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Abstract—In this paper, we formalize the problem of partial
barrier coverage, that is, the problem of using robot sensors
(guards) to minimize the probability of undetected intrusion
in a particular region by an intruder. We use ideas from
noncooperative game theory together with previous results
from complete barrier coverage – the problem of completely
preventing undetected intrusion – to develop new methods that
solve this problem for the specific case of bounded-range line-of-
sight sensors in a two-dimensional polygonally-bounded region.
Our solution constructs equilibrium strategies for the intruder
and guards, and calculates the level of partial coverage.

I. INTRODUCTION

In this paper, we address the problem of partial barrier

coverage, the problem of minimizing the probability of a

mobile entity (intruder) entering a specific area without

being seen by a robot sensor (guard). Barrier coverage

has applications in military security, building security [1],

[2], robot herding [3], [4], and sensor networks [5], [6].

Specifically, we are looking at the problem of protecting

a region in the plane using variable bounded-range line-of-

sight detectors (segment guards). A segment guard can detect

an intruder crossing its line of sight, but only within a certain

range. This range is not a fixed parameter, but is set by the

deployer. The deployer has a fixed bound on the total of all

assigned ranges, which can be distributed to any number of

segment guards. For the problem of partial barrier coverage,

this bound is lower than the minimum range necessary to

completely prevent undetected intrusion.

When deciding where to place guards, a deployer should

consider the paths the intruder is likely to take. Similarly,

when selecting an intrusion path, an intruder should consider

the likely guard deployments. Because each entity considers

the strategies of the other, and the two have opposite goals,

the intruder/guard situation can be viewed as a noncoopera-

tive game. The outcome of this game is one if the intruder

is detected, and zero if it reaches its goal undetected. Both

opponents ultimately select probabilistic strategies; the ex-

pected outcome of this game is the probability that the guards

will catch the intruder. The use of probabilistic strategies in

security also appears in [7].

In this paper, we combine our results in complete barrier

coverage for variable-length guards in polygonal environ-

ments [8] with noncooperative game theory results [9] to

produce equilibrium strategies for both intruder and guards.

The equilibrium strategies dictate the optimal probability

distribution over guard deployments, and the game’s value is

the partial coverage value. This work allows us to (1) expand

partial barrier coverage into a wider variety of workspaces,

and (2) consider better intruder strategies when determining

guard deployments.

This paper is laid out as follows. In Section II we review

previous work in barrier coverage. In Section III we give

definitions of terms and notations for barrier coverage, and

in Section IV we give notation and basic concepts in game

theory. In Section V we combine these to determine optimal

strategies for intruder and guards in polygonal environments.

In Section VI we describe future work, and in Section VII

we give concluding remarks.

II. PREVIOUS WORK

Barrier coverage is one of the three types of coverage [10].

The other two are blanket coverage and sweep coverage. The

goal of blanket coverage [11]–[13] is to maximize the total

area the robots can see. The goal of sweep coverage [14]–

[16] is to maximize the set of points in a region that robots

see as they move across it. Barrier coverage differs from the

other two types in that its goal is minimizing unseen paths,

rather than unseen points.

In the field of sensor networks, barrier coverage appears

as moat construction, or intruder detection. Barriers across

rectangular or annular regions have been generated using po-

tential fields [17], incremental deployments [18], and sensor

grids [5]. In general, random intruder motion is assumed

while determining coverage values. Some approaches instead

seek to determine the worst-case coverage levels. These

approaches are related to the problem of minimum exposure

path [19], [20], the problem of finding the path which is least

likely to be seen by a sensor.

A related yet distinct problem is complete barrier coverage

[8]. This is the problem of deploying guards to completely

prevent the intruder from reaching his goal. This is similar

to the previous related problems, with the added goal of

ensuring sensors cover every path with probability 1. It

is also related to separation problems from computational

geometry. There are several problems of separating polygons

into separate regions, either with line segments [21], circles

[22], wedges [23], strips [23], or chords [24].

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2671



S
1

S
2

Fig. 1. Sample Barrier Problem Domain. The shaded regions are obstacles

While complete barrier coverage deals with the same

issues of guards and intruder paths as partial barrier coverage,

partial barrier coverage must also consider intruder strategies.

A complete barrier covers all intrusion paths. A partial barrier

covers an infinite set of paths, and misses an infinite set

of paths. Determining what portion of paths are covered

requires knowing the likely distribution of intrusion paths,

i.e. the intruder’s strategy.

III. DEFINITIONS

In this paper we focus on a point intruder moving in

the plane. The intruder can only be in the obstacle-free

workspace W ⊂ R
2, which is compact, connected, and

bounded by polygons. The intruder is known to originate

somewhere in the start set S1 ⊂ W , and is trying to travel
to some point in the stop set S2 ⊂ W . Both S1 and S2

are compact and bounded by polygons. Figure 1 shows an

example problem domain.

We define guards in terms of the regions they can see.

We define each guard qj to be a line segment whose interior

lies entirely inside W , and define rj to be the length of

this segment. This represents a guard that can see in one

direction, up to a distance rj , and cannot see through walls.

We call these segment guards.

Consider a set of guards q = {q1, . . . , qn}. We call this a
deployment. A path from S1 to S2 (an intrusion path) that

crosses any qj is called a detected intrusion. An intrusion

path that does not cross any guard in q is called an undetected

intrusion. These terms indicate whether the intruder is caught

by the guards while attempting to intrude. A deployment that

guarantees there are no undetected intrusions is a complete

barrier. Equivalently, a deployment is a complete barrier iff

it separates S1 and S2 into separate connected components

of W .
In complete barrier coverage, we seek to find the complete

barrier with minimum
n
∑

j=1

rj . We call the length of this

minimum barrierW . In partial barrier coverage, we consider

the situation where there is a limit on guard resources, i.e.
∑

rj cannot exceed a set value R, where R < W . This

restriction makes it impossible for the guards to completely

guard S2 from intrusion from S1. We call a deployment in

such a scenario a partial barrier.

IV. GAME THEORY

In this section, we describe how we model partial barriers

using noncooperative game theory. We use notation and ideas

from [9].

We describe partial coverage as a two-player static zero-

sum game between the intruder P1 and the deployer of the

guards P2. For P1 an action is a path from S1 to S2. For

P2, an action is a guard deployment. The outcome of this

game is 0 if the intruder intrudes undetected, and 1 if the

guards detect him. P2 wants to maximize the outcome; P1

wants to minimize it.

To analyze these games, we determine the optimal strate-

gies for both players. We start with pure strategies, wherein

each player selects an action, and always plays that action.

Let A (γ, q) be the outcome of the game where P1 selects

action (intrusion path) γ and P2 selects action (deployment)

q. If P1 wants to minimize this outcome in the worst

case, he will select a γ∗ that minimizes max
q

A (γ∗, q). This

guarantees an outcome of at most

V (A) = min
γ

max
q

A (γ, q) . (1)

V is called the upper value of A. Similarly, if P2 wants to

maximize this outcome in the worst case, he will select a q∗

that maximizes min
γ

A (γ, q∗). This guarantees an outcome

of at least

V (A) = max
q

min
γ

A (γ, q) . (2)

V is called the lower value of A. If both players play these

strategies, the game’s outcome will always be between V and

V . If V = V , then γ∗ and q∗ form equilibrium strategies for

A. The pair (γ∗, q∗) is also called a saddle point for pure
strategies. The value of such a game is V = V = V . Each

player can guarantee an outcome no worse than V by playing

his equilibrium strategy, but cannot guarantee anything better.

If a player plays a strategy that is not an equilibrium, then

it is possible for the outcome to be worse for him.

Equivalently, (γ∗, q∗) is a saddle point iff for all γ and q,

A (γ∗, q) ≤ A (γ∗, q∗) ≤ A (γ, q∗) . (3)

In other words, a strategy is equilibrium iff one player de-

viating from the strategy (and not the other) cannot improve

the outcome for him.

For every partial coverage game, every deployment has

an intrusion path that avoids it. Therefore, V = 0. Similarly,
every intrusion path has a deployment that detects it. There-

fore, V = 1. Since V < V , there are no saddle points for

pure strategies. To find equilibrium strategies, it is necessary

to use mixed strategies, where each strategy is a probability

distribution over a player’s possible actions. Here γ and q are

probability distributions over all possible actions. A (γ, q) is
now the expected outcome if P1 plays probabilistic strategy

γ, and P2 plays probabilistic strategy q. V , V , and V are

similarly defined with respect to expected outcome.

We will refer to the value of a partial coverage game as the

coverage value. For mixed strategies this is the probability
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Fig. 2. Sample single corridor. L′ is an arbitrary barrier, and L is the
minimum barrier.

(a) 0 < g ≤ w − r (b) g > w − r

Fig. 3. Using g ∈ [0, w] to place guards uniformly across a corridor.

of the guards catching the intruder, if both players use

equilibrium strategies.

In the next section we apply game theory to increasingly

complex environments. We determine equilibrium strategies

for a single corridor, and then combine them with complete

barrier results to construct equilibrium strategies for general

polygonal environments.

V. EQUILIBRIUM STRATEGIES FOR GUARD/INTRUDER

GAMES

A. One corridor

Consider a polygonal corridor with S1 at one end and S2

at the other end. This is a workspace in which there is a

single homotopy class of paths from S1 to S2. P2 has a

guard length of r, to be apportioned out across one or more

guards in the single corridor. Since this is partial coverage,

we know r < w, where w is the length of the minimum

barrier L (found using [8]). See Figure 2. P1 selects a path

from S1 to S2, and P2 selects a guard deployment.

Here are the equilibrium strategies for this game:

• For P1: select a point in L with uniform distribution,
and select an intrusion path through this point.

• For P2: any strategy such that every point in L is
covered with probability r

w
.

Here is an example of an equilibrium strategy for P2.

Since L has length w, it has a bijection with [0, w]. Select
g ∈ [0, w] with a uniform distribution, and use it to place
the guard(s). If g ∈ [0, w − r] is selected, place one guard
across [g, g + r]. See Figure 3(a). If g ∈ (w − r, r], place
two guards: one across [g, w], and one across [0, r − w + g].
See Figure 3(b).

Theorem 1: The given strategies for the one-corridor

game are equilibrium strategies, with V = r
w
.

Proof: Since any point in L has a r
w
probability of

being covered, and each point has an equal probability of

being traversed, the resulting expected outcome is r
w
.

To show these are equilibrium strategies, we show that for

each player, any other strategy produces an inferior worst-

case expected outcome. For P1, if the distribution is not

uniform, there is a region of total length r with a probability

higher than r
w
of selection. If P2 places guards exclusively

in this region, the outcome will be greater than r
w
. Similarly

for P2, if the points in L do not all have the same probability
of being guarded, there is a point with a probability lower

than r
w
of coverage. If P1 selects this point exclusively to

traverse, the outcome will be less than r
w
.

Now suppose the guards are placed across a different

barrier L′ 6= L. Since L′ is not the minimum barrier, it

has width w′ > w. P1 has no choice on this barrier; his

best strategy is to cross it with a uniform distribution. This

produces an expected outcome of r
w′

< r
w
. Therefore such a

strategy is not equilibrium. Therefore all strategies that are

not the pair given above are not equilibrium, so the given

pair is a saddle point.

B. General polygonal environments: Complete barrier cov-

erage

We now consider general polygonal environments, which

we can view like multiple intersecting corridors. To address

this problem, we make use of our results in complete barrier

coverage. In this section, we summarize our work in [8],

which we will later use to determine partial barrier strategies.

1) Barrier Candidate Graph: We define a barrier can-

didate graph that contains all segments relevant towards

finding the minimum complete barrier. These are the barrier

candidates. This graph is related to the reduced visibility

graph [25].

While there are an infinite number of line segments inside

W , we only consider a finite subset to be considered barrier
candidates. Barrier candidates must have endpoints on the

boundary of W − S1 − S2, with interiors entirely inside

W −S1 − S2. A barrier candidate with an endpoint at an ob-

stacle must be the shortest segment from the other endpoint

to that obstacle edge. Barrier candidates with an endpoint

at Si (i = 1, 2) must be tangent to that Si component. If

there are two barrier candidates which intersect the same

homotopy classes of intrusion paths, the longer candidate

is redundant, and removed from the graph. We also remove

supporting tangents between S1 and S2, as well as separating

tangents between components of S1 or between components

of S2. Figure 4 shows the barrier candidate graph for the

example domain in Figure 1.

In [8] we prove that in a polygonal workspace, the

minimum variable-length segment barrier separating S1 from

S2 consists only of segments from the barrier candidate

graph. The proof exploits the fact that barrier candidates are

local minima with respect to barrier components. This means

that any barrier component that does not consist of barrier

candidates can be replaced by a shorter barrier component.

Therefore, determining the minimum complete barrier is a

matter of searching the set of barrier candidates. To do this,

we construct the connectivity network.
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Fig. 4. Barrier candidate graph. The obstacles are shaded and unlabeled.
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Fig. 5. Connectivity network overlaying barrier candidate graph from Fig.
4

2) Connectivity Network: The barrier candidate graph

decomposes W into polygonal subregions. We construct a

dual graph with a vertex for each region. Two vertices are

connected with an edge iff their corresponding regions are

adjacent. This edge is given a capacity equal to the length

of the piece of the barrier candidate that separates the two

subregions.

To this graph we add vertices s and t, corresponding

to S1 and S2 respectively. Connect s to all the vertices

corresponding to regions that intersect S1, and connect t to

all the vertices corresponding to regions that intersect S2.

These connections all have infinite capacity.

This graph, which we call the connectivity network, resem-

bles a dual of the barrier candidate graph. The connectivity

network for Fig. 4 is shown in Fig. 5. The connectivity of this

graph reflects the connectivity of the workspace. Separating

S1 from S2 is equivalent to separating s from t in the

connectivity network. Therefore the minimum edge-cut that

separates s from t corresponds to the minimum complete

barrier.

Therefore to find the minimum complete barrier it suffices

to solve the network flows min-cut problem, which is equiva-

lent to the network flows maximum-flow problem [26]. The

maximum flow of a network assigns a direction and flow

value for each edge, such that (1) the flow value is less than

or equal to the capacity; (2) for each vertex except for s and t,

the flow in equals the flow out; and (3) the amount of flow

S
1

2
S

S
1

Fig. 6. Minimum Barrier. Dashed lines show corresponding edges in the
dual graph

out from s is maximized. The minimum cut of a network

consists of all the edges where the flow is at capacity. This

maximum flow can be found efficiently using augmenting

paths [27] or preflows [28]. Figure 6 shows the minimum

barrier of the sample domain. The dashed lines show the

minimum cut for the connectivity network.

C. General polygonal environments: Partial barrier strate-

gies

We use barrier candidates and the connectivity network

to construct strategies for partial coverage in polygonal

environments. Since any guard deployment that is not across

barrier candidates only can be replaced by a better one that is

across barrier candidates (Section V-B.1 plus Theorem 1), we

will only consider guards across barrier candidates, and we

will look at intruder paths based on which barrier candidates

they cross.

This game can be viewed as a one-stage game, where P1

selects a path through W , and P2 selects a deployment. It

can also be viewed as a two-stage game, making use of the

barrier candidate graph. In stage one, P1 selects a path in the

connectivity network; his action can be encoded as the set of

barrier candidates his path intersects. Similarly, P2 chooses

a guard length ri for every barrier candidate bi (each bi is of

length wi). Recall from Section III that the ri values must

sum to a predetermined R, where R < W , the length of

the minimum barrier. In stage 2, P1 chooses which point

in each barrier candidate to cross, and P2 chooses exactly

where within each candidate bi to put the ri guards selected

in stage 1.

Stage 2 is already known: Theorem 1 shows that if P1

chooses a path and P2 chooses a deployment such that bi is

the only barrier candidate that the intruder crosses and has

guards on it, the outcome is ri

wi

. Therefore, if P1 chooses

a path that crosses barrier candidates {b1, . . . , bK}, then the

game has outcome 1−
K
∏

i=1

(

1 − ri

wi

)

. This expression follows

from the fact that the guards only need to see the intruder

once for P2 to win. We call this value A (I, r), where I =
{b1, . . . , bK} is the intruder’s path, and r = (r1, . . . , rN ) is
the guard deployment.
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With the second stage already determined, we focus on the

first stage of the game. We build strategies for each player

using results from minimum complete barriers. P2 uses the

minimum complete barrierB∗, which has total lengthW .P1

uses the maximum flow through the connectivity network.

Let f (bi) be the flow value through bi in the maximum flow.

Since the barrier candidate lengths are used for capacities,

f (bi) ≤ wi, with equality when bi ∈ B∗.

The equilibrium strategies are:

• Select a path so that for P1: For each i = 1, . . . , N ,
bi is traversed with probability

f(bi)
W
. Path I will be

selected with the flow through I divided by W as its

probability.

• For P2: For each i = 1 . . . , N , set ri = wi

W
R iff bi ∈

B∗, and ri = 0 otherwise.

The flow through edges in B∗ all flow from the com-

ponents containing S1 to the components containing S2.

Therefore, every P1 path of nonzero probability – being

a path with positive flow – traverses the minimum barrier

exactly once. If it crosses edge bi ∈ B∗, then the expected

outcome is ri

wi

= R
W
. This is true regardless of which edge

is selected.

We now show that these are equilibrium strategies.

Theorem 2: The strategies given above are equilibrium

strategies for a polygonal environment, with V = R
W
.

Proof: We show that the given strategies satisfy (3) by

showing that if one player uses a different strategy and the

other uses the given equilibrium strategy, the player choosing

the different strategy is no better off.

First, consider alternative strategies for P1. Any path from

S1 to S2 must cross B∗ at least once. If P2 uses the given

strategy, then for any bi ∈ B∗, ri = wi

W
R. Therefore the

resulting outcome will be at least ri

wi

= R
W
. This value will

be higher if the path crosses B∗ multiple times. Therefore,

for P1, using other strategies produces an equal or higher

outcome.

Now consider alternative strategies for P2. From Theorem

1 we already know that a deployment that is not across

barrier candidates produces a smaller outcome. Therefore

we write the deployment as r = (r1, . . . , rN ), as above.
P2 places guards of total length ri at barrier candidate bi.

Given an intruder path I , the probability of being caught

by a guard is

pG (I) = 1 −
∏

{i|bi∈I }

(

1 −
ri

wi

)

.

But this value must be no greater than the sum of the

individual barrier candidates’ detection probabilities, i.e.

1 −

K
∏

i=1

(

1 −
ri

wi

)

≤

K
∑

i=1

ri

wi

,

Therefore we establish upper bounds on the expected out-

come. Let p (I) be the probability of P1 selecting I . This

is the flow through I divided by W . The expected outcome

Fig. 7. Simple partial coverage example.

is therefore

∑

I

pG (I) p (I) =
∑

I

p (I)



1 −
∏

{i|bi∈I }

(

1 −
ri

wi

)





≤
∑

I

p (I)
∑

{i|bi∈I }

ri

wi

(4)

=
N

∑

i=1

ri

wi

∑

{I|bi∈I }

p (I) (5)

=

N
∑

i=1

ri

wi

f (bi)

W

≤

N
∑

i=1

ri

W

=
R

W
.

The transition from (4) to (5) is a reordering of sums. (4)

sums over each barrier candidate for every path, while (5)

sums over each path for every barrier candidate.

Therefore, the given strategies satisfy (3), so they are

equilibrium strategies.

See Figure 7 for a simple illustrative example. In this

example, the minimum barrier consists of two components,

b1 and b2. In this example, b1 is three times as long as b2,

i.e. w1 = 3w2. The optimal strategy for P1 is to traverse

b1 with probability
3
4 , and b2 with probability

1
4 . Each bi

segment should be crossed at a point which is selected with a

uniform distribution. This is true regardless of R. Similarly,

P2’s optimal strategy is to cover b1 with guards of total

length 3 times the guards used to cover b2. In other words,

set r1 = 3
4R, and r2 = 1

4R.

Notice that the entire minimum barrier is traversed (by

the intruder) or covered (by the guards) with a uniform

distribution. Therefore, the strategies are equivalent to those

if the barrier components were merged into one segment,

like in Figure 8. This is true for any workspace.

VI. FUTURE WORK

This paper shows partial barrier coverage in a specific

problem domain. We would like to expand the definition to
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Fig. 8. Figure 7 with minimum barrier collapsed to one segment. The
strategies are effectively the same.

other problem domains.

We would like to look at a greater variety of guards.

This would include guards with fixed ranges, omnidirectional

guards with and without range limits, guards with placement

constraints, guards with noisy sensors, moving guards, and

barriers composed of different types of guards. Similarly, we

would like to look at intruders with shape and volume. We

would also like to look at three-dimensional environments,

with and without gravity.

We would also like to look at strategy constraints for

both players. For the intruder this could involve motion con-

straints. For guards this could involve alternative deployment

methods, like random deployments with and without guard

motion. Each limitation on a player’s strategy should create

a change in his opponent’s strategy.

VII. CONCLUSION

In this paper, we have shown how to combine methods

in complete barrier coverage with with noncooperative game

theory to produce equilibrium strategies for both intruder and

guards in polygonal environments. We have shown that the

equilibrium strategies for both players are to distribute their

actions evenly across the minimum complete barrier, and that

the resulting coverage value is the ratio of available guard

resources to the minimum complete barrier length (i.e. R
W
).
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