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Abstract— Target tracking has two variants that are often
studied independently with different approaches: target search-
ing requires a robot to find a target initially not visible,
and target following requires a robot to maintain visibility
on a target initially visible. In this work, we use a partially
observable Markov decision process (POMDP) to build a single
model that unifies target searching and target following. The
POMDP solution exhibits interesting tracking behaviors, such
as anticipatory moves that exploit target dynamics, information-
gathering moves that reduce target position uncertainty, and
energy-conserving actions that allow the target to get out of
sight, but do not compromise long-term tracking performance.
To overcome the high computational complexity of solving
POMDPs, we have developed SARSOP, a new point-based
POMDP algorithm based on successively approximating the
space reachable under optimal policies. Experimental results
show that SARSOP is competitive with the fastest existing point-
based algorithm on many standard test problems and faster by
many times on some.

I. INTRODUCTION

Target tracking is an important task for autonomous robots
and has attracted considerable attention in recent years [1],
[3], [4], [5], [12], [13], [14]. In the target tracking problem,
we construct motion strategies for a robot equipped with
visual sensors so that it can effectively track a moving target,
despite obstruction by obstacles. More precisely, the robot
should maneuver to keep the target visible to the mounted
sensors. Target tracking finds many applications in security
and surveillance, wildlife monitoring, and homecare settings.
In particular, our work is part of a larger effort to build an
autonomous homecare robot that watches over children or
elderly people and recognizes their activities.

Target tracking has two main variants: target searching
requires a robot to find a target initially not visible, and target
following1 requires a robot to maintain visibility on a target
initially visible for the longest duration possible. The two
variants are tackled with very different approaches in the
literature. In this work, we show that by modeling target
tracking as a partially observable Markov decision process
(POMDP) [18], searching and following can be unified. The
main idea is to represent the target position as a probability
distribution, whether the target is visible to the robot sensors
or not. So the target position is always “known” to the robot
with some degree of uncertainty. The robot then chooses its
actions according to a probabilistic model of target behaviors

1In the literature, this is sometimes called target tracking, but we use the
more accurate term target following to differentiate it from the more general
notion of tracking here.

and a reward function that encourages the robot to keep the
target visible.

The POMDP framework offers several other advantages. It
provides a principled way to deal with uncertainties in robot
control and sensing. It also easily incorporates additional re-
quirements, e.g., minimizing the robot’s power consumption.

One main criticism of the POMDP framework is its
high computational complexity. Solving POMDPs exactly is
computationally intractable [15]. Intuitively, the intractability
is due to the “curse of dimensionality”: in a discrete POMDP,
the belief space B used in solving a POMDP has dimension-
ality equal to |S|, the number of states in the POMDP. Thus
the size of B grows exponentially with |S|. In a tracking
problem, if both the robot and the target can occupy any
of the 100 positions in an environment, the resulting belief
space is 10,000-dimensional! The high computational cost is
a major barrier in applying the POMDP approach to solve
realistic robot tasks.

However, worst-case analysis may not accurately reflect
the difficulty of problems typically found in practice. Many
interesting robot tasks can be solved in a potentially much
smaller subset R(b0) ⊆ B [7], [8], [16], which contains
only belief points reachable from a given initial belief point
b0 ∈ B under arbitrary sequences of actions. Indeed, we
have proven recently that an approximately optimal POMDP
solution can be computed efficiently, if R(b0) is small in
the sense that it can be “covered” by a small number of
points [10]. Point-based POMDP algorithms, which compute
approximate POMDP solutions over a set of sampled points
in R(b0), benefit significantly from this property. Our results
in [10] also suggest a solution strategy when R(b0) is not
small: sample heuristically near R∗(b0), the subset of belief
points reachable from b0 under optimal sequences of actions.

Using these theoretical insights, we have developed a
new point-based POMDP algorithm called SARSOP, which
stands for Successive Approximations of the Reachable
Space under Optimal Policies. We have successfully applied
SARSOP to tracking problems with more than 9,000 states
and observed interesting tracking behaviors, e.g., anticipatory
moves that exploit target dynamics, information-gathering
moves that reduce target position uncertainty, and energy-
conserving actions that allow the target to get out of sight,
but do not compromise tracking performance.

II. RELATED WORK

There is a vast literature on target tracking, which includes
both target searching and following. We can only selec-
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tively touch on some work here. Target search is closely
related the pursuit-evasion problem [21]. One interesting
approach is to capture the visibility relationships through a
cell decomposition of the environment and then search the
decomposition graph for the target [3], [5]. Target following
strategies [1], [4], [12], [13], [14] differ greatly, depending
on the amount of prior information available. If both the
environment and the target trajectory are completely known,
optimal target following strategies can be computed through
dynamic programming [12], though the high computational
cost is high. SARSOP also uses a dynamic programming
approach, but it is significantly more efficient by using only
a set of sampled points from B. If the environment and the
target trajectory are both unknown in advance, one approach
is to move the robot so as to minimize an objective function
that tries to capture the short- and long-term risk of losing
the target [1], [4], [13]. Other probabilistic approaches to
target tracking include, e.g., [22]

We use POMDP to build a single model that unifies
searching and following. It assumes that the target position
is always known up to some degree of uncertainty, modeled
as a probability distribution, but the target may not be always
visible. The POMDP framework also deals with uncertainties
in robot control and sensing in a natural way.

One main difficulty with the POMDP approach is its high
computational complexity. As a result, there has been a lot of
work on computing approximate POMDP solutions. See [6]
for a survey. In particular, point-based POMDP algorithms
(e.g., [7], [16], [19], [20]) have been very successful in
computing good approximate solutions for large POMDPs
with many states. They sample a set of points from the
belief space B and use them as a compact representation
of B. Early point-based algorithms sample from the entire
B using fixed- or variable-resolution grids. To improve
computational efficiency, more recent POMDP algorithms
sample only R(b0). SARSOP follows this approach, but it
further improves efficiency by focusing sampling on R∗(b0),
the subset of B most relevant to the POMDP solution.

Our POMDP tracking problem is related to the Tag
problem described in [16]. However, the problems considered
here involve a much larger number of states and more
complex target behaviors. The SARSOP algorithm is also
more efficient than the PBVI algorithm used in [16] and can
handle more realistic target tracking tasks (see Section V).

Another potential difficulty with the POMDP approach
is the acquisition of a good probabilistic model of target
behavior, but machine learning techniques can help [2].

III. A POMDP APPROACH TO TARGET TRACKING

We start with a brief review of POMDPs. See [11] for a
more complete introduction. We then describe how to model
the target tracking problem as a POMDP.

A. Background on POMDPs

A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its total reward. Formally it

is specified as a tuple (S,A, O, T , Z, R, γ), where S is a set
of states, A is a set of actions, and O is a set of observations.

The agent always lies in some state s ∈ S. In each time
step, it takes some action a ∈ A and moves from a start
state s to an end state s′. Due to the uncertainty in action,
the end state s′ is described as a conditional probability
function T (s, a, s′) = p(s′|s, a), which gives the probability
that the agent lies in s′, after taking action a in state s.
The agent then makes an observation on its current state.
Due to the uncertainty in observation, the observation result
o ∈ O is again described as a conditional probability function
Z(s, a, o) = p(o|s, a) for s ∈ S and a ∈ A.

In each step, the agent receives a real-valued reward
R(s, a), if it lies in state s and takes action a. The goal
of the agent is to maximize its expected total reward by
choosing a suitable sequence of actions. In this work, we
consider infinite-horizon POMDPs, in which the sequence
of actions to be chosen has infinite length. We specify a
discount factor γ ∈ (0, 1) so that the total reward is finite
and the problem is well defined. In this case, the expected
total reward is E[

∑∞
t=0 γtR(st, at)], where st and at denote

the agent’s state and action at time t.
The solution to a POMDP is an optimal policy that

maximizes the expected total reward. Normally, a policy is a
mapping from the agent’s state to a prescribed action. How-
ever, in a POMDP, the agent’s state is partially observable
and not known exactly. So we rely on the concept of belief
state, or belief, for short. A belief is a probability distribution
over S. A POMDP policy π:B → A maps a belief b ∈ B to
the prescribed action a ∈ A.

A policy π induces a value function V π(b) that specifies
the expected total reward of executing policy π starting from
b. It is known that V ∗, the value function associated the
optimal policy π∗, can be approximated arbitrarily closely by
a convex and piecewise-linear function V (b) = maxα∈Γ(α ·
b), where b is a discrete vector representation of a belief and
Γ is a finite set of vectors called α-vectors. Each α-vector
is associated with an action, and the policy can be executed
by selecting the action corresponding to the best α-vector at
the current belief b. So the policy can be represented by a
set Γ of α-vectors. Policy computation, which, in this case,
involves the construction of Γ, is usually performed offline.

Given an policy π, the control of the agent’s actions
is performed online in real time. It consists of two steps
executed repeatedly. The first step is policy execution. If the
agent’s current belief is b, it then takes the action a = π(b),
according the given policy π. The second step is belief
estimation. After the agent takes an action a and receives
an observation o, its new belief state b′ is given by

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑
s∈S

T (s, a, s′)b(s),

where η is a normalizing constant. The process then repeats.

B. Target Tracking as a POMDP

Our problem setting is motivated by homecare applica-
tions. Imagine that an elderly person moves around at home
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and has a call button to call a robot over for help. The call
status stays on for some time and then goes off. If the robot
arrives while the call status is on, it gets a reward; otherwise,
it gets no reward. Clearly the robot should stay close the
person in order to improve the chance of receiving rewards,
but at the same time, the robot needs to minimize movement
in order to reduce power consumption. So the naive strategy
of following right behind the person does not work well.

To formulate the problem as a POMDP, we model the
environment as a regular grid. See Fig. 3 for examples. The
robot and the target (in this case, the person with the call
button) can occupy any of the grid cells that are free of
obstacles. The state s of this POMDP is composed of the
robot position xr, the target position xt, and the call status
c : s = (xr, xt, c). If the environment contains n free cells,
then there are n · n · 2 = 2n2 distinct states, resulting in a
belief space of 2n2 dimensions.

In one time step, the target can stay where it is or move to
a neighboring cell. The target motion is described by a given
probability function T t, conditioned on the target’s current
position: if the target is currently at xt, it will be at x′t in
the next time step with probability T t(xt, x

′
t) = p(x′t|xt).

The person may turn on the call button in each step with
probability p1. If the call status is on, the person may turn
it off with some probability p2 in each time step, indicating
that help is no longer needed. This model has two main
implications. First, as the call duration follows the geometric
distribution, the mean duration of a call is 1/p2, Second,
most calls are short. The robot must arrive quickly in order
to receive rewards, thus increasing the difficulty of tracking.

The robot motion resulting from an action is described
similarly by another probability function T r, conditioned on
both the robot’s current position and its action. The robot’s
actions consist of commands to stay where it is or to move
to a neighboring cell. If the robot is currently at xr and
takes action a it will be at x′r in the next time step with
probability T r(xr, a, x′r) = p(x′r|xr, a). Note that the robot
may not be able to execute the commands perfectly due to
control uncertainty. This can be modeled with a suitable T r.

We assume that the robot can see the target through
its sensors if they lie in the same or neighboring cells.
Uncertainty on the target position due to sensor noise can
be modeled in the observation probability function Z.

The robot receives a reward, if it reaches the cell that
the target occupies while the call button is on. In one
step, if the robot does not move, it incurs no costs (i.e.,
negative rewards). Otherwise, it incurs a cost proportional to
the distance traveled. The robot’s goal is to maximize the
expected total discounted reward.

The POMDP formulation does not explicitly differentiate
whether the target is visible or not. To execute a policy, the
robot maintains a belief of the target position. When the
target is visible to the sensors and the sensor data are good,
the belief is sharpened. When the target is not visible or
the sensor data are poor, the belief becomes more diffuse.
In the extreme case, when the target remains invisible for a
long time, the belief may eventually converge to a uniform

distribution. This way, target searching and target following
are unified in a natural way. Clearly, if the robot knows the
target position well, it can choose better actions and receive
higher rewards. Therefore, an optimal policy favors sharp
beliefs, while also taking into account the cost of obtaining
them. In the next section, we show how approximately
optimal policies can be computed efficiently.

IV. SARSOP
Most recent point-based POMDP algorithms sample from

R(b0), the set of points reachable from a given initial point
b0 ∈ B, and maintain a set Γ of α-vectors. The set Γ
represent a piecewise-linear lower-bound approximation V
to the optimal value function V ∗ (see Section III-A). To
improve the approximation V , we perform backup operations
on the α-vectors at the sampled points. A backup opera-
tion are essentially an iteration of dynamic programming,
which improves the approximation by looking ahead one
step further. With suitable initialization (using, e.g., fixed-
action policies [6]), V is always a lower bound on V ∗, and
converges to V ∗ under suitable conditions [10], [16], [19].

Our theoretical analysis in [10] provides two insights on
point-based POMDP algorithms:

• POMDPs are easy to solve, when the reachable space
R(b0) is small, in the sense that it can be “covered” by a
small number of points. Even if R(b0) is large, R∗(b0),
the space reachable under an optimal policy, may be
much smaller, as R∗(b0) ⊆ R(b0). Trying to sample
R∗(b0) may reduce computation time. However, the
difficulty is that neither the optimal policy nor R∗(b0)
is known in advance, and we must approximate R∗(b0).

• A good approximation of V ∗, and thus the optimal
policy, can be achieved locally by nearest neighbor
interpolation over a set of sampled points.

SARSOP embodies these insights in two corresponding
ways:

• It computes successive approximations to R∗(b0)
through heuristic sampling and pruning away sampled
points that are provably suboptimal.

• It prunes away α-vectors when they are dominated lo-
cally at the sampled points, which are an approximation
to R∗(b0) rather than over the entire belief space. This
results in a much smaller set of α-vectors and reduced
running time.

A complete description of SARSOP can be found in [9].
Below we give a self-contained summary. In the following, to
simplify the notation, we will omit the argument b0 in R(b0)
and R∗(b0). It is understood that R and R∗ are reachable
from a given initial point b0.

A. Overview of the Algorithm

A sketch of SARSOP is shown in Algorithm 1. The algo-
rithm iterates over three main functions, SAMPLE, BACKUP,
and PRUNE, until further update produces little change in the
lower-bound approximation V .

The sampled belief points form a tree X (Fig. 1). Each
node of X represents a sampled point. As there is no
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Algorithm 1 SARSOP.
1: Insert the initial belief point b0 as the root of the tree X .
2: Initialize the set Γ of α-vectors.
3: repeat
4: Sample new belief points and insert them into X by repeat-

edly calling SAMPLE(X , Γ).
5: Choose a subset of nodes from X . For each chosen node b,

BACKUP(X, Γ, b).
6: PRUNE(X , Γ).
7: until termination conditions are satisfied.
8: return Γ.

SAMPLE(X , Γ)
1: Pick b ∈ X , a ∈ A, and o ∈ O.
2: b′ ← τ(b, a, o).
3: Insert b′ into X as a child of b.

BACKUP(X , Γ, b)
1: For all a ∈ A, o ∈ O, αa,o ← argmaxα∈Γ(α · τ(b, a, o)).
2: For all a ∈ A, s ∈ S, αa(s)← R(s, a)+

γ
∑

o∈O,s′∈S
T (s, a, s′)Z(s′, a, o)αa,o(s

′).
3: α′ ← argmaxa∈A(αa · b)
4: Insert α′ into Γ.

confusion, we use the same symbol b to denote both a
sampled point and its corresponding node in X . The root
of X is the initial belief point b0. To sample a new point
b′, we pick a node b from X as well as an action a ∈ A
and an observation o ∈ O according to suitable probability
distributions or heuristics. We then compute b′ = τ(b, a, o)
and insert b′ into X as the child of b. Clearly, every point
sampled this way is reachable from b0.

SARSOP currently uses a sampling strategy similar to that
of HSVI2 [19]. To sample a new belief point, it traverses
a single path down the tree X by choosing the action
with the highest upper bound on the value function and
the observation that maximally reduces the gap between the
lower and the upper bounds at the root of X , until it reaches
a node b at a desired level. It then samples a new point b′ and
insert b′ into X as a child of b (see SAMPLE in Algorithm 1).
After creating the new node, it performs backup operations
at all nodes along the path leading to b′.

A backup operation at a node b collates the information
in the children of b and propagates it back to b. We first
find all beliefs reachable from b with a single action a and
an observation o. For each of these beliefs b′ = τ(b, a, o),
we find, in the set Γ, the α-vector αa,o having the largest
inner product with b′. We then combine all such α-vectors
αa,o associated with a particular action a into a single vector
αa. Finally, we find, among the vectors αa, the vector α′

having the largest inner product with b and add α′ to Γ.
The value function approximation at b, obtained from this α-
vector backup, is the same as that from the standard Bellman
backup. However, the Bellman backup propagates only the
value, while the α-vector backup propagates the gradient of
the value function approximation along with the value to
obtain a global approximation over the entire belief space
rather than a local approximation at b.

Invocation of SAMPLE and BACKUP generates new sam-
pled points and α-vectors. However, not all of them are
useful for constructing an optimal policy and are pruned to

b0

a1 a2

o1 o2 b0

B

R

(a) (b)

Fig. 1. (a) The POMDP tree with the root b0. (b) The corresponding
reachable belief space R. The shaded nodes indicate points in R∗.

improve computational efficiency.

B. The Reachable Space under Optimal Policies

The efficiency of point-based POMDP algorithms depends
on two key factors. First, how are the sampled points
distributed? Since our goal is to compute an optimal policy
for a given initial belief point b0, we should avoid sampling
far away form R∗ to reduce computational cost. Second,
the cost of a single backup operation is directly proportional
to the number of α-vectors in Γ. One way of speeding up
backup, which dominates the total running time, is then to
keep the set Γ small. Existing point-based algorithms usually
prune an α-vector if it is dominated by others over the entire
B. We would like to prune more aggressively: an α-vector is
pruned if it is dominated by other α-vectors over R∗. This
results in potentially much smaller Γ.

Unfortunately we do not know the optimal policies or the
optimally reachable space R∗ in advance. Even if we do,
the cost of checking α-vector dominance over R∗ exactly
is prohibitive. Our theoretical analysis [10] suggests that
checking for local dominance around the sampled points
is often sufficient for good performance. Doing so greatly
reduces the cost of pruning. The details are described in next
two subsections.

C. Approximating R∗ through Belief Point Pruning

To use the sampled points in X as an approximation of
R∗, we must prune those points far away from R∗. For this,
we maintain not only a lower bound V , but also an upper
bound V on the optimal value function. Various methods
for maintaining the upper bound can be used. Currently
SARSOP uses the sawtooth approximation [6].

By maintaining both upper and lower bounds, we can
improve our approximation of R∗ as these bounds improve.
Consider a node b in X . Let

Q(b, a) =
∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

p(o|b, a)V (τ(b, a, o))

be the lower bound on the value of taking action a at
b. The upper bound Q is defined similarly, using V . If
Q(b, a) < Q(b, a′) for some actions a and a′, the optimal
policy will never take the action a at node b and traverse
the subtree underneath. We thus prune this subtree along
with all the associated sampled points. Some pruned points
may actually lie in R∗, as they are reachable from other
paths in X under the optimal policy. However, the benefit
of reducing the number of sampled points usually outweighs
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α2
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α3

α1 b0

b1
α1

α2

(a) (b)

Fig. 2. (a) δ-dominance. α1 dominates α2, but not α3 in the δ-
neighborhood of b. (b) The certificate structure.

the loss in value function approximation due to over-pruning.
These points can also be eventually recovered from the other
paths in X , if they indeed lie in R∗.

Belief point pruning improves computational efficiency in
two ways. As the suboptimal branches of X are pruned,
SARSOP avoids sampling the part of B unreachable under
the optimal policies (see SAMPLE in Algorithm 1). Thus
the sample distribution is automatically adapted to bias
towardsR∗. Furthermore, belief point pruning helps α-vector
pruning. We explain why in the next subsection.

D. α-Vector Pruning

Let P denote the set of sampled belief points in X .
SARSOP prunes away an α-vector if it is dominated by
others over R∗, which is approximated by the current P .
A simple criterion for dominance is to say that for two α-
vectors α1 and α2, α1 dominates α2 at a belief point b
if α1 · b ≥ α2 · b. However, this is not robust. The set P
is a finitely sampled approximation of R∗. Since SARSOP
computes an approximately optimal policy over P only, the
computed policy may choose an action that causes it to
slightly veer off R∗ and get into a region in which the value
function approximation is poor. To address this issue, we
impose the more stringent requirement of dominance over
a δ-neighborhood: α1 dominates α2 at a belief point b if
α1 · b′ ≥ α2 · b′ at every point b′ whose distance to b is less
than δ, for some fixed constant δ. We call this δ-dominance.
We can check δ-dominance very quickly by computing the
distance d from b to the intersection of the hyperplanes
represented by α1 and α2 and making sure that d ≥ δ. See
Fig. 2a for an example. A similar idea for α-vector pruning,
but without using the δ-neighborhood, is described in [17].

To prune α-vectors efficiently, SARSOP maintains a cer-
tificate structure (Fig. 2b). The certificate structure is a
bipartite graph consisting of two sets of nodes, P and Γ.
There is an edge between two nodes b ∈ P and α ∈ Γ, if α is
not dominated by another α-vector over the δ-neighborhood
of b. Thus, every edge (b, α) represents a certificate that
demonstrates the usefulness of α. A sampled point b issues a
certificate to an α-vector, when it is created through a backup
operation at b. The certificates from each sampled point b
are checked periodically and revoked if the corresponding
α-vectors are δ-dominated at b. Following the checks, any
α-vector holding no certificates can be immediately pruned.

By maintaining the certificate structure and checking δ-
dominance, SARSOP prunes away the useless α-vectors,

obstacle
sensor 

visibility regionp(xt) = 0

(a) (b)
Fig. 3. Simulation experiments for target tracking.

but retain all the optimal α-vectors over the space within
a distance δ of R∗.

The pruning method above works well if P is a represen-
tative sample of R∗. At the beginning, when there are few
sampled points in P , pruning the α-vectors too aggressively
may result in poor performance. To mitigate this effect, we
incorporate all the corner points of the belief simplex B into
the certificate structure. These additional points are not used
for backup operations, but only for checking δ-dominance.
They introduce little overhead, as the sparsity of these points
(with only one nonzero coefficient per point) allows us to
compute the certificates involving them very quickly.

We expect each belief point to be involved in only a few
certificates. Thus, as a number of belief points decreases, the
number of certified α-vector decreases as well. This is why
belief point pruning helps in α-vector pruning.

V. EXPERIMENTS

A. Target Tracking Simulations

We used SARSOP to compute tracking policies in several
simulated environments. See Fig. 3 for examples. The light
blue areas in the figures indicate obstacles. The black dashed
curve indicates the target’s path. The target motion is non-
deterministic: it follows this path, but in each time step, it
may pause or proceed along the path with equal probabilities.
The green area around the robot indicates the robot sensor’
visibility region. The various shades of gray show the robot’s
belief of the target position. Lighter color indicates higher
probability. To focus on target tracking behaviors, we assume
in these experiments that there is no uncertainty in robot con-
trol and sensing. The robot can execute motion commands
and observe its own position and call status perfectly. It
can also observe the target position perfectly, if the target
is visible. Uncertainties in control and sensing can be easily
incorporated into the POMDP if needed (see Section III-B).
If the robot reaches the current target position while the call
status is on, it receives a reward of 100. The robot receives
a reward of −1 for a horizontal or vertical move, a reward
of −

√
2 for a diagonal move, and a reward of 0 if it stays

stationary. The discount factor is set to 0.95.
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5 6 7 8

9 10 11 12

Fig. 4. Snapshots of a simulation run.

In the first experiment, we have a home-like environment
(Fig. 3a). The corresponding POMDP has 9, 248 states.
SARSOP computed a policy in about 48 minutes. We per-
formed several simulation runs to examine its performance
and observed interesting robot tracking behaviors:

• anticipatory moves that exploit target dynamics,
• information-gathering moves that reduce target position

uncertainty,
• approaching the target along a nearly optimal path when

the robot is called,
• minimizing movement by allowing the target to get

out of sight, but not compromising long-term tracking
performance.

It is important to bear in mind that these behaviors are
not manually specified, but automatically captured by the
POMDP through policy computation.

Snapshots of a single simulation run are shown in Fig. 4.
Initially, the target lies within the robot sensor’s visibility
region, and the robot’s belief on target position consists of
a single peak (snapshot 1). As the target moves, the robot
does not follow along and intentionally let the target get
out of sight, in order to minimize movement and reduce
energy consumption. Now, although the target is not visible,
the robot still has the target reasonably well localized by
maintaining a belief on the target position: the target is
well within the high-probability region of the current belief
(snapshot 2). Instead of following the target, the robot tries
to anticipate the future position of the target by exploiting
the target dynamics and makes a move towards this position
(snapshot 3). As there is no call, the robot’s move purely
serves the purpose of gathering information on the target

position. When the target passes by, the belief on target po-
sition is sharpened (snapshot 4). If the target is not observed
for a while, the uncertainty may become large, but the robot
is still able to maintain a belief that reflects the current target
position well: the target is located within a high-probability
region (snapshot 5). When there is a call (snapshot 6), it
uses the current belief to find the region that contains the
target with high probability. It then moves towards the region
along the shortest path (snapshots 6–9). In general, the robot
may need to search this region, but here it luckily finds the
target right away and receives a high reward (snapshot 9).
The robot then makes another anticipatory move to reduce
target position uncertainty (snapshots 10–12). Interestingly,
the robot position in snapshot 12 is exactly the same as that
in snapshot 3, despite that the target positions and beliefs
are quite different. It is, of course, not coincidence. This
particular position guards both of the two ways into the lower
right corner of the environment. By occupying this position,
the robot can intercept the target as it exits the entrances
without following it. The tracking behavior here reveals that
the computed policy captures well the interaction between
the environment geometry and the target dynamics. In this
simulation run, there are 3 calls in total, and all are answered
in time. The target travels a total distance of 141, and the
robot travels a totals distance of about 20.

In the second experiment, the environment contains a
special cell corresponding to a bathroom lying on the target’s
path (Fig. 3b). After entering the bathroom, the target stays
there with probability 0.95 and leaves with probability 0.05
in each step. The corresponding POMDP has 7, 200 states.
SARSOP computed a policy in about 16 minutes. Roughly,
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to execute this tracking policy, the robot moves on the inner
loop (the thick white curve in Fig. 3b) and follows the target
that moves along the outer loop (the dashed black curve in
Fig. 3b). It approaches the target directly when called.

Videos of both experiments above as well as additional
experiments are available at http://motion.comp.
nus.edu.sg/projects/tracking/tracking.
html. We are currently performing more experiments to
evaluate tracking performance quantitatively.

B. Computational Efficiency

We compared the performance of SARSOP and HSVI2,
which, to our knowledge, has so far got the best experimental
performance among the point-based POMDP algorithms.
Both algorithms were implemented in C++ and tested on
the same platform. For the two experiments above, HSVI2
took 63 minutes and 48 minutes, respectively, to compute
policies of comparable quality.

We also compared SARSOP and HSVI2 on a set of
standard tests for point-based POMDP algorithms, including
ones on robot navigation and tracking, such as Hallway, Tiger
Grid, Tag, etc.. The results show that SARSOP outperformed
HSVI2 by many times on some problems, while remaining
competitive on the rest. The improved performance can be
attributed to the more aggressive α-vector pruning and, to
some extent, belief point pruning. For lack of space, we refer
to [9] for details on this experimental comparison.

The performance of SARSOP is affected by the δ param-
eter for α-vector pruning, but not sensitive to it. In all our
target tracking experiments, the δ value for α-vector pruning
was set to 1× 10−2. See [9] for experimental results on the
dependency of SARSOP’s performance on δ.

VI. CONCLUSION

In this work, we model target tracking as a POMDP,
which unifies two tasks, target search and target following,
that are often studied independently. To overcome the high
computational complexity of solving POMDPs, we present a
new point-based POMDP algorithm called SARSOP, which
is based on successively approximating the space reachable
under optimal policies. In simulation experiments, SARSOP
successfully computed policies for tracking problems with
more than 9,000 states. On a set of standard test problems,
SARSOP outperformed the fastest existing point-based al-
gorithm by many times on some problems, while remaining
competitive on the rest. Along with other reports in litera-
ture [7], [8], [16], our results indicate that with the advances
in POMDP solution algorithms, the POMDP approach is
gradually becoming practical for non-trivial robot tasks.

We are currently conducting more experiments to evaluate
the tracking performance of our POMDP algorithm quanti-
tatively. We are also implementing SARSOP as a software
package and expect to release it in the near future.
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