
 
 

 

  

Abstract— An accurate and robust impedance control 
technique is developed based on internal model control 
structure and time–delay estimation: the former injects desired 
impedance and corrects dynamics estimation error; the latter 
estimates and compensates the nonlinear dynamics of robot 
manipulators. Owing to the simple structure, the proposed 
control is designed without requiring entire dynamics 
computation or complex algorithms. The accuracy and 
robustness of the proposed control are verified using a two 
degrees of freedom robot with stiff wall simulation. The 
proposed control realizes desired impedance accurately 
compared with other competent controllers throughout the task, 
i.e., free motion, constrained motion, and transition between 
these motions. Further, proposed control realizes four sets of 
desired impedance accurately. Thus, accuracy and robustness 
of proposed control is confirmed. 

I. INTRODUCTION 
OR more than two decades since it was first reported, 
impedance control has been noted and recognized as a 

promising unified approach to robot manipulation [1]. Thus, 
it has been applied to many robotic systems.  

Recently, however, it was revealed in [2] that it is difficult 
to enhance robustness against modeling error without losing 
the accuracy at which the desired impedance is attained. This 
is known as the “Accuracy/Robustness Dilemma in 
Impedance Control” [2]. In short, the N. Hogan’s original 
method [1], called DB-IC (Dynamics Based Impedance 
Control) [2], compensates robot dynamics by using a 
dynamic model [2]. Thus, DB-IC is sensitive to modeling 
error. In contrast, Position Based Impedance Control 
(PB-IC), one of the most common implementation of 
impedance control [2]-[8], can enhance robustness against 
modeling error using an inner loop [2], [4]-[8]. However, 
because of the modeling error, the inner loop dynamics, 
expected to be hidden, is excited and degrades impedance 
realization accuracy [2].  

As a trade-off between accuracy and robustness, 
Instantaneous Model based Impedance Control (IM-IC) was 
proposed in [2]. However, in this case as well, accuracy is 
degraded because of inner loop dynamics [2].  
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Many research works have been carried out with the aim of 
attaining robustness of impedance control. Notable 
approaches include variable structure control [9], adaptive 
control [10], and iterative learning control [11]. Although 
these approaches succeeded to enhance robustness, they use 
either a computationally demanding robot dynamics model 
or complex algorithms. Therefore, in addition to accuracy 
and robustness, simplicity of the control law is preferable.  

With these considerations in mind, in response to the given 
dilemma, an Internal Model Control (IMC) [12] based 
impedance control was developed. IMC was chosen to inject 
desired impedance dynamics while correcting modeling 
error by using so-called perfect control performance. To 
reduce the use of dynamics model of proposed control, Time 
Delay Estimation (TDE) [13], a model-independent 
dynamics estimation technique [13]-[16], was incorporated. 
Simulation results verify the accuracy and robustness of 
proposed control law in comparison with other control laws.  

This paper is structured as follows. Section II briefly 
introduces DB-IC, PB-IC, and the “Accuracy /Robustness 
Dilemma”. In Section III, an impedance control scheme is 
proposed and analyzed. Section IV presents a comparison of 
the proposed approach, the DB-IC, the PB-IC, and the IM-IC 
through two DOF simulations. Also the impedance 
realization accuracy of proposed control is verified using 
four sets of desired impedance. Finally, in Section V, we 
summarize the results and draw conclusions.  

II. ACCURACY/ROBUSTNESS DILEMMA  

A. Desired Impedance 
The goal of impedance control [4]-[8] is to achieve desired 

impedance dynamics as follows: 
( ) ( ) ( )d d d d d d e− + − + − =M x x B x x K x x F ,                  (1) 

where , , ∈x x x nR  denote the Cartesian position, and its time 
derivatives, respectively; , ,d d d ∈x x x nR  denote the Cartesian 
desired trajectory and its time derivatives, respectively; 

e ∈F nR the interaction force on the environment exerted by 
the robot; and , ,d d d

×∈M B K n nR  denote the desired mass, 
damping, and stiffness, respectively. In the Laplace domain, 

( )d s ×∈Z n nR , a desired dynamic relation between Fe and x, 
has the following form: 

Zd(s)=s2Md+sBd+Kd.                                 (2) 
Zd is, in general, selected not for the enhancement of 
robustness, but for achievement of the task objective [1].  
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B. Robot Dynamics 
For the Cartesian space control, usually two forms of robot 

dynamics are considered [2], [17]: one form [2] is  
1( ) ( )( ) ( , ) ( )T

u eθ θ
−= − + +τ M θ J θ x Jθ N θ θ J θ F .           (3) 

where , ∈θ θ nR  denote the joint position and velocity, 
respectively; ( )θ

×∈M θ n nR  the inertia matrix; ( )θ ∈N θ,θ nR  
the centrifugal, Coriolis, gravitational, and friction forces; 

( ) ×∈J θ n nR  the Jacobian; and u ∈τ nR  the input torque.  
The other form [17] is an operational space formulation of 

robot dynamics. 
( ) ( , )u x x e= + +F M θ x N θ θ F ,                             (4) 

where Mx=J-TMθJ-1, and 1[ ]T
x θ θ

− −= −N J N M J Jθ . 

C. Dynamics Based Impedance Control (DB-IC) 
Based on (3), the following DB-IC law is derived [1], [4]. 

1ˆ ˆ( ) ( )( ) ( , ) ( )T
u d eθ θ

−= − + +τ M θ J θ u Jθ N θ θ J θ F  with         (5) 
1[ ( ) ( ) ]d d d d d d d e

−= + − + − −u x M B x x K x x F ,                   (6) 
where ˆ ( )θ

×∈M θ n nR  and ˆ ( , )θ ∈N θ θ nR denote estimates of Mθ 
and Nθ, respectively; and d ∈u nR denotes the control input. 
In the Laplace domain, ud can be written as below: 

1 1 1( ) ( )d d d d d e d d ds s− − −= − − +u M Z x M F M B K x .               (7) 
Clearly, robustness of the DB-IC entirely relies on the 
estimated values, ˆ

θM  and ˆ
θN .   

D. Position Based Impedance Control (PB-IC) 
PB-IC works as follows. The desired impedance model 

modifies xd by using Fe. The modified trajectory is then 
imposed as a command of the inner position control loop [2], 
[4]-[8]. The position command of the inner loop is the 
solution to the following desired impedance model: 

( ) ( ) ( )d d r d d r d d r e− + − + − =M x x B x x K x x F ,               (8) 
where , ,r r r ∈x x x nR  denote the inner loop position 
command and its time derivatives, respectively. In the 
Laplace domain, xr can be obtained as follows: 

1 1 1 1( ) [ ( ) ] ( )r d d d d d d e d d es s s− − − −= − = −x Z M M Z x M F x Z F .       (9) 
If the inner loop guarantees zero position error (x=xr), then, 
from (8), desired impedance is attained [5]. In free space, 
small xr-x implies small position error, because xr=xd [5]. 
Thus, close following of xr means i) small impedance error in 
constrained space and ii) small position error in free space. 

Any position control can be used for the inner loop. In this 
study, an experimentally verified method in [4], [8] is 
selected. It also uses the same dynamics compensation of (5). 
The difference is that du  is replaced with pu : 

( ) ( )p r v r p r= + − + −u x K x x K x x ,                       (10) 

where ,p v
×∈K K n nR  denote inner loop gains which can be 

designed independently of Md, Bd, and Kd. 

E. Accuracy/Robustness Dilemma in Impedance Control 
The robot dynamics (3) can be rewritten as follows: 

 
Fig.1 Block diagram of the DB-IC 

1

1

ˆ ˆ( )
ˆ ˆ    ( ) ( ) ( )

T
u eθ θ

θ θ θ θ

−

−
= − + +
+ − − + −

τ M J x Jθ N J F
M M J x Jθ N N

.                   (11) 

Subtracting (11) from (5) yields 
1 1ˆ ˆ ˆ( ) ( ) ( ) ( )θ θ θ θ θ

− −= − − + −M J u-x M M J x Jθ N N .           (12) 
Now, we define the dynamics estimation error, ( )tη nR∈ :  

1 1
( ) ( ) ( )

ˆ ˆ ˆ[( ) ( ) ( )]= t t tη JM M M J x Jθ N N u -xθ θ θ θ θ
− −− − + −  (13) 

u has no subscript, because (12) is a common relation to both 
DB-IC and PB-IC. u and x have a linear 2nd order dynamics, 
subject to η. 

2su x η= + .                                      (14) 
1) Accuracy and Robustness of the DB-IC 

ud can be divided into two parts as follows: 
1( )d d d d ds−= − +u v M B K x                                  (15) 

where -1 -1( )d d d d d esv M Z x M F− . Substituting (15) into (14), and 
solving for x, we have 

1( ) [ ]d d ds−= −x Z M v η ,                                        (16) 
which is illustrated in Fig.1. From (9) and the definition of vd, 
vd can be rewritten as follows: 

1 ( )d d d rs−=v M Z x .                                              (17) 
Note that DB-IC does not use xr. xr is introduced to compare 
DB-IC with other control laws in a consistent manner. 
Substituting (17) into (16) and solving for xr−x, we have 

1 2 1 1 1( ) ( )r d d d d d ds s s− − − −− = = + +x x Z M η I M B M K η .     (18) 
Accurate realization of desired impedance is disturbed by η. 
Moreover, except Md, Bd, and Kd, there are no other gains to 
suppress the effect of η. Thus, DB-IC is sensitive to η. 

2) Accuracy and Robustness of the PB-IC 
Similar to (15), up can be divided into two parts as follows: 

up = vp −(sKv+Kp)x                                        (19) 
where ( )p rsv C x ; and 2( ) v ps s sC I K K+ + . Substituting 
(19) into (14), and solving for x, we have  

x = C-1(s)(vp − η).                                        (20) 
The relations, (9) and (20), are illustrated in Fig.2. By 
substituting the definition of vp into (20) and solving for xr−x, 
we have 

1 2 1( ) ( )r v ps s s− −− = = + +x x C η I K K η .                   (21) 
C-1(s) can attenuate the effect of η by increasing Kp, Kv. Thus, 
PB-IC has better robustness compared with that of DB-IC.  

 
Fig. 2. Block diagram of the PB-IC 
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However, it is clear from Fig.2 that inner loop dynamics 
C-1(s), meant to be canceled by C(s), is excited by η and 
hinders accurate realization of the desired impedance. Thus, 
the inaccuracy is related to the inner loop dynamics. In the 
worst case, the robot can lose contact and oscillates [2]. 

3) Accuracy/Robustness Dilemma 
Although DB-IC can realize desired impedance accurately 

with precise model, it is sensitive to the modeling error. 
Although PB-IC can enhance robustness against the 
modeling error, it realizes inaccurate impedance because of 
the inherent inner loop dynamics, which is, in general, 
different from the desired impedance dynamics. Thus, there 
is a dilemma between accuracy and robustness. 
Remark: As a trade-off solution, IM-IC was developed in [2]. 
However, it also uses inner loop. Thus, IM-IC has the 
accuracy problem, too. 

III. PROPOSED IMPEDANCE CONTROL 
A brief review of IMC and TDE is presented. The 

proposed control law is then derived and analyzed. 

A. Internal Model Control 
The closed-loop dynamics due to IMC (Fig.3) is given as: 

( ){ } { }[1 ( ) ] (1 ) [1 ( ) ]dy PQ P P Q y PQ P P Q Pd= + − + − + − .  (22) 
From (22), one can easily derive the perfect control property 
of IMC [12]: assuming that 1Q P−= , and the closed-loop is 
stable, then perfect control (y=yd) is achieved. It is proved in 
[12]. This condition only restricts the relation between Q and 
P , not the plant P. Further, the design is straightforward: P  
is set to be the same as the plant model, and 1Q P−=  [12]. 

However, as many other controllers, IMC also requires 
robot dynamics model. This could be resolved by using TDE. 

B. Time Delay Estimation 
TDE works as follows [13]. The dynamics of (4) can be 

divided into two terms, the known term and the unknown and 
uncertain nonlinear terms, ( , , , ) ∈H θ x x x nR , as follows: 

( , , , )u x= +F M x H θ x x x ,                           (23) 
where x

×∈M n nR  denotes the known part of Mx, and 
( , , , ) [ ( ) ] ( , )x x x e− + +H θ x x x M θ M x N θ θ F . Then, for a 

sufficiently small time delay L, ( )
ˆ

tH , the time delayed 
estimate of H(t), can be obtained as below [13]: 

( ) ( ) ( ) ( )
ˆ

t t L u t L x t L− − −= = −H H F M x .                  (24) 
Mostly, L is the sampling time in digital implementation.  

 
 

Fig. 3. Block diagram of the IMC, where Q denotes the IMC controller, P 
signifies the plant, and P denotes the internal model. 

 
Fig.4. The proposed IMC structure for impedance control. 
TDE does not require a dynamic model or parameters. It only 
needs the recent past information of acceleration and input 
force1. Similar to the definition of η, TDE error, ηT(t)∈Rn, is 
defined as follows: 

1
( ) ( ) ( )

ˆ[ ]T t x t tη M H H− − .                               (25) 
Note that TDE error is also a dynamics estimation error.  

TDE is applied to the proposed control to remove the need 
of an entire robot dynamic model. 

C. Derivation of the Proposed Impedance Control Law 
1) IMC Structure for Impedance Control 

In comparison with the structure of IMC (Fig.3), we found 
that the closed-loop due to DB-IC (Fig.1) is an IMC 
applicable form: the feed forward controller -1

d dM Z  and the 
plant -1

d dZ M , with η acting as an input disturbance to the 
plant. The only difference is that Fe is separated from η for 
impedance control. Thus, the perfect control property of 
IMC should be able to improve the robustness against 
modeling error, and the impedance accuracy regardless of 
environment stiffness – this is the key concept of this paper.  

By following the standard IMC design procedure, an 
internal model loop is added to the closed-loop in Fig.1. The 
IMC controller 1 ( )d d s−=Q M Z  is already given in Fig 1. The 
internal model P is simply selected as follows: 

1( )d ds−=P Z M .                                   (26) 
Adding IMC feedback, the proposed control is achieved (Fig. 
4). The input to Q is changed from xd to xδ, and thus ud and vd 
are replaced with u new and vnew as follows: 

( )1
( ) ( ) ( ) ( )new t new t d d t d t

−= − +u v M B x K x ,                    (27) 

( )1 1
( ) ( ) ( ) ( ) ( )new t d t d t d t d e tδ δ δ

− −= + + −v M x B x K x M F .    (28) 

From Fig.4, one can directly deduce the following relations:  
1 ( ) ( )d d news−= −x Z M v η .                                              (29) 

1 1

1
( ) ( ) ( )

         ( )
m d d new d d new

d d

s s
s

− −

−
− = − −

= −
x x Z M v η Z M v

Z M η
,            (30) 

1 1

1 1

correcting dynamics estimation error

( )
      ( )[ ( )]
      

new d d d e

d d d m d e

d

s
s

δ
− −

− −
= −
= − − −
= +

v M Z x M F
M Z x x x M F
v η

.                   (31) 

From (30), the additional IMC feedback term x−xm  is a 
function of η only. Thus, as shown in (31), the IMC feedback 
 

1 If only x is available, one can estimate one step delayed acceleration 
using up to two step delayed x as follows: 2

( ) ( ) ( ) ( 2 )( 2 ) /t L t t L t L L− − −= − +x x x x . 
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term corrects dynamics estimation error. Substituting  (17) 
and (31) into (29), and solving for xr−x, we have  

xr−x = 0n,                                    (32) 
where 0n∈Rn denotes zero vector. Desired impedance is 
perfectly realized regardless of η. In this sense, the proposed 
IMC structure is a perfect solution to the dilemma. In 
addition, the design is straightforward. Further, this structure 
requires only the desired impedance parameters. From (31), 
this structure requires acceleration, which might be noisy. 
The noise problem will be discussed in section III.E.1). 

Because this structure requires computation of the entire 
robot dynamics as many other control laws, the simplicity 
factor needs to be improved.  

2) Combining IMC structure with TDE 
For simplicity, the complex model-based compensation 

(5) is replaced with TDE. From (23) and (24), the following 
dynamics compensation is obtained [13]: 

( ) ( ) ( ) ( )

( ) ( )

u t x new t u t L x t L
T

u t u t

− −⎧ = + −
⎨ =⎩

F M u F M x
τ J F

,                   (33) 

Thus, proposed control law consists of (27), (28), (33). 
Subtraction of (23) from (33), and a simple mathematical 
manipulation, yields 

1
( ) ( ) ( ) ( ) ( )

ˆ[ ]new t t x t t T t
−− = − =u x M H H η .                           (34) 

Thus, (34) becomes 
unew =s2 x + ηT.                                                         (35) 

In comparison with (14), the only difference is that η is 
replaced by ηT. Again, ηT can be regarded as a dynamics 
estimation error, which can be corrected by the proposed 
IMC structure.  

Probably, proposed control will be implemented in 
discrete time domain. Thus, unavoidable feedback time delay 
is explicitly included in IMC feedback as below (see x(t-L) and 
xm(t-L)): 

xδ (t)=xd(t)-x(t-L)+xm(t-L).                                               (36) 
Discrete implementation of proposed control will be 
considered in following sections for more realistic analysis. 

D. Discussion of the Proposed Impedance Control Law 
1) Accuracy and Robustness 

Substituting (28) and (36) into (27), and subtracting (6) 
give the control input of the proposed control as follows: 

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )

{( )
        [ ( ) ( )]}

new t d t t L m t L

d d t L m t L d t L m t L

− −
−

− − − −

= − −
+ − + −

u u x x
M B x x K x x

. (37) 

In the Laplace domain, (37) becomes 
1 ( ) ( )Ls

new d d d ms e− −= − −u u M Z x x .                         (38) 
Similar to the derivation of (30), in this case,  x-xm becomes  

1( )m d d Ts−− = −x x Z M η .                             (39) 
The only difference between (30) and (39) is that η is 
replaced with ηT. Substituting (7), (38), and (39) into (35), 
and solving for xr−x, we have 

1

2 1 1 1
( ) (1 )

         ( ) (1 )
Ls

r d d T
Ls

d d d d T

s e
s s e
− −

− − − −
− = −

= + + −
x x Z M η

I M B M K η
.         (40) 

In comparison with (18) and (21), the dynamics estimation 
error (in this case, TDE error ηT(t)) is corrected by a step 
delayed term ηT(t-L) without introducing any other dynamics 
such as C(s) of the PB-IC. Further, if the IMC feedback has 
no time delay, x becomes identical to xr, i.e., desired 
impedance dynamics can be perfectly realized.   

In short, proposed control enhances robustness without 
introducing the problematic inner loop dynamics. Thus, it 
can be a solution to the dilemma. 

2) The simplicity 
The IMC loop requires no other gains except Md, Bd, and 

Kd, and can be designed in a straightforward manner. The 
TDE needs one gain, xM , and only one step delayed 
acceleration and input force instead of computation of 
complex nonlinear dynamics such as Coriolis and centrifugal 
force, gravity, and friction force, thus providing a simple 
approach. Overall, the proposed control fully shares the 
advantages of IMC and TDE. 

E. Practical Consideration 
1) Noise Attenuation using Low Pass Filter 

If digital 1st order low pass filter with the cut-off frequency 
λ is applied to reduce noise, (33) is changes as below [13]: 

*
( ) ( ) ( ) ( )u t x new t u t L x t L− −= + −F M u F M x                                  (41) 

[ ] [ ]*
( ) ( ) ( )' (1 ') 1 (1 ')   ( ' )u t u t u t L Lλ λ λ λ λ−= + + + =F F F      (42) 

where *
uF  denotes input to the filter. Substituting (42) into 

(41) leads to the following: 
[ ] [ ]( ) ( ) ( ) ( )' (1 ') ' (1 ')u t x new t u t L x t Lλ λ λ λ− −= + + − +F M u F M x .(43) 

Thus, the use of a low pass filter has the same effect as 
lowering xM . Note that no additional dynamics was 
introduced even with a low pass filter. 

2) Removal of Internal Model Computation 
To prevent numerical errors in computing xm, and to 

enhance simplicity of proposed control, (28) and (36) is 
modified. Substituting (36) into (28) yields 

[ ]1 1 1Ls Ls
new d d d e d d d d me e− − − − −= − − +v M Z x F M Z x M Z x .    (44) 

From Fig. 4, the last term is identical to Ls
newe− v . Thus, (28) 

and (36) is replaced with following modified relation: 
[ ]1 1 Ls Ls

new d d d e d d newe e− − − −= − − +v M Z x F M Z x v .            (45) 

IV. SIMULATION 

A. Simulation Condition 
A 2-DOF robot model is used (Fig. 5). For link 1 and 2, the 

lengths are l1=35cm and l2=29.4cm, the masses m1=11.17kg 
and m2=6.82kg, respectively [14], [15]. Coulomb (c1=2.0N, 
c2=3.08N) and viscous friction (b1=b2= 0.614N⋅s/rad) are 
included. The sampling time L is 1ms. A simple task, which 
involves contact with stiff plate (Ke=1.5×105N/m), is 
considered. The trajectory, the dashed line in Fig.5, is shown 
in Fig. 6.  
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Fig. 5. 2 DOF SCARA Type Robot Schematic diagram  

 
(a) x direction desired trajectory         (b) y direction desired trajectory 
Fig.6. Desired trajectory. Dotted line indicates the wall. 

TABLE 1 
POSITION RESPONSE OF EACH CONTROL  

Control DB-IC IM-IC PB-IC Proposed 
control 

Max.deviation (mm) 56.04 55.97 0.6 0.02 
 
To verify the accuracy, the impedance error ∈σ nR , defined 
as below, is considered.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )t d d t t d d t t d d t t e t− + − + − −σ M x x B x x K x x F .   (46) 
If ( )tσ is zero vector, then (46) is the desired impedance 
dynamics in (1). 

Two simulations were performed: First, to compare the 
accuracy and robustness of four control laws, control gains of 
each control were tuned to minimize σ  under 10% modeling 
error (i.e. 1m̂ =10.05kg, 2m̂ =6.14kg was used for (5)). 
Simulation was then performed with unknown payload (6kg) 
at the end-effector side. Second, to confirm the accuracy of 
proposed control, four sets of desired impedance were 
implemented. Note that no friction compensation was used 
for all control laws in all simulations. 

B. Comparison of Four Control Laws 
Desired impedance parameters are designed as follows: 

Md=20I Kg, Bd=900I N⋅s/m, Kd=400I N/m. Note that Md is 
physically constrained by the mass of robot [19]. With the 
aim of small contact force, small Kd is selected. Because the 
environment is stiff and has no damping, large Bd was 
selected for smooth motion. 

The x-y position responses are shown in Fig. 7. In free 
space, the proposed controller shows the smallest position 
deviation, whereas DB-IC presents the largest (Table 1). 
Note that PB-IC shows remarkably small position deviation 
compared with that of DB-IC. Strictly speaking, the task 
cannot be executed with DB-IC or IM-IC. The position 
deviation is too large. Thus, DB-IC and IM-IC are excluded 
from further comparison.  

The y direction force response with a payload is shown in 

Fig.8. The proposed control shows a small impact force 
(60.2N) compared with that (75.6N) of PB-IC. Further, 

 

  
(a)  DB-IC                                            (b)IM-IC 

 
(c) PB-IC                                              (d) Proposed Impedance Control 

Fig.7. Position responses with a payload. Dotted line indicates the wall. 
 

 
(a) DB-IC                                            (b) IM-IC 

 
(c) PB-IC                                            (d) Proposed Impedance Control 
Fig.8. Force responses with a payload. Dashed line indicates contact time 
 

 
(a) DB-IC                                         (b) IM-IC 

 
(c) PB-IC                                            (d) Proposed impedance control 
Fig.9. Impedance errors. Dashed line indicates contact time 
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among the four control laws, only the proposed control does 
not lose contact with the environment while moving along a 
section of the plate from 6s to 15s. This indicates that the 
proposed control realizes desired impedance accurately due 
to the dynamics estimation error correction capability of the 
IMC structure.  

The x and y direction absolute values of impedance error 
are shown in Fig. 9. Proposed control shows the smallest 
(and negligible) impedance error regardless of modeling 
error. DB-IC and IM-IC show large impedance error even 
without payload. Note that PB-IC shows remarkably small 
impedance error compared with those of DB-IC and IM-IC 
when 10% modeling error exists. However, with unknown 
payload, impedance error of PB-IC is increased significantly. 
It must be noted that proposed control does not use friction 
compensation at all. Further, as was mentioned, it does not 
use dynamics model. Note also that friction compensation 
may enhance the performance of DB-IC (and IM-IC) [4]. 

C. Desired Impedance Realization Performance 
To verify the impedance realization accuracy of proposed 

control, four sets of desired impedance are implemented. The 
absolute impedance errors of four cases are shown in Fig. 10. 
Clearly, regardless of desired impedance, proposed control 
shows small impedance error. 

V. CONCLUSION 
In response to the “Accuracy/Robustness Dilemma in 

Impedance Control”, both accurate and robust impedance 
control based on IMC is proposed. The suggested approach 
does not use dynamics computation or complex algorithm 
thanks to the IMC and TDE. In addition, robustness is 
enhanced without introducing the problematic inner loop 
dynamics. In other words, proposed control enhances 
robustness without sacrificing accuracy. It means that 
proposed control is free from the dilemma. Simulation results  

 
(a) Md=20I ,Bd=700I, Kd=1000I       (b) Md=20I ,Bd=700I ,Kd=2000I  

 
 (c) Md=20I, Bd=1200I, Kd=1000I   (d) Md=20I, Bd=1200I, Kd=2000I 
Fig.10 Impedance error of proposed control under four different sets of 
desired impedance. Dashed line indicates contact time 

confirm that proposed control is robust against modeling 
error and accurate regardless of modeling error and desired 
impedance. Therefore, we believe that the proposed control 
is a simple yet effective solution to the “Accuracy 
/Robustness Dilemma in Impedance Control.” 
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