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Abstract— We study a variant of a well-known pursuit
evasion game, the lion and man game. In this game a lion (the
pursuer) tries to capture a man (the evader). The players move
in turns. At each time step, they can move a unit distance. We
focus on a version which takes place in an unbounded arena: the
positive quadrant of the plane. The novelty of our formulation
is in the sensor model. In the original formulation, the lion can
sense the precise location of the man at all times. In our version,
which is inspired by mobile robots equipped with monocular
vision systems, the lion can only obtain bearing information
about the man’s location. We present a pursuit strategy which
guarantees that the distance between the players is reduced to
the step size in a bounded number of steps.

I. INTRODUCTION

Pursuit-evasion games are problems of fundamental in-

terest in Robotics. In a pursuit-evasion game, one or more

pursuers try to capture an evader while the evader tries to

avoid capture. Many problems arising from diverse appli-

cations such as collision-avoidance, search-and-rescue, air-

traffic control and surveillance can be modeled as pursuit-

evasion games.

In most pursuit-evasion game formulations, the players

can observe each other’s state (e.g. position) at all times.

However, in some robotics applications, the pursuer may not

have the necessary sensors to obtain the evader’s position.

In this paper, we focus on such a scenario and study a

variant of a fundamental pursuit-evasion game, the lion-and-

man game [1], [2], [3]. In the original version of this game,

a lion (pursuer) tries to capture a man (evader) inside a

circular arena by moving onto the man’s current location.

The players are both holonomic. They have the same speed

and can observe each other’s locations.

In our version, we restrict the pursuer’s observation ca-

pabilities. The pursuer can not directly observe the evader’s

location. Instead, it has access to the readings of a bearing-

only sensor such as a camera. In other words, the pursuer

can obtain a ray that contains the evader but can not measure

the location of the evader on this ray. The main question we

seek to answer is whether the pursuer can capture the evader

under this limitation.

Before we formalize the game model, we start with an

overview of the related work.

A. Related work

There are numerous versions of pursuit-evasion games. In

this section, we focus on only the lion-and-man game and
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present related work.

The original lion-and-man game takes place in continuous

time and is played inside a circular arena. The first solution

to this game, proposed by Besicovitch, is as follows: the

lion moves to the center of the disk. Afterward, it remains

on the radius that passes through the man’s position. Since

the players have the same speed, the lion can remain on the

radius and simultaneously move toward the man. It turns out

that the temporal aspect of the game is crucial in determining

the outcome. First, consider the discrete-time version, where

at every time step, the players move in turns. For this

version, Besicovitch’s solution clearly guarantees capture.

Surprisingly, Littlewood showed that when the game takes

place in continuous time, the man wins! While the lion can

get arbitrarily close to the man in finite time, capturing the

man takes forever. See [1] for an overview of these results.

For the continuous-time version, Alonso et al. presented an

almost-optimal strategy by showing that the lion can get

within a distance c of the man in time O( r
s

log r
c
) where

r is the radius of the arena and s is the maximum speed of

the players [2].

Sgall studied a variant of the lion-and-man game which

takes place in the non-negative quadrant of the plane [3].

This version of the game first appeared in [4]. The outcome

of the game depends on the initial positions of the players.

Let (xp, yp) and (xe, ye) be the initial position of the pursuer

and the evader respectively. If either xe ≥ xp or ye ≥ yp, it

is easy to see that the evader wins. Sgall showed that in the

remaining case, the pursuer wins. He presented an almost

optimal strategy that is quadratic in the pursuer’s distance

from the origin and the slope of the line connecting the

player’s initial locations.

Recently, Isler et al. showed that the lion can capture the

man inside any simply-connected polygon [5]. Alexander et

al. presented a sufficient condition for a natural greedy strat-

egy to succeed in arbitrary dimensions [6]. More recently,

Bopardikar et al. [7] studied a sensing limitation in the lion-

and-man game. In their model, the lion can observe the man’s

exact location only if the distance between the players is less

than a given threshold. In this paper, we focus on a different

type of sensing limitation and study pursuit strategies for a

pursuer equipped with a bearing-only sensor.

B. Our results

When the game is played inside a circle and in discrete-

time, it is easy to see that the lion can capture the man

simply by moving toward it along the line l connecting them:

to maintain the distance between the players, the man must

move away from the lion along l. But since the arena is
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Fig. 1. The greedy pursuit fails. The evader escapes by breaking the
invariant that it must remain inside the axis parallel rectangle defined by
the pursuer’s location.

bounded, the man must eventually turn – at which point the

distance between the players decreases. Though this greedy

strategy takes a long time to capture, it requires only bearing

information which implies that a pursuer with a bearing-only

sensor can capture the man inside a circular arena.

Therefore, in this paper, we focus on the version of

the game that takes place in the positive quadrant of the

plane as studied in [4], [3]. Note that the greedy strategy

described above does not guarantee capture in this version

(see Figure 1). Further, the solution proposed in [3] requires

the precise location of the evader before the pursuer move.

Hence, it is not applicable for the bearing-only case. We

present a novel strategy for the bearing-only pursuer which

guarantees “capture” provided that both of the initial coordi-

nates of the evader is less than the pursuer’s corresponding

coordinates (otherwise the pursuer can not capture the evader

even if he can observe the evader’s precise location). An

interesting aspect of our strategy is that it requires the pursuer

to combine multiple observations and the knowledge about

the evader’s speed to compute its next move.

In the next section, we start by formalizing the game

model.

II. THE GAME MODEL

We study a discrete-time, continuous-space game. During

a time-step, the players can move at most unit distance. The

game is played in the positive first quadrant, with the evader

starting at a location between the pursuer and the origin.

Initially, we assume that the pursuer is aware of the exact

location of the evader (We will remove this assumption later

in Section IV-A.). From then on, the pursuer uses bearing-

only information to estimate where the evader is. A round

of the game consists of the following.

• An evader move in which he moves from his current

position to another that is at a distance at most 1 from

the previous position.

• The pursuer sensing and estimating where the evader is

using the bearing information and the previous evader

position (Fig. 2).

• The pursuer making his move to a point at a distance

at most 1 away from his current location.

p

e r

u

Fig. 2. After an evader move from e, the pursuer can infer that the evader
is inside the line segment u by intersecting its bearing measurement (the
ray that originates from p and goes through the evader’s true location) with
the unit ball around e. Here, r = 1 is the maximum step size.

• The pursuer sensing again and intersecting the current

ray with the previous estimate to get the exact position

of the evader.

Invariant 1. At the end of any round, the evader has to

be located between the pursuer and the origin.

Any winning pursuit strategy must maintain this invariant

at all times, otherwise the evader escapes by moving parallel

to a suitable axis away from the pursuer.

Note that when it is the pursuer’s turn to move, he does

not know the exact evader position. This limitation prevents

the pursuer from employing the lion’s strategy described by

Sgall [3]. We show that there exists a pursuer strategy which

uses a special point on the evader estimate (line-segment

u in Fig. 2) to make each of its moves, resulting in overall

finite capture time. We call this a conservative move, because

the pursuer ensures that Invariant 1 is not broken no matter

where on the estimate the evader actually lies.

We say that the evader is captured and the pursuer wins

the game if, at the end of any round the distance between

the two players is less than or equal to a constant c. Such

a constant exists in practice, because the players are never

point objects. In this paper we show that a pursuit strategy

which guarantees capture for any c ≥ 1 exists. Therefore, if

the step size is chosen so that the unit distance is smaller

than the radius of the evader, our strategy guarantees that

the pursuer “hits” the evader. We refer to c as the capture

threshold.

In the following section, we present the pursuer’s strategy

and proceed to prove its correctness in Section IV.

III. PURSUER’S STRATEGY

Before explaining the bearing-only pursuit strategy, we

give a brief overview of Sgall’s Lion strategy.

A. Sgall’s Lion strategy

In an earlier paper [3], Sgall presented a pursuer strategy

that guarantees capture of the evader in the positive quadrant

of the plane, given that the initial conditions satisfy Invari-

ant 1.

Let P and E be the initial coordinates of the pursuer and

the evader respectively. Suppose P and E satisfy Invariant 1.

Find a point Q on the line EP such that P lies between Q
and E, and a circle C centered at Q, passing through P ,
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touches (or cuts) both the X-axis and the Y-axis. The main

idea is for the pursuer to make his moves in such a way that

the circle C centered at Q and passing through the pursuer’s

current location advances further and further away from Q
until the evader is trapped. The pursuer executes his move

in the following manner.

Suppose the evader moved to E′ such that |EE′| ≤
1 (maximum step size). The ray CE′ intersects a circle

centered at P of radius 1 at two points. Of these, the pursuer

picks the point farthest from Q and moves to it, call it P ′.

This is the end of a round. We will refer to this move as the

Lion’s move with respect to Q.

Sgall showed that the Lion’s strategy ensures capture by

proving that (a) the distance of P from the center Q always

increases by a lower bound, no matter what the evader

does, and, (b) the pursuer is always inside the line segment

connecting the evader to center Q. These two conditions

guarantee capture of the evader. Note that the pursuer’s

distance to Q can be viewed as a measure of progress. We

adopt this terminology in the rest of the paper.

B. Bearing-only strategy

In order to execute Sgall’s strategy, the pursuer needs to

know the exact location of the evader before making his

move. Although our pursuer can use the bearing-only ray

to triangulate the position of the evader, he will know the

exact evader location only after he has moved. Therefore, he

cannot use this information to execute an exact Lion’s move.

The bearing-only pursuit strategy starts by computing a

center Q as in Sgall’s strategy. The strategy then proceeds

in two main phases: (i) employing the original lion strategy

with respect to Q whenever possible and, if not (ii) guarding

the pursuer’s progress while “catching up” with the evader

in a finite number of steps.

We adapt Sgall’s Lion strategy by using a conservative

estimate of the evader’s location: Let the position of the

pursuer at time t be p(t) ∈ R
2 and that of the evader be

e(t) ∈ R
2. After the evader move, the pursuer builds an

estimate of the evader position by intersecting his sensing

ray with a disc of unit radius centered at e(t). The pursuer

assumes that the evader is at some point E∗ on this estimate

and plays Sgall’s Lion strategy. The point E∗ is chosen as the

point on the estimate farthest from the center of the circle (Q)

used in the Lion strategy. By making this move, the pursuer

ensures that Invariant 1 is never broken i.e. the evader does

not have a guaranteed escape plan even if the guess turns out

to be wrong. Therefore, we refer to E∗ as the conservative

estimate.

The following lemma justifies using the conservative esti-

mate.

Lemma 1: Let E∗ be the conservative estimate and P ∗ be

the pursuer location after the pursuer’s move. If |P ∗E∗| ≤ 1,

the evader is captured.

Proof: Suppose the pursuer moved to P ∗ assuming

that the evader was at the conservative estimate E∗ and this

leads to capture i.e. |P ∗E∗| ≤ 1, as shown in Figure 3.

Drop the perpendicular from P ∗ on to the line PE∗. Since

E

E*

E
−

P*

PH

Fig. 3. Capture condition: If the evader is captured w.r.t the conservative
estimate i.e. |P ∗E∗| ≤ 1, then he is captured no matter where on the
estimate he actually is.

|PE−| > 1 (otherwise the evader would be captured soon

after his move), the foot of the perpendicular, call it H , lies

inside the circle of radius 1 centered at P . The distance of P ∗

from the line PE∗ is least at H and monotonically increases

to |P ∗E−| and then |P ∗E∗|. Therefore

|P ∗H| < |P ∗E−| < |P ∗E∗| ≤ 1

which proves that for all points on E∗E−, the evader is

within a distance of 1 from P ∗, implying capture.

When the pursuer’s guess is wrong, the points Q, p(t+1)
and e(t+1) are not collinear. The evader is now on one side

of the line l through Q and the pursuer. This will trigger the

guarding phase where the pursuer switches to a guarding

strategy.

E* P*

C

E P

E
−

P
−

L(P )
−

Fig. 4. The guarding phase of the pursuer’s strategy, in which he prevents
the evader from crossing the line L(P−).

Call the point he should have been at to continue the Lion’s

strategy as P− (Figure 4). Let L(P−) be the line through P−

tangent to the circle centered at Q passing through P−. Since

the line through E− and Q is perpendicular to L(P−), the

projection of E− onto L(P−) is P−. If the pursuer were at

P− instead of P ∗, he could prevent the evader from crossing

L(P−) just by moving toward the evader’s projection on that

line. We call this guarding the line L(P−). The guarding

strategy involves the pursuer moving from P ∗ to P− and

then guarding L(P−) by staying on L(P−) and moving

toward the evader’s projection.

Figure 5 illustrates the states in the overall strategy.

In the next section we show that:

1) The guarding strategy preserves the pursuer’s progress.

In other words, suppose the distance between Q and
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State A

Conservative

Lion’s move

State B

Finite guarding

Estimate correct

Estimate wrong

P catches up

Fig. 5. Two-state pursuer strategy. The pursuer makes progress whenever
he is in State A. When in State B, he guards his previous progress and goes
back to State A in a finite number of steps.

P− (the “correct” pursuer location) when the pursuer

switches to the guarding mode is d. We will show that

when the pursuer returns to the Lion’s strategy with

respect to Q, his distance to Q will be at least d.

2) In going from the lion’s game to the guarding strategy

and back to the lion’s game, the guarding phase takes

a finite number of steps.

In the next section, we will show that this pursuit strategy

yields capture.

IV. ANALYSIS

The pursuer starts by computing the circle center Q and

proceeds with the Lion’s strategy using the conservative

estimate. Suppose the pursuer is at P and the evader at E.

The evader moves to a point on E∗E− and the pursuer moves

to the point P ∗ as described in our conservative Lion’s move.

Suppose that the evader is not at E∗. Then, the evader, P ∗

and Q are not collinear. This triggers the guarding phase.

Lemma 2: Suppose, after the pursuer’s move, P , E and Q
are not collinear. Let d = |P−Q| when this happens where

P− is the true lion’s move corresponding to the evader move.

There exists a pursuer strategy which guarantees that one of

the following happens in a finite number of steps:

(i) P , E and Q are collinear and d(P,Q) ≥ d.

(ii) |PE| ≤ 1.

Proof: Let L(P−) be the tangent at P− to the circle

C centered at Q, passing through P− (See Figure 4). Note

that L(P−) touches both of the axes (since C also does).

Let the radius of C be d = |QP−|. At the beginning

of the guarding phase, the pursuer observes the evader’s

(conservative) move to, say, E′. Let x be the intersection

of L(P−) with the line segment QE′. We refer to x as the

evader’s projection onto L(P−). If the pursuer can reach

the projection in the first step, condition (i) holds and we

are done.

Otherwise, the pursuer starts guarding L(P−) by moving

onto the point on L(P−) that is closest to the evader’s

projection onto L(P−). Clearly, the distance between the

pursuer’s location and the evader’s projection is bounded by

δ = |P ∗P−|. The guarding phase ends if the pursuer can

move to the evader’s projection.

During the guarding phase, the evader is inside the area

bounded by one or both of the coordinate axes, the ray QP (t)

from the center Q passing through the pursuer’s current

location, and the line L(P−). As the pursuer guards the

line L(P−), notice that the ray QP (t) is rotating toward

the ray QE(t). Thus, before the pursuer hits the axis its

moving toward, it is guaranteed that these two rays will cross

(unless the evader crosses L(P−) first). When the rays cross,

the pursuer can simply move on to the evader’s projection.

Since the pursuer has stayed on L(P−), he is outside circle

C centered at Q passing through P− i.e. at some finite time

t′, |QP (t′)| ≥ d and the pursuer can resume with the Lion’s

strategy without loss of progress. Therefore, as long as the

evader does not attempt to cross L(P−), the event described

in part (i) of the lemma will happen.

In the remaining case, the evader crosses the line L(P−).
Figure 6 illustrates such a case. Suppose the evader was at

P

E

F

E’

L(P )
−

C

P
−

Fig. 6. If the evader E crosses the line L(P−), then the pursuer P
moves toward E′ and the final distance between the players is at most
δ = |P ∗P−|.

E. His projection F on the line L(P−) is a distance at most

δ = |P ∗P−| away from P i.e. |PF | ≤ δ. The evader crosses

L(P−) and lands at E′ such that |EE′| ≤ 1 (maximum

step-size). Since the angle ∠EFE′ is greater than π/2 (the

evader crossed), and |EE′| = 1, we have |FE′| ≤ 1. Apply

triangular inequality in ∆FE′P and we get

|PE′| ≤ |PF | + |FE′| ≤ δ + 1

Now, the pursuer moves along PE′ a unit distance to a point,

call it P ′. Then |P ′E′| = |PE′|−1 ≤ δ. Thus, soon after the

evader crosses, the distance between the players is at most

δ.

We now bound δ, the distance between points P ∗ and P−.

Let P be the pursuer location before it moved to P ∗. By the

definition of the lion’s move, we have the angle ∠P−PP ∗ ≤
π/2 which means that δ ≤

√
2. In fact, a tighter bound is

possible, given by the next lemma.

Lemma 3: Let δ be the distance between the point P ∗ and

P− as explained in Lemma 2. δ ≤ 1.

Lemma 3 is proven in the appendix.

The following theorem gives us our main result.

Theorem 1: If the capture threshold is at least one, a

pursuer with a bearing-only sensor can capture the evader in
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a finite number of steps by following the two-state pursuer

strategy.

Proof: Whenever the pursuer makes the Lion’s move,

he makes a definite progress as explained by Sgall in [3].

In our strategy, the pursuer plays a single Lion’s game with

finite capture time. However, after a pursuer move, the Lion’s

move may not exist. We showed that whenever this happens,

either (i) the pursuer returns to the original Lion’s game in

a finite number of steps and claims the progress possible

with the correct lion’s move, or (ii) the distance between the

players drops below one and hence, the evader is captured

if the capture threshold is at least one.

The whole game can now be viewed as a finite sequence

of games G1, G2, G3, . . . , Gn where games with odd indices

are parts of a single Lion’s game (with increasing progress)

and the even indices are guarding games that last a finite

number of steps and preserve the pursuer’s progress from

one Lion’s game to the next.

We now provide an upper-bound on the capture time.

Suppose the game starts with the pursuer at (x0, y0) and

the evader at (x′

0
, y′

0
) and let α0 = (y0 − y′

0
)/(x0 − x′

0
) be

the initial slope of the line joining them. Then, the total

capture time for the Lion’s game (sum of the times for

G1, G3, G5, . . .) as derived in [3] is:

TL = max{(x0 + y0(α0 +
√

1 + α0
2))2,

(y0 + x0(α0
−1 +

√

1 + α0
−2))2

A single guarding game lasts for a time of at most the

maximum of the X and Y coordinates of the pursuer at P ∗,

which, by construction of the initial circle centered Q and

the imposition of Invariant 1, is bounded from above by the

maximum of the X and Y coordinates of the center Q. Thus

the capture time for a single guarding game is given by

TG = max{x0 + y0(α0 +
√

1 + α0
2),

x0 + x0(α0
−2(1 +

√

1 + α0
2))}

Since, in the worst case, the switch from the Lion’s game

to a guarding game happens at the end of each time step,

the total capture time is bounded by TLTG.

A. Knowledge about the evader’s initial location

We started the paper with the assumption that the pursuer

knows the exact initial location of the evader. In this section,

we remove this assumption. The main idea is to have the

pursuer perform a “safe” initial move and obtain the evader’s

position by triangulation. This is formalized in the following

lemma.

Lemma 4: Call the two-state pursuer strategy described

earlier as Sp. As explained in Section III-B, Sp requires the

initial location of the evader for our analysis to hold. If the

pursuer does not know the initial location of the evader, then

there exists an initial pursuer move that allows him to obtain

the exact evader location, after which he can continue with

Sp.

Proof: Suppose the pursuer starts at P and the evader

at E such that the coordinates of E lie in between the

coordinates of P and the origin of the first quadrant. Further,

suppose the evader moves to E′ and the pursuer has the

bearing ray through E′. Call this ray r(P ). Our idea is for the

pursuer to move to a point P ′ and then obtain his sensing ray

r(P ′). The intersection of r(P ) and r(P ′) gives the pursuer

the exact location of E′ and now he continues with Sp.

Note that P ′ has to be chosen in such a way that

Invariant 1 is not broken and the rays r(P ) and r(P ′) do

not coincide. There are two cases that arise.

Suppose that E′ lies between the pursuer and the origin,

then the pursuer can simply move parallel to one of the axes,

toward the evader and the new sensing ray will give him the

required information. Invariant 1 is clearly preserved.

In the event that E′ crosses the pursuer along one of his

coordinates, say Y (the other coordinate follows a symmetric

argument), the pursuer moves one unit away from the origin

parallel to the Y-axis. This guarantees that Invariant 1 is

preserved because they initially started with a positive Y-

separation. Further, the intersection of the new sensing ray

with the previous one gives the pursuer the exact location of

the evader and he plays the rest of the game following our

strategy Sp.

V. CONCLUSION

In this paper, we studied the effect of a common sensing

limitation on a well-known pursuit-evasion game. We showed

that, a pursuer with a bearing-only sensor can decrease the

distance between the players to the step-size. A remaining

open question is whether the pursuer can decrease the

distance to zero.

Throughout the paper, we assumed that the pursuer can lo-

calize itself precisely. Another direction of future research is

to incorporate uncertainties regarding the pursuer’s location

into the pursuit strategy.
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APPENDIX

PROOF OF LEMMA 3.

We derive an upper bound on δ = |P ∗P−| with geometric

arguments.

E

P

Q

E*

E
−

P*

P
−

α

s

z

Fig. 7. Upper bound on |P ∗P−|: We express |P ∗P−| as a function of
three parameters s, z and α.

We express the angle ∠P−PP ∗ as a function of three

parameters, as shown in Figure 7: (i) s, the distance between

the evader E and the pursuer P before the move, (ii) z, the

distance between the center Q of the Lion’s circle and the

pursuer P and (iii) α, the angle of the sensing ray of the

pursuer with the line PE. By studying how δ varies with

each parameter, we compute an upper bound on the distance

between P ∗ and P−. Observe that since both of these points

lie on a unit circle centered at P , |P ∗P−| and ∠P−PP ∗ are

directly related. For the rest of our analysis, we refer to this

parametrized angle as β(s, α, z).
Effect of z. As the point Q moves away from P (i.e. as

z goes to infinity), observe that P ∗ rotates about the unit

circle centered at P at a rate quicker than P− does. Thus

β(s, α, z) increases as z −→ ∞. This means that the highest

value of β is achieved when Q is at infinity. In this case, the

lines QP−E− and QP ∗E∗ become parallel to QPE. To

minimize β, we can focus on the remaining two parameters

and set z to ∞.

Effect of s.

Lemma 5: Let 2 ≤ s2 < s1 be two evader locations and

α1 be a viewing angle. There exists a viewing angle α2 such

that β(s2, α2) > β(s1, α1).
Proof:

P

A

B
C

s1

s2

α1 α2

E1 E2

Fig. 8. Dominance of the s parameter: a lower value of s gives a higher
value of β, although for a different value of α.

Consider the situation shown in Figure 8. Compare the

two configurations P,E1 and P,E2 such that s1 > s2. For

the evader at E1, the lines from Q intersect the pursuer’s unit

circle at A and B. For any configuration with the evader at

E2 such that s2 < s1, we can adjust α2 to have the same

top point A on the pursuer’s unit circle. Observe that this

ray intersects the unit circle centered at E2 at a point lower

than B by construction, because the unit circle centered at

E2 is closer to P . Thus the rays from Q through these

points intersect the pursuer’s unit circle at A and C, where

C is farther from A than B. Since A, B and C are on the

same circle centered at P , we get ∠BPA < ∠CPA i.e.

β(s1, α1) < β(s2, α2). Thus parameter s is such that smaller

values dominate larger values.

Since s > 1 (otherwise the evader is already captured),

Lemma 5 allows us to restrict our search for maximum β to

the interval s ∈ [1, 2].
When s goes below 2, the unit circles centered at the

evader and pursuer intersect, causing the point on the evader

estimate closest to the pursuer to move from being on

the evader’s circle to being on the pursuer’s circle. This

made it difficult to obtain an analytical solution. We derived

the symbolic expression for β and solved this problem

numerically by plotting s versus α versus β in MATLAB.

Figure 9 shows the 3D surface plot.
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Fig. 9. Plot of β = ∠P−PP ∗ versus parameters s and α.

As it can be seen from the figure, the maximum value

attained is less than π/3. Since |P−P | and |P ∗P | are both

of length 1, |P ∗P−| is bounded from above by 1.
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