
  

  

Abstract—This paper presents a novel design of visual state 

estimation for an image-based tracking control system to 

estimate system state during visual tracking control process. The 

advantage of this design is that it can estimate the target status 

and target image velocity without using the knowledge of 

target’s 3D motion-model information. This advantage is helpful 

for real-time visual tracking controller design. In order to 

increase the robustness against random observation noise, a 

neural network based self-tuning algorithm is proposed using 

echo state network (ESN) technique. The visual state estimator is 

designed by combining a Kalman filter with the ESN-based 

self-tuning algorithm. The performance of this estimator design 

has been evaluated using computer simulation. Several 

interesting experiments on a mobile robot validate the proposed 

algorithms. 

I. INTRODUCTION 

ISION systems have been widely used as perception 

sensors for autonomous intelligent robots and the 

research on visual tracking control of a mobile robot to track a 

target of interest has been an active area of robotic research 

[1-3]. The visual tracking task of a mobile robot encompasses 

several key factors such as motion control, target detection, 

depth estimation, position and velocity estimations, etc. In [4], 

the authors suggested that the prediction of target motion can 

help the visual tracking system to track the target within the 

camera’s field of view. However, in their design, the proposed 

estimator only can estimate the target motion in eight 

directions. In practical applications, a mobile robot usually 

needs to track a dynamic moving target. Therefore, a visual 

state estimator to estimate the motion of a dynamic moving 

target can greatly enhance the performance of a visual 

tracking control system. 

In this paper, we address the problem regarding position 

and velocity estimation of a dynamic motion target in the 

image plane. In the existing estimation methods, it is well 

known that a Kalman filter is one of the best linear estimators 

for a linear plant model with Gaussian white noise [5]. 

However, if the noise statistics are unknown, it will be 

difficult to determine suitable covariance matrices for 

computing the Kalman gain matrix [6]. Thanks to the neural 

network techniques, the observation noise statistics can be 
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estimated by an artificial neural network without any noise 

model [7]. Therefore, a neural network based self-tuning 

algorithm is helpful for a Kalman filter to work in an 

environment with unknown observation noise statistics.   

There exist numerous neural network architectures. 

Amongst them, feedforward neural networks (FNNs) are the 

most popular models; however, FNNs only implement static 

input-output mappings. On the contrary, recurrent neural 

networks (RNNs) are better fit for time-dependent and 

non-reactive tasks, such as the one considered here, as the 

recurrent connections allow for some short-term memory. 

However, a major issue with RNNs is the training complexity. 

Recently, a new technique to use RNNs has been proposed: 

the Echo State Networks (ESNs) [8]. The idea of ESN is to use 

a large RNN while training only the readout layer. The 

recurrent part is created a priori and left fixed, and a simple 

linear memory-less readout is trained to project the state of the 

recurrent part onto the desired output. Thus the training 

complexity comes down to a one-step linear training, 

guaranteed to find a global optimum. This advantage 

motivates us to adopt ESN technique to filter the noise and 

estimate the noise variance.  

In this paper, a novel visual state estimator is proposed by 

using ESN-based self-tuning Kalman filter technique. The 

ESN aims to filter the observation noise and provide the 

corresponding covariance matrix for the Kalman filter to 

estimate the optimal system state. Simulation and 

experimental results will be presented to validate the 

estimation performance as well as the robustness of proposed 

ESN-based self-tuning Kalman filter in visual tracking.  

II. PROBLEM FORMULATION 

A. Visual Interaction Model 

We first introduce the scenario under consideration. As 

shown in Fig 1, the considered system is a wheeled mobile 

robot equipped with a tilt camera mounted on top of it to track 

a moving target, such as a human face, in the image plane. The 

optical-axis of the camera faces the target of interest. Fig. 1 (a) 

illustrates the model of the mobile robot and target in the 

world coordinate frame Ff, in which the motion of the target is 

supposed to be holonomic with zero angular motion relative to 

the robot. Fig. 1 (b) is the side view of the scenario under 

consideration, in which the tilt angle φ  gives the relationship 

between the camera coordinate frame Fc and the mobile 

coordinate frame Fm. In order for the mobile robot to interact  
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(a)            (b) 

Fig. 1 (a) A model of the unicycle-modeled mobile robot and the target in 

world coordinate frame. (b) Side view of the mobile robot with a tilt camera 

mounted on top of it to track a dynamic target. 

 

with the target in the image coordinate frame, a visual 

interaction model was proposed in authors’ previous work [9]. 

Figure 2 shows the definition of observed system states in  the 

image plane, which is used to derive the visual interaction 

model. In Fig. 2, xi and yi, respectively, are the horizontal and 

vertical position of the centroid of target in the image plane, 

and dx is the width of target in the image plane. Let 

[ ]T
xiii

dyxX =  denote the system states in the image plane, 

(fx, fy) represent the fixed focal length along the image x-axis 

and y-axis, respectively, and W denotes the actual width of the 

target. The visual interaction model between robot and target 

in the image coordinate frame can be modeled as a 

dual-Jacobian equation such that [10] 
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is termed target image Jacobian and transfers the target 

velocity [ ]Tz

f

y

f
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ft vvvV =  into target image velocity 
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is termed robot image Jacobian and transfers the mobile robot 

control velocity [ ]Tm

t

m

f

m

f wwvu =  into robot image velocity 

uX
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xx
dk =  and 

xyxy
kk ff=  are two scalars. 

B. Visual Tracking Control 

Based on the visual interaction model (1), a feedback 

control law can be found by feedback linearization such that 
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where [ ] [ ]T
xxiiii

T

eeee
dyxdyxX *** dyx −−−== is 

the error coordinates defined in the image plane, in which 

[ ]T
xii

d

i
dyxX =  is the vector of fixed desired states in the 

 
Fig. 2 Definition of the observed system state in the image plane. 

 

image plane, and [ ]T
xiii

dyxX **** =  is the estimated state 

vector from a visual state estimator (see later). 

0),,(
321

>= αααdiag
g

K  is a 3-by-3 positive gain matrix. The 

visual tracking control law (2) indicates that the controller 

needs information about target status Xi and target image 

velocity t

i
X& . Therefore, a visual state estimator is required in 

order to obtain the optimal estimates of target status Xi and 

target image velocity t

i
X&  in the image space for visual 

tracking control task. 

C. The Visual State Estimation Problem 

Because actual image processing is discrete, the first step of 

visual state estimator design is to discretize the system model 

(1) into the corresponding discrete form such that 

1
T]1[T]1[][ −+−+−=

ni

t

iii
unXnXnX B& , for ,...2 ,1=n  (3) 

where T denotes the sampling time of the digital system, and 

un is the discrete-time control signal at time step n. Suppose 

that the target’s motion can be approximated as a smooth 

motion during a sampling time, then the target image velocity 

has the following result 

]1[][ −= nXnX
t

i

t

i

&& .                (4) 

Based on (3) and (4), the propagation model can be obtained 

such that 
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where TTt

i

T

in
nXnXX ]])[(])[([ &=  is the vector of system 

estimates at time step n, I3 is a 3-by-3 identity matrix, and 03 is 

a 3-by-3 zero matrix. Next, since the observed image contains 

only information about target status Xi at each time step, the 

observation model is given by 

[ ]
nestnn

XXZ H0I ≡=
33

.         (6) 

Based on (5) and (6), the visual state estimation problem is 

defined as to find the state estimate *

n
X  that minimizes the 

weighted least square criterion: 

( ) ( ) ( ) ( )][minarg
11*

XZXZXXXXX
estnn

T

estnnn
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n
X
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     (7) 

where T

estnestn
APAP

1−=  is the covariance matrix of 

propagation model (5) at time step n, and Rn is the covariance 

matrix of observation model (6) at time step n. 

III. SELF-TUNING KALMAN FILTER  

Define that (Xn,Pn) are the propagation state and the 
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corresponding covariance matrix at time step n, (X*

n-1,P
*

n-1) 

are the optimal estimate and the corresponding covariance 

matrix at time step n-1, TTt

i

T

in
nXnXX ]])[(])[([ &δδδ =  

represents Gaussian propagation uncertainty with zero mean 

and covariance matrix Qn at time step n, and 
n

Zδ  represents 

Gaussian observation uncertainty with zero mean and 

covariance matrix Rn at time step n. Then, when the linear 

propagation model (5) and the linear observation model (6) 

both have Gaussian propagation and observation uncertainties 

Propagation: 
11

*

1 −−− ++=
nnestnestn

XuXX δBA ,     (8) 

Covariance Propagation: 
1

*

1 −− +=
n

T

estnestn
QAPAP ,  (9) 

Observation: 
nnestn

ZXZ δ+= H ,            (10) 

a Kalman filter will provide the local minimum solution of 

performance criterion (7) and the corresponding covariance 

matrix at time step n such that [5] 
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where 
1

*

1 −− +=
nestnest

p

n
uXX BA  is the ideal propagation state, 

1
)(

−+=
n

T

estnest

T

estnn
RHPHHPK  is the Kalman gain matrix, 

and I6 is a 6-by-6 identity matrix. 

According to [6], the performance of a Kalman filter is 

determined by the covariance matrices Qn and Rn. Thus, a 

difficult problem in Kalman filter applications is how to 

determine the values of matrices Qn and Rn for computing the 

Kalman gain matrix Kn. Typically, this problem is left up to 

engineering intuition by a trial-and-error procedure. However, 

in robotic applications the observation uncertainty usually 

varies with the conditions of target motion (such as orientation 

and rotation of a tracked human face) and working 

environment (such as light variation and occlusion), and the 

corresponding covariance matrix Rn are time-varying for 

different operating conditions. In order to deal with this 

problem, the neural network techniques are useful to filter the 

observation noise and estimate the noise variance without any 

noise model [7]. Therefore, this advantage motivates us to 

combine a neural network based self-tuning algorithm with a 

Kalman filter to filter the observation noise and provide a 

suitable observation covariance matrix Rn in the varying 

environmental conditions. Figure 3 shows the block diagram 

of the proposed ESN-based self-tuning Kalman filter, in 

which 
n

Zˆ  denotes the measurement with observation noise, 

and (Zn, ∆Rn) are the filtered measurement and the estimated 

noise covariance matrix. The covariance matrix of the 

observation signal is then updated such that  

nn
RRR ∆+=

0
,                 (12) 

where R0 is a fixed initial covariance matrix to avoid the 

covariance matrix becoming null. In the following section, we 

will present the design of ESN-based self-tuning algorithm. 

Note that because we do not have an exact mathematic 

model to describe the propagation of the uncertainty, the 

propagation covariance matrix Qn is supposed to be fixed 

without updating in this design. 

Fig. 3 Proposed neural network based self-tuning Kalman filter. 

 
Fig. 4 General structure of an ESN, in which s[n] is the state of every neuron 

in the reservoir, and W is the connection matrix between every neuron. 

IV. ECHO STATE NETWORK FOR NOISE FILTERING AND NOISE 

VARIANCE ESTIMATION 

We will now describe the neural network used in the current 

scenario. An ESN is described by an input matrix WIN, a 

connection matrix W and a linear readout WOUT (see Fig. 4). 

A. Activation Function 

The ESN runs in discrete time. At each time step, the state 

vector (describing the activation level of every neuron) is 

updated according to 

])[)1(])[][((]1[
in

nmnnmfn ssWiWs ⋅−+⋅+⋅⋅=+ , 

0>∀n  (13) 

where i[n] is the current input vector, s[n] is the current state 

(with s[0]=0), f(.) is a non-linear function (here we use a 

hyperbolic tangent) and m is a parameter controlling the 

leaking rate of each neuron. At each time step, the output is 

given by 

⎥
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⎤
⎢
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⎡
⋅=

1

][
][

out

n

no

s
W                        (14) 

B. Network Creation 

The matrices Win and W are created randomly. The 

connection from the inputs should have weights large enough 

to have sufficient effect inside the reservoir and small enough 

not to drive the reservoir to saturation [11]. An efficient 

trade-off has been found by setting the elements of Win to -0.1 

or +0.1 with equal probability. The reservoir connections 

must guarantee the echo state property [8]. Intuitively, this 

property states that the initial conditions have an 

asymptotically decreasing influence on the current state of the 

network. To do so, the elements of W are drawn from a 

normal distribution, and the whole matrix is then re-scaled to 

make its spectral radius equal to 0.9. 
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C. Training 

The output matrix Wout is created then during the training. 

As the output at each time step is given by (14), the training is 

done by solving 

]][ˆ]2[ˆ]1[ˆ[
111
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out t

t
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in the mean square sense (nt being the number of time samples 

and ][ˆ no the desired output at time step n). 

D. ESN-based Self-Tuning Algorithm 

In the current implementation, we use 3 independent ESNs, 

one for each parameter xi, yi and dx. Each ESN receives as 

input the corresponding measurement with noise 
n

Zˆ  and the 

corresponding robot image velocity m

i
X& . It is then trained to 

output at each time step an estimate of the actual measurement 

Zn (see Fig. 5).  

To estimate the variance of the noise at time step n, we take 

in the present design the variance of the time series (recorded 

over time with length N) of observation noise 
nnn

ZZZ −= ˆδ . 

Let 
x

Zδ , 
y

Zδ  and 
d

Zδ  denote the time series of observation 

noise corresponding to xi, yi and dx, the covariance matrix of 

observation noise at time step n is estimated by 

))var(),var(),(var(diag dyxn ZZZ δδδ=∆R ,       (16) 

where var(x) denotes the variance value of vector x. In the 

current design, the time series length (N) is set to 9. The 

cross-covariance values of Zn are supposed to be zero since 

three independent ESNs are used. 

V. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation Setup 

In order to evaluate the performance of the proposed visual 

state estimator, a simulation environment has been setup using 

MATLAB. Figure 6 shows the architecture of the simulation 

setup. In Fig. 6, Xn denotes the reference signal needed to be 

estimated by a visual state estimator. The input of the visual 

state estimator is the observation signal 
n

Zˆ  with random noise 

(RN) 

⎩
⎨
⎧

−+
<−

=
otherwise

ifK
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n

  ),5.0)(1(

)(      ),5.0(

21

321

σσ
ρσσσ          (17) 

where 1>
n

K  is the noise gain; [ ]1,0∈
i

σ , i=1~3, are three 

random signals with uniform distribution; and [ ]1,0∈ρ  is a 

constant threshold value. Expression (17) indicates that the 

intensity of RN is time-varying and dependent on a random 

condition. If the condition )(
3

ρσ <  is satisfied, then RN will 

have large noise gain; otherwise RN will only have noise gain 

smaller than 2. Thus, the threshold value ρ  determines the 

probability of the event of appearing large observation noise. 

For example, if 1=ρ , then the observation signal will always 

have the largest noise intensity. This kind of noise usually 

 
Fig. 5 Inputs and outputs of the ESNs (detail of the ESN box from Fig. 3) 

 
Fig. 6 Simulation setup for the performance evaluation of the visual state 

estimator shown in Fig. 3 (see Section III for the details). 

 

happens during the practical visual tracking process of the 

mobile robot, since the intensity of observation uncertainty 

usually is position-dependent and light-dependent. 

In the following, a visual state estimator is utilized to filter 

RN and provide the optimal estimation. The performance of 

the visual state estimator is then validated by 

mean-squared-error (MSE) criterion between the ideal signal 

Xn and the estimated signal Xn

*. Table I shows the parameters 

used in the simulations. Note that we use a threshold 

75.0=ρ  when generating the training data for the ESNs. 

Moreover, the parameters used to create the ESNs (found 

empirically) are nr=90 neurons (for all three ESNs) and m=0.5, 

0.6 and 0.8 for xi, yi and dx respectively.  

B. Simulation Results 

Three visual state estimators are used to compare the 

performance: Kalman filter (KF), self-tuning Kalman filter 

using linear regression (STKF-LR) [10], and the proposed 

self-tuning Kalman filter using ESN (STKF-ESN). Table II 

shows the average results of MSE measurements as the 

threshold value 1=ρ  and 0=ρ  in the simulations (out of 40 

simulations for each ρ ). In Table II, the bold font denotes the 

smallest value of the MSE measurement across each row. 

From Table II, we observe that the estimation results of KF 

and STKF-LR are very sensitive to the intensity of the 

observation noise. As the threshold value ρ  increased from 0 

to 1, the average MSE measurements are also increased 

significantly. Moreover, when the threshold value 1=ρ  (the 

observation signal always has the largest noise intensity), the 

proposed STKF-ESN provides the best estimation results 
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compared with the other two estimators. Note that STKF-LR 

uses the measurement offset for the computation of 

observation variance. Please refer to [10] for more details. 

Table II also records the MSE gap between 1=ρ  and 

0=ρ . A small MSE gap implies a large robustness against 

the intensity of observation noise. Table II shows the MSE 

gaps of KF and STKF-LR for all estimates are larger than that 

of STKF-ESN. This implies that the proposed STKF-ESN 

provides high robustness against the observation uncertainty 

compared with KF and STKF-LR. Therefore, the simulation 

results validate the performance and robustness of the 

proposed ESN-based visual state estimator. 

 
Fig. 7 An elder-care mobile robot, Rola, used in the experiments. 

 
Fig. 8 Block diagram of the implemented visual tracking control system, 

which includes the proposed ESN-based visual state estimator. 

C. Experiments 

Figure 7 shows the experimental mobile robot, Rola, used 

in the experiments. Rola stands for robot of living aid 

designed to provide an elder immediate medical care. It 

includes several functions such as location-aware detection, 

pose estimation, visual tracking and video transmission. For 

visual tracking and video transmission functions, a pan-tilt 

USB camera is mounted on the robot to detect and track user’s 

face. In the experiments, the linear and angular command 

velocities ( m

fv
, m

fw ) are used to control the motion of the 

mobile robot and the tilt command velocity m

t
w  is used to 

control the tilt angle of the pan-tilt camera. Figure 8 depicts 

the implemented visual tracking control system utilizing the 

proposed ESN-based visual state estimator to estimate the 

system state and target image velocity. The processing time of 

the visual tracking system is less than 80ms including image 

processing, estimator and controller computation. Thus, the 

overall tracking system can track user’s face in real-time. 

D. Experimental Results 

In the experiments, Rola aims to track the user’s face in a 

practical environment with hand-controlled light-variation 

situations, which make the intensity of observation noise 

position-dependent. Thus, the proposed ESN-based visual 

state estimator plays an important role in overcoming the 

position-dependent observation noise. Note that the ESN 

parameters used in the experiments are the same as that used  

TABLE I 

PARAMETERS USED IN THE SIMULATIONS AND EXPERIMENTS 

Symbol Quantity Description 

(fx,fy) (393.4,391.8) pixels Camera focal length in 

retinal coordinates. 

W 12 cm Width of the target. 

D 40 cm Distance between two 

drive wheels. 

T 80 ms Sampling period of the 

control system. 

yδ  10 cm Distance between the 

robot head and the camera

)d,y,x(
xii

 (0,0,35) Desired system state in 

image plane. 

),,(
321

ααα  (1,3/2,2/5) Three distinct positive 

constants. 

Q0 diag(5,5,5,20,20,20) Initial propagation 

covariance matrix 

R0 diag(5,5,5) Initial observation 

covariance matrix 

n
K  10 Noise gain 

 

TABLE II 

AVERAGE MSE MEASUREMENTS OF COMPUTER SIMULATIONS 

MSE Value KF STKF-LR STKF-ESN 

1=ρ  1.1979 1.8969 0.7885 

0=ρ  0.1766 0.6639 0.1720 

 

i
x

 MSE Gap 1.0212 1.2330 0.6164 

1=ρ  1.1488 1.3223 0.5644 

0=ρ  0.1544 0.3160 0.3076 

 

i
y

 MSE Gap 0.9944 1.0063 0.2568 

1=ρ  4.4150 2.7493 0.9879 

0=ρ  0.1825 0.1951 0.1404 

 

x
d

 MSE Gap 4.2324 2.5542 0.8476 

1=ρ  18.0588 23.5390 16.0603 

0=ρ  13.6167 17.2235 13.4824 

 
t

i
x&

 MSE Gap 4.4421 6.3155 2.5778 

1=ρ  6.1635 5.2398 2.2938 

0=ρ  1.4735 2.0022 1.6126 

 
t

i
y&

 MSE Gap 4.6900 3.2376 0.6812 

1=ρ  14.9345 6.1500 1.5352 

0=ρ  0.6867 0.7696 0.4380 

 

t

x
d&

 MSE Gap 14.2479 5.3805 1.0972 
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(a1)              (a2)             (a3)             (a4) 

    
(b1)              (b2)             (b3)             (b4) 

Fig. 9.  Experimental results. (a1-a4): Image sequence recorded from a DV camera. (b1-b4): Corresponding image sequence recorded from the on-board USB 

camera. In the pictures (b1-b4), the green window indicates the observation, and the blue window is the corresponding output of ESNs. 

 

in the simulations. 

Figure 9 shows the experimental results of the implemented 

visual tracking control system given in Fig. 8. Figures 9(a1-a4) 

illustrate recorded pictures from a digital video (DV) camera, 

and Figs. 9(b1-b4) show the corresponding pictures recorded 

by the on-board USB camera. In Figs. 9(a1-a4), the tracked 

person was walking in an environment with light-variation, 

and the robot tracked the person’s face as expected. As shown 

in Figs. 9(b1-b4), the person’s face suddenly became lighter 

due to the variation in illumination. In such situations, the 

ESNs work to provide a stable output even when the 

observation contains rapid random noises. Therefore, the 

robot estimated and tracked the person’s face in the image 

plane successfully. Note that the image sequence shown in Fig. 

9 is about 2 seconds. Several video clips of mobile robot 

visual tracking experimental results are available online in 

[12]. 

VI. CONCLUSION 

In this paper, a novel visual state estimator is proposed 

based on ESN-based self-tuning Kalman filter technique. This 

design can be applied to several visual tracking applications, 

such as visual tracking control, visual surveillance, and visual 

navigation, etc., to estimate the position and the velocity of the 

target in the image plane. Simulations show that this design 

provides high robustness against the observation uncertainty 

with time-varying intensity. This advantage is very useful in 

robotic applications, since the observation uncertainty usually 

varies with the conditions of target motion and working 

environment. Computer simulation results validate the 

robustness and performance of proposed estimation method 

by comparing with conventional Kalman filter and linear 

regression based self-tuning Kalman filter. Moreover, 

experimental results also verify the tracking performance of 

the proposed visual tracking system in a practical environment 

under light-varying conditions.  
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