explained by the the first principle
components (eigenvectors) of the pixel columns in the two data sets.

information. The diagram in Figure 3 depicts the relative

amount of variance that is explained for two different data

sets when truncating the transformed data vectors after a

certain number of components. In the experiments reported

below, we trained the PCA on 600 input images and retained

the first six principle components. Our experiments revealed

that the value channel of the visual input is more important

than hue and saturation for our task. The GP model learned

with these 6-dimensional features is termed PCA-GP in the

experimental section.

2) Edge-based Features: The PCA is an unsupervised

method that does not take into account prior information

that might be available about the task to be solved – in this

case, the fact that distances to the closest obstacles are to be

predicted. Driven by the observation that, especially in indoor

environments, there is a strong correlation between the extent

of free space and the presence of horizontal edge features in

the panoramic image, we also assessed the potential of edge-

type features in our approach.

Laws’ convolution masks [4] provide an easy way of

constructing local feature extractors for discretized signals.

The idea is to define three basic convolution masks

• L3 = (1, 2, 1)T (Weighted Sum: Averaging),

• E3 = (−1, 0, 1)T (First difference: Edges),

• S3 = (−1, 2,−1)T (Second difference: Spots),
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Fig. 4. Feature histogram for Laws5+LMD edge features. Each cell
in the histogram is indexed by the pixel location of the edge feature
(x-axis) and the length of the corresponding laser beam (y-axis). The
optimized (parametric) mapping function that is used as a benchmark in
our experiments is overlaid in green.

each having a different effect on (1-dimensional) patterns,

and to construct more complex filters by a combination of

the basic masks. In our application domain, we obtained good

results with the (2-dimensional) directed edge filter E5L
T
5

,

which is the outer product of E5 and L5. Here, E5 is a

convolution of E3 with L3 and L5 denotes L3 convolved with

itself. After filtering with this mask, we apply an optimized

threshold to yield a binary response. This feature type is

denoted as Laws5 in the experimental section. As another

well-known feature type, we applied the E3L
T
3

filter, i.e., the

Sobel operator, in conjunction with Canny’s algorithm [2].

This filter yields binary responses at the image locations

with maximal grey-value gradients in gradient direction. We

denote this feature type as Laws3+Canny in Section V. For

both edge detectors, Laws5 and Laws3+Canny, we search

along each image column for the first detected edge. This

pixel index then constitutes the feature value.

To increase the robustness of the edge detectors described

above, we applied lightmap damping as an optional prepro-

cessing step to the raw images. This means that, in a first

step, a copy of the image is converted to gray scale and

strongly smoothed with a Gaussian filter, such that every

pixel represents the brightness of its local environment. This

is referred to as the lightmap. The brightness of the original

image is then scaled with respect to the lightmap, such that

the value component of the color is increased in dark areas

and decreased in bright areas. In the experimental section,

this operation is marked by adding +LMD to the feature

descriptions.

All parameters involved in the edge detection procedures

described above were optimized to yield features that lie as

close as possible to the laser end points projected onto the

omnidirectional image using the acquired training set. For

our regression model, we can now construct 4-dimensional

feature vectors x consisting of the Canny-based feature,

the Laws5-based feature, and both features with additional

preprocessing using lightmap-damping. Since every of these

individual features captures slightly different aspects of the

visual input, the combination of all in what we call the

Feature-GP yields more accurate predictions than any single

one.

As a benchmark for predicting range information from

edge features, we also evaluated the individual features

directly. For doing so, we fitted a parametric function to trai-

ning samples of feature-range pairs. This mapping function

computes for each pixel location of an edge feature the length

of the corresponding laser beam. The diagram in Figure 4

depicts the feature histogram for the Laws5+LMD features

from one of our test runs that was used for the optimization.

The color of a cell (x, y) in this diagram encodes the relative

amount of features that were extracted at the pixel location

x (measured from the center of the omnidirectional image)

and that have a corresponding laser beam with a length of

y in the training set. The optimized projection function is

overlayed in green.

V. EXPERIMENTS

The experiments presented in this section are designed to

evaluate how well the proposed system is able to estimate

range data from single monocular camera images. We docu-

ment a series of different experiments: First, we evaluate the

accuracy of the estimated range scans using the individual

edge features directly, the PCA-GP, and the Feature-GP,

which constitutes our regression model with the 4 edge-

based vision features as input dimensions. Then, we illustrate

how these estimates can be used to build grid maps of the

environment. We also evaluated, whether applying the GBP

model [15] as a post-processing step to the predicted range

scans can further increase the prediction accuracy. The GBP

model places a Gaussian process prior on the range function

(rather than on the function that maps features to distances)

and, thus, also models angular dependencies. We denote

these models by Feature-GP+GBP and PCA-GP+GBP.

The two data sets used for the experiments have been

recorded using a mobile robot equipped with a laser scanner,

an omnidirectional camera, and odometry sensors at the

AIS lab at the University of Freiburg (Figure 2 (b)) and

at the DFKI lab in Saarbrücken (Figure 2 (c)). The two

environments have quite different characteristics – especially

in the visual aspects. While the environment in Saarbrücken

mainly consists of solid, regular structures and a homoge-

neously colored floor, the lab in Freiburg exhibits many glass

panes, an irregular, wooden floor, and challenging lighting

conditions.

A. Accuracy of Range Predictions

We evaluated eight different system configurations, each

on both test data sets. Table I summarizes the average

RMSE (root mean squared error) obtained for the individual

scenarios. The error is measured as the deviation of the range

predictions using the visual input from the corresponding

laser ranges recorded by the sensor. The first four configura-

tions, referred to as C1 to C4, apply the optimized mapping

functions for the different edge features (see Figure 4).

Depending on the data, the features provide estimates with

an RMSE of between 1.7 m and 3 m. We then evaluated the

configurations C5 and C6 which use the four edge-based

features as inputs to a Gaussian process model as described
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Fig. 5. (a) Estimated ranges projected back onto the camera image using the feature detectors directly (small dots) and using the Feature-GP model (red
points). (b) Prediction results and the true laser scan at one of the test locations. The evolution of the root mean squared error (RSME) for the individual
images of the Saarbrücken (c) and Freiburg (d) data sets.

in Section III to learn the mapping from the feature vectors

to the distances. The learning algorithm was able to perform

range estimation with an RMSE of around 1 m. Note that

we measure the prediction error relative to the recorded laser

beams rather than to the true geometry of the environment.

Thus, we report a conservative error estimate that also

includes errors due to reflected laser beams contained in

the test set. To give a visual impression of the prediction

accuracy of the Feature-GP, we give a typical laser scan

and the mean predictions in diagram (b) of Figure 5.

TABLE I

AVERAGE ERRORS OBTAINED WITH THE DIFFERENT METHODS

RMSE on test set
Configuration Saarbrücken Freiburg

C1: Laws5 1.70m 2.87m
C2: Laws5+LMD 2.01m 2.08m
C3: Laws3+Canny 1.74m 2.87m
C4: Laws3+Canny+LMD 2.06m 2.59m

C5: Feature-GP 1.04m 1.04m
C6: Feature-GP+GBP 1.03m 0.94m

C7: PCA-GP 1.24m 1.40m
C8: PCA-GP+GBP 1.22m 1.41m

As configuration C7, we evaluated the PCA-GP approach

that does not require engineered features, but rather works

on the low-dimensional representation of the raw visual

input computed using the PCA. The resulting 6-dimensional

feature vector is used as input to the Gaussian process model.

With an RMSE of 1.2 m to 1.4 m, the PCA-GP outperforms

all four engineered features, but is not as accurate as the

Feature-GP. For configurations C6 and C8, we predicted

the ranges per scan using the two different methods and

additionally applied the GBP model [15] to incorporate

angular dependencies between the predicted beams. This

post-processing step yields slight improvements compared

to the original variants C5 and C7.

Figure 5 (a) depicts an example images showing the

predictions based on the individual vision features and the

Feature-GP. It can be clearly seen from the image, that

the different edge-based features model different parts of

the range scan well. The Feature-GP fuses these unreliable

estimates to achieve high accuracy on the whole scan. The

result of the Feature-GP+GBP variant for the same situation

is given in Figure 1. The evolution of the RMSE for the

different methods over time is given in Figures 5 (c) and (d).

As can be seen from the diagrams, the prediction using

the Feature-GP model outperforms the other techniques and

achieves a near-constant error rate.

B. Application to Mapping

Our approach can be applied to a variety of robotics tasks

such as obstacle avoidance, localization, or mapping. To

illustrate this, we show how to learn a grid map of the envi-

ronment from the predictive range distributions. Compared

to occupancy grid mapping where one estimates for each cell

the probability of being occupied or free, we use the so called

reflection probability maps. A cell of such a map models the

probability that a laser beam passing this cell is reflected

or not. Reflection probability maps, which are learned using

the so called counting model, have the advantage of requiring

no hand-tuned sensor model such as occupancy grid maps

(see [1] for further details). The reflection probability mi of

a cell i is given by mi = αi/(αi + βi) where αi is the

number of times an observation hits the cell, i.e., ends in it,

and βi is the number of misses, i.e., the number of times a

beam has intercepted a cell without ending in it. Since our

GP approach does not estimate a single laser end point, but

rather a full (normal) distribution p(z) of possible end points,

we have to integrate over this distribution. More precisely,

for each grid cell ci, we update the cell’s reflectance values

according to the predictive distribution p(z) according to the

following formulas:

αi ← αi +

∫

z∈ci

p(z) dz (5)

βj ← βi +

∫

z>ci

p(z) dz . (6)

Note that for perfectly accurate predications, the extended

update rule is equivalent to the standard formula stated above.
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Fig. 6. Maps of the Freiburg AIS lab (top row) and DFKI Saarbrücken
(bottom row) using real laser data (left) and the predictions of the Feature-

GP (right).

We applied this extended reflection probability mapper

to the trajectories and range predictions that resulted from

the experiments reported on above. Figure 6 gives the laser-

based maps using a standard mapper (left column) and the

extended mapper using the predicted ranges (right column)

for both environments (Freiburg on top and Saarbrücken

below). In both cases, it is possible to build an accurate

map, which is comparable to maps obtained with infrared

proximity sensors [9] or sonars [23].

VI. CONCLUSIONS

We presented a novel approach for predicting range func-

tions from single images recorded with a monocular camera.

Our model is based on a Gaussian process model for regres-

sion, utilizing edge-based features extracted from the image

or, alternatively, using the PCA to find a low-dimensional

representation of the visual input in an unsupervised manner.

Both models outperform the optimized individual features.

We showed in experiments with a real robot that the range

predictions are accurate enough to feed them into an exten-

ded mapping algorithm for predictive range distributions and

that the resulting maps are comparable to maps obtained with

infrared or sonar sensors.

In future research we would like to evaluate alternative

techniques for dimensionality reduction, especially those

taking the actual task into account (supervised PCA, LDA)

or others that are directly integrated into the GP framework.

Furthermore, we would like to evaluate our approach in other

robotics tasks, such as exploration or place classification.
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feature matching. In Fachgespräche Autonome Mobile Systeme (AMS),
2007.

[22] G. Swaminathan and S. Grossberg. Laminar cortical mechanisms
for the perception of slanted and curved 3-D surfaces and their 2-
D pictorical projections. J. Vis., 2(7):79–79, 11 2002.

[23] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig,
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