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Abstract— The grasping control problem for a hyperredundant
manipulator is presented. The dynamic model is derived by
using Lagrange equations developed for infinite dimensional
systems. The algoritms for the position  and force control are
proposed. The arm fluid pressure control is inferred and the
conditions that ensure the stability of the motion are discussed.
Numerical simulations are presented.

I. INTRODUCTION

A hyperredundant robot is a or hyper-degree-of-freedom
manipulator and there has been a rapidly expanding interest
in their study and construction lately. 

The control of these systems is very complex and a great
number of researchers have tried to offer solutions for this
difficult problem. In [1] it was analyzed the control by
cables or tendons meant to transmit forces to the elements of
the arm in order to closely approximate the arm as a truly 
continuous backbone. In [2], Gravagne analyzed the 
kinematical model of “hyper-redundant” robots, known as
“continuum” robots. Important results were obtained by
Chirikjian and Burdick [3]-[5] which laid the foundations for
the kinematical theory of hyper-redundant robots.
Mochiyama has also investigated the problem of controlling
the shape of an HDOF rigid-link robot with two-degree-of-
freedom joints using spatial curves [6], [7]. In [8, 9] it is
presented the “state of art” of continuum robots, outline their 
areas of application and introduce some control issues.

Figure 1. A biological grasping

In other papers [11, 12] several technological solutions for
actuators used in hyper-redundant structures are presented
and conventional control systems are introduced. 

In this paper, the problem of a class of hyperredundant
arms with continuum elements that performs the grasping
function by coiling is discussed. This function is often met in
the animal world as the elephant’s trunk (Figure1), the
octopus tentacle or the constrictor snakes. First, the dynamic
model of the system is inferred. The difficulties determined
by the complexity of the non-linear integral-differential
equations, that represent the dynamic model of the system,
are avoided by using a very basic energy relationship of this
system. Energy-based control laws are introduced for the

position control problem. A force control method is
proposed by using the ER fluid viscosity control.

The paper is organized as follows: section 2 presents the
basic principles of a hyperredundant structure with
continuum elements; section 3 studies the dynamic model;
section 4 discusses the both problem of grasping by coiling,
the position control and force control; section 5 verifies by 
computer simulation the control laws. 

II. BACKGROUND

A.  Technological Model 
The paper studies a class of hyperredundant arms that can 

achieve any position and orientation in 3D space, and that
can perform a coil function for the grasping (Figure 2). The
arm is a high degree of freedom structure or a continuum 
structure. The general form of the arm is shown in Figure 3.
It consists of a number (N) of elements, cylinders made of
fiber-reinforced rubber. There are four internal chambers in
the cylinder, each of them containing the ER fluid with an
individual control circuit. The deformation in each cylinder
is controlled by an independent electrohydraulic pressure
control system combined with the distributed control of the
ER fluid. The cylinder can be bent in any direction by
appropriately controlling the pressure in the four chambers.
The electrical control of the ER fluid viscosity is obtained by
an electrode network distributed on the length of the
cylinder.
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Figure 2. The force sensors distribution

The technological model can be considered as one with a
central, highly flexible and elastic backbone. We will
assume that the backbone never bends past the “small – 
strain region”, where an applied stress produced a strain that
is recoverable and obeys an approximately linear stress –
strain relationship. Also, the system is frictionless and any 
other damping and friction are neglected.
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Figure 3. The cylinder structure

The last m elements  represent the grasping
terminal. These elements contain a number of force sensors
distributed on the surface of the cylinders. These sensors
measure the contact with the load and ensure the distributed
force control during the grasping. The sensor network is
constituted by a number of impedance devices [11] (see
Figure 3) that define the dynamic relationship between the
grasping element displacement and the contact force. 

Nm

Figure 4. (a) The backbone structure; (b) The backbone
parameters

B. Theoretical model
The essence of the hyperredundant model is a 3-

dimensional backbone curve C that is parametrically
described by a vector 3Rsr  and an associated frame

 whose columns create the frame bases (see
Figure 4). The independent parameter s is related to the arc-
length from the origin of the curve C, , where:

, where  represent the length of the elements i of 

the arm in the initial position.
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The position of a point s on curve C is defined by the
position vector: srr , when . For a dynamic
motion, the time variable will be introduced,

Ls ,0
tsrr , .

We used a parameterization of the curve C based upon
two “continuous angles” s   and  [3-5] (Figure 4).sq

The position vector on curve C is given by
Ttsztsytsxtsr ,,,,   (1)

where

s

sdtsqtstsx
0

,cos,sin,   (2)

s

sdtsqtstsy
0

,cos,cos,   (3)

s

sdtsqtsz
0

,sin, , ss ,0 (4)

For an element dm, kinetic and gravitational potential
energy will be:
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where dsdm , and  is the mass density.
The elastic potential energy will be approximated by the

bending of the element [10],
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III. DYNAMIC MODEL

In this paper, the manipulator model is considered a 
distributed parameter system defined on a variable spatial
domain L,0  and the spatial coordinate s. The 
dynamic model is derived by using Lagrange equations
developed for infinite dimensional systems,
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where we used the notations: ttsqq , ,
22 , ttsqq , tsFF qq , , ,Ls ,0 ss ,0 .

The state of this system at any fixed time t is specified by
the set stst ,,, , where  represents the
generalized coordinates and

Tq
 defines the momentum

densities. The set of all functions  thats ,  can take
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on at any time is state function space . We will 
consider that .2L

The control forces have the distributed components along
the arm, , ,  that are determined
by the lumped torques,
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Figure 5. The cylinder driving

In (10), (11), , , ,  represent the fluid
pressure in the two chamber pairs,

1
i

p 2
i

p 1
iqp 2

iqp
,  and S, d are section

area and diameter of the cylinder, respectively (Figure 5).
The pressure control of the chambers is described by the
equations [9]
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where kia ,  are determined by the fluid parameters
and the geometry of the chambers and 
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IV. CONTROL PROBLEM

The control problem of a grasping function by coiling is 
constituted from two subproblems: the position control of
the arm around the object-load and the force control of
grasping.

A. Position Control
We consider that the initial state of the system is given by

Tqs 000 ,,0    (15)
Ts 0,0,00    (16)

where
s,00 , , (17)sqq ,00 Ls ,0

corresponding to the initial position of the arm defined by
the curve 0C

sqsC 000 ,: , Ls ,0   (18)
The desired point in  is represent by a desired

position of the arm, the curve  that coils the load,dC
T

ddd q,     (19)
T
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sqsC ddd ,: , Ls ,0   (21)

Figure 6. (a) The grasping position; (b) The grasping
parameters

In a grasping function by coiling, only the last mn 1
elements Nm  are used. Let  be the active grasping 
length,

gl

n

mi
ig ll     (22)

Let  be the curve defines the boundary of the load and
we denote by  the origin of the coiling function, when

 is the intersection between the tangent from origin O and
the curve  (Figure 6.b). This curve can be expressed in
the coordinates

bC

bO

bO

LC
q, .

sqsC bbb ,: , bLs ,0 (23)
where  is the length of the coiling measured on the 
boundary  and 

bL
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We define by te p  the position error
L

lL
bbp

g

dssqtsqstste ,,  (25)

It is difficult to measure practically the angles ,  for all q
Ls ,0 . These angles can be evaluated or measured at 

the terminal point of each element. In this case, the relation
(25) becomes

N
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The error can also be expressed with respect to the global 
desired position Cd
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The position control of the arm means the motion control
from the initial position  to the desired position  in 
order to minimize the error.

0C bC

Theorem 1. The closed-loop control system of the position
(6), (7), (12) is stable if the fluid pressures control law in the
chambers of the elements given by:
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and the coefficients , , ,  are positive and
verify the conditions
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ik mn
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Proof. See Appendix 1.

Figure 7. The grasping force

B. Force Control
The grasping by coiling of the continuum terminal

elements offers a very good solution in the fore of 
uncertainty on the geometry of the contact surface. The
contact between an element and the load is presented in
Figure 7. It is assumed that the grasping is determined by the
chambers in -plane.

The relation between the fluid pressure and the grasping
forces can be inferred for a steady state from [2],
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where sf  is the orthogonal force on the curve ,bC sf  is 
sF  in -plane and sFq  in q-plane, respectively. 

A spatial discretization  is introduced and121 ,,, lsss

ii ss 1 , ii s , 1,,2,1 li (38)
For small variation i  around the desired position id ,

in -plane, the dynamic model (6) can be approximated by
the following discrete model [11], 
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where Smi , 1,,2,1 li , did qH ,  is a nonlinear
function defined on the desired position did q, ,

diii qcc ,, , ,0ic q, (40)
 is the viscosity of the fluid in the chambers.
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and  is the external force due to the environment, the 
load. The equation (39) becomes,
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 (42)

The aim of explicit force control is to exert a
desired force . If the contact with load is modeled as a
linear spring with constant stiffness , the environment
force can be modeled as: 

idF

Lk

iLei kF     (43)
The error of the force control may be introduced as 

idiefi FFe     (44)
It may be easily shown that the equation (42) becomes
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Theorem 2. The closed force control system is asymptotic
stable if the control law is 

idiLifiiiLi
iL

i Fdkhemdkh
dk

f 21  (46)

ii mc     (47)
Proof. See Appendix 2. 

Figure 8. The force control system

In this paper, the force error control may be achieved by
using the Direct Sliding Mode Control (DSMC) [12]. This
method establishes conditions that force the trajectory along 
the switching line, directly toward the origin. The block
scheme of the force control is presented in Figure 8.
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Figure 9. The position control

A hyperredundan anip lator with eight elements is
considered. The m are: linear density

V. SIMULATION

t m u
echanical parameters

mkg2.2  and the length of one element is ml 05.0 .
The control problem in the -plane will be analyzed. 
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Figure 10. The force control phase portrait

The initial position is the defined by : 00 2sC
and or a circular load the grasping function is performed f

defined by 0
2

0: ryyxxCb , where22

yx , represent the coordinates in -plane. A
ent with an incrementdiscretisation for each elem 3l  is 

introduced. A control law (29) is used and a MATLAB
system is applied. The result is presented in Figure

A force control for the grasping terminals is simulated.
The phase portrait of the force error is presented in Fi

9.

gure
10. First, the control (29) is used and then, when the
trajectory penetrates the switching line, the viscosity is 
increased for a damping coefficient 15.1 .

VI. CONCLUSION

The paper treats cont f a hyperredundant
robot with contin  ele erforms the coli
fu

he difficulties
de

We consider the following Lyapunov function [13],

the rol problem o
uum ments that p

nction for grasping. The structure of the arm is given by
flexible composite materials in conjunction with active-
controllable electro-rheological fluids. The dynamic model
of the system is inferred by using Lagrange equations
developed for infinite dimensional systems.

The grasping problem is divided in two subproblems: the 
position control and force control. T

termined by the complexity of the non-linear integral-
differential equations are avoided by using a very basic
energy relationship of this system and energy-based control
laws are introduced for the position control problem. The
force control is obtained by using the DSMC method in
which the evolution of the system on the switching line is
controlled by the ER fluid viscosity. Numerical simulations
are presented.
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qiqiii tektektVtTt 22

2
1  (A.1.1)

N

i

W
1

where T, V represent the kinetic and potential energies of the
system. tW is positive definite because the terms that
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From (8)-(11), the relation (A.1.2.) can be rewritten as 

iii ttptpSdtW
21

N

i
qiqiqiiii

N

i iqiqi

tetektetek

tqtptp

1

1

21

8
 (A.1.3)

The control law (29), (30) with the initial conditions (31)-
(34) determines the pressures of fluid in the chambers,
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Substituting these solutions in (A.1.3) we obtain 
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Appendix 2 
An error measure of the control system is intro

the parameter
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The equation of the force error (56) becomes
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A Lyapunov function of V is introduced
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By using the conditions of Theorem 2, (46), (47), this
relation will be:
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