
A Control Architecture for Quadruped

Locomotion Over Rough Terrain

J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng

Computer Science Department, Stanford University, Stanford, CA 94305

Abstract— Legged robots have the potential to navigate a
much larger variety of terrain than their wheeled counterparts.
In this paper we present a hierarchical control architecture that
enables a quadruped, the “LittleDog” robot, to walk over rough
terrain. The controller consists of a high-level planner that plans
a set of footsteps across the terrain, a low-level planner that
plans trajectories for the robot’s feet and center of gravity
(COG), and a low-level controller that tracks these desired
trajectories using a set of closed-loop mechanisms. We conduct
extensive experiments to verify that the controller is able to
robustly cross a wide variety of challenging terrains, climbing
over obstacles nearly as tall as the robot’s legs. In addition,
we highlight several elements of the controller that we found
to be particularly crucial for robust locomotion, and which are
applicable to quadruped robots in general. In such cases we
conduct empirical evaluations to test the usefulness of these
elements.

I. INTRODUCTION

Although wheeled robots are very fuel efficient, they are

extremely limited in the types of terrain that they can reliably

navigate. Legged robots, in contrast, offer the potential to

navigate a much wider variety of terrain, as evidenced by the

fact that biological legged animals are capable of accessing

nearly all of the earth’s land surface. This potential has

sparked a great deal of research on legged locomotion in

recent years, both for quadruped and biped robots. However,

despite a great number of advances in the field, legged robots

still lag far behind the capabilities of their biological cousins.

In this paper we consider the task of quadruped locomotion

over challenging, irregular terrain, with obstacles nearly as

tall as the robot’s legs. We present a full control system

that enables a quadruped robot known as “LittleDog,” shown

in Figure 1, to robustly navigate a wide variety of difficult

terrains using a static walk. This work extends previous

research by considering terrain that is significantly more

challenging (relative to the size of the robot) than any

previously published work of which we are aware.

While the overall performance of our system naturally

depends on several factors (including some, such as the

mechanical design of the robot, that are out of our control),

throughout our work we have found that a few key elements

of the controller and planner have a large impact on perfor-

mance. In particular, the specific method for planning the

robot’s center of gravity (COG) trajectory and the use of

closed-loop recovery and stabilization drastically improved

performance of our system. These elements are applicable to

quadruped locomotion in general, and we therefore describe

them in detail and experimentally document their usefulness.

Fig. 1. The LittleDog robot, designed and built by Boston Dynamics, Inc.

The rest of this paper is organized as follows. In Section

II we discuss related work. In Section III we present the

full hierarchical control system for quadruped locomotion.

Finally, in Section IV we present experimental results, and

conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK

While a complete survey of all quadruped locomotion

literature is beyond the scope of this paper, we present a

broad overview of the general themes present in this research.

One of the fundamental distinctions in this literature is

between static and dynamic gaits. Static gaits, such as a

walk (or “crawl”), maintain static stability, which in the

ideal setting means that the robot’s center of mass is always

within the polygon formed by its supporting legs. Dynamic

gaits, such as a trot or gallop, do not have this requirement;

although this allows for much faster locomotion, it comes

at the cost of a much more difficult balancing task. Due to

the challenges present in navigating highly irregular terrain,

with obstacles nearly the size of the robots legs, we focus in

this paper on statically stable gaits.

Statically stable gaits were first considered in the robotics

literature by McGhee and Frank [1]. Since then, there have

been a large number of proposed approaches to static gaits,

[2], [3], [4], including many which are capable of walking

on irregular terrain [5], [6], [7], though in these works the

sizes of the irregularities in the terrain are typically much

smaller than the size of the legs. Lee et al. [8] present a

static gait capable of navigating over large obstacles, though

in that work the obstacles considered were all box-shaped,

so the robot is able to step entirely on flat surfaces.

Another vein of research has focused on dynamic gaits

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 811

Fig. 2. Overview of the planning and control architecture.

where the robot “bounces” on compliant legs [9], [10], [11],

[12]. While these gaits are capable of achieving very fast

motion, they are highly limited in terms of the terrains they

can reliably cross. There has also been work on adaptive gaits

(both dynamic and static), that make use of a biologically

inspired “central pattern general” to traverse rough terrain

[13], [14], [15], [16], though again the terrain here typically

has only very small irregularities compared to the size of the

robot.

The work by Pongas et al. [17] and Rebula et al. [18]

bears the most similarity to the current work. These both

present systems for control of the LittleDog robot that share

many similarities to the system we present here. We build

upon this previous work in two ways. First, in this paper we

consider terrain that is substantially more challenging than

the terrain previously considered, at equal or faster speeds.

Although this is somewhat of an unfair comparison (since

these groups have more recently applied these techniques to

more challenging terrain) based on the most recent public

evaluations at the time of the original paper submission

(September, 2007) our results reflect performance that was

on par with the very best that had been achieved by any

group working with the LittleDog robot. Second, although

previous controllers have many elements similar to our own,

the past work has only demonstrated performance for the

entire system. In contrast, in this paper we conduct detailed

experiments evaluating the empirical advantage of several of

these elements individually.

III. PLANNING AND CONTROL FOR QUADRUPED

LOCOMOTION

The full planning and control problem for a quadruped

robot is to plan a sequence of joint angles that moves the

robot to its desired position while maintaining stability, then

apply control inputs (i.e., torques) to achieve this desired

trajectory. However, due to the complexity of this task, we

Fig. 3. Overview of the high-level planner.

make use of a hierarchical decomposition. Specifically, we

separate the system into three components: 1) a high-level

planner, which plans a series of footsteps across the terrain,

2) a low-level planner, which plans trajectories for the COG

and feet so as to achieve the upcoming footsteps, and 3)

a low-level controller, which provides control inputs that

achieve the desired COG and feet trajectories in the face of

disturbances. This architecture is shown in Figure 2. We now

describe each element in detail, highlighting the differences

between it and past approaches.

A. The High-Level Planner

The goal of the high-level planner is to determine a set

of feasible footsteps across the terrain, ideally one that is

robust to minor deviations and slips of the robot. Given

this objective, some foot locations are clearly superior to

others; for example, stepping on flat surfaces or in small

concavities is better than stepping on highly sloped surfaces.

Therefore, the first step in the high-level planning is to build

a “foot cost map” that indicates the desirability of stepping

at any given point in the terrain. The footstep planning task

is then to find the minimum cost set of footsteps across the

terrain. However, due to the high-dimensionality of the space,

even this search problem is difficult, so we again employ a

812

hierarchical decomposition. In particular, we average the foot

costs around the default foot locations to form a “body cost

map,” then use dynamic programming to find the minimum-

cost path. Finally, we plan a set of footsteps that approxi-

mately follows this path using a receding horizon search. An

overview of this entire process is show in Figure 3 and we

now describe each of these steps in greater detail.

1. Generate height and collision maps of the terrain.

The terrain is described natively as a set of 3D tri-meshes

along with their positions and orientations, so we begin

the planning process by sampling the heights in a grid to

produce a discrete height map. In addition, a crucial aspect

of planning good footsteps is to ensure that they do not cause

excessive collision with the terrain. For example, if the robot

attempts to place a rear foot directly in front of a large step,

this will most likely cause the knee to collide with the step,

knocking the robot off its desired trajectory. To ensure that

this does not occur, we precompute approximate collision

maps; in simulation, we place the robot’s feet at each point

in the height map, and determine whether the “default” pose1

will cause the legs to collide with the terrain.

2. Generate local features of the terrain. At each point

in the grid, we consider local height maps of different sizes

(squares of 5, 7, 11, and 21 grid cells around the current

point), and generate five features for each of these maps:

1) standard deviation of the heights

2) average slope in the x direction

3) average slope in the y direction

4) maximum height relative to the center point

5) minimum height relative to the center point

We do this for each of the four local map sizes, leading to a

total of 20 features that describe local characteristics of the

terrain at different spatial scales. In addition, we also include

a boolean feature that indicates whether or not the given

position causes a collision, as specified by the collision map

described above, and a constant offset. This leads to a total

of 22 features, which we represent by the vector φ(x) ∈ R
22

(note that for a given point on the terrain we actually form

four feature vectors, one corresponding to each foot, with

local features properly reflected to account for symmetry of

the robot).

3. Generate foot cost maps. Given a set of features

describing each point of the terrain, we take a linear combi-

nation of these features to form a cost map representing the

desirability of that location for each foot (i.e., the cost of a

point x becomes wT φ(x) for some weight vector w ∈ R
22).

Of course, a crucial element to this system is choosing

a weight vector w that produces the proper costs. A good

choice of w has to trade off several features, and it is

highly non-trivial to simply tune the coefficients by hand.

1The high-level planner frequently uses the notion of a default location
for the feet, or (equivalently) a default pose for the robot. This is simply a
(x, y, z) location for the foot relative to the body that is “good” in the sense
that it gives the robot a stable pose while still allowing for a fair amount of
kinematic reachability. While this is often an approximation (because, for
example, whether or not the foot collides with the terrain at a given location
can depend on the precise pose of the robot), it nonetheless captures the
“expected” behavior in many cases, and greatly reduces computation.

The algorithm we use to learn the coefficients is called

Hierarchical Apprenticeship Learning (HAL), and it allows

a “teacher” to demonstrate good actions at multiple levels of

the control hierarchy [19]. Very briefly, the HAL algorithm

requires that user specify good footsteps at a few key and

good approximate paths for the body over the terrain. It then

uses information from both these levels to learn a the weights

of a cost function which can be used both for the body path

and footstep planning levels. In practice, we have found that

demonstrating good behavior in this way is far easier than

hand-coding a set of rules that induces the behavior.

4. Form body cost map and plan body path. To form the

body cost map, we aggregate the foot cost maps in a square

around the default foot location for each of the four feet.

While this is only an approximation, since the robot’s feet

could be in many other locations given the body position,

it nonetheless does capture the “expected” cost incurred for

a given body position, and therefore serves as a mechanism

for planning the desired path for the robot’s body. Given

this body cost map, we then use value iteration, a dynamic

programming algorithm, to plan a minimum-cost path across

the terrain. Note that this body path is merely a tool for

limiting the search space for our footstep planner; the low-

level planner itself only looks at the footsteps and does not

attempt to follow the body path exactly.

5. Plan footsteps along the desired body path. Given

a desired path for the robot’s body, the final step of the

planning process is to plan a set of footsteps that (roughly)

follow this path. We plan the footsteps sequentially —

moving first the back-right foot, then front-right, then back-

left, then front-left — following the standard biological gait

pattern for static walking [1]. Starting at the robot’s initial

location, we move the robot’s center some distance along

the desired body path, then look for low-cost foot place-

ment around the default foot location of the moving foot.

Because this “greedy” placement might lead to suboptimal

foot placements in the future, we use a receding horizon

branching search to find the placement that leads to a low

sum of the foot costs for several steps in advance. We require

that each footstep obey kinematic feasibility and that it not

cause collisions with the terrain.

The primary goal of the hierarchical decomposition for

the quadruped task is to speed up planning time, and there

has been previous work that uses beam-search [8] or an A*

variant [20] to accomplish similar goals. The advantage of

the hierarchical decomposition we propose is that it both

works well in practice, and allows us to apply the previously

mentioned method for hierarchical apprenticeship learning.

B. The Low-Level Planner

The goal of the low-level planner is to plan a desired

trajectory for the robot’s COG and moving feet so as to

achieve the upcoming footsteps while maintaining static

stability. For reasons that will soon be apparent, we actually

plan a trajectory for the upcoming two footsteps, starting with

one of the hind feet. Note that this plan for the COG is not the

same as the “body path plan” mentioned above in the high-

813

Fig. 4. Planning of the COG trajectory for a sequence of two steps.

level planner: the body path plan is just an approximate path

for the robot over the terrain, used to speed up the footstep

search, while the COG trajectory is the actual path that the

COG should follow in order to maintain static stability.

Consider the robot pose shown in Figure 4(a), where the

filled circles represent the current locations of the robot’s

feet, and the open circles represent the desired footsteps for

the back-right and front-right feet. We begin by moving the

back-right foot. When moving this foot, the robot will be

statically stable if the COG is in the support triangle formed

by the other three feet, as shown in Figure 4(b) — we

take a standard approach, and inset the support triangle by

some fixed margin, to be more robust to slight deviations or

inaccuracies in the state estimation. Likewise, when moving

the front-right foot, the robot will be statically stable if the

COG is within the inset support triangle of the three new

supporting legs, as shown in Figure 4(c). A key observation,

noted in [1] among others, is that the supporting triangles

for these two steps overlap, so that if the COG is moved

properly, it is often possible to start lifting the front foot

as soon as the back foot touches the ground. In contrast,

when transitioning between moving the front-right foot and

the back-left foot, the support triangles are disjoint, so some

period of time must be spent shifting the COG with all four

feet on the ground.

The guiding principle behind the our COG planning

method is that we want to minimize the distance travelled by

the COG while the robot is not moving its feet. To achieve

this, we first compute the intersection of the two supporting

triangles for each step, which we refer to as the double

supporting triangle, shown in Figure 4(d). We then project

the current COG into this double support triangle, and move

it to this point. Because the robot’s COG is not yet in the

double support triangle during this “shifting” phase, it is not

able to lift either foot and must instead keep all four feet on

the ground. Finally, we move the COG from this projected

location to its final location inside the double support triangle

(which is the projection of the robot’s effective center, the

average of its four feet after taking the two footsteps, into

the double support triangle). During this phase the robot can

lift either foot, as the COG is in the support triangle for

both moving feet; in our approach we move the COG half

the distance while moving the back foot, then the remaining

distance while moving the front foot. As mentioned, the

advantage of this method is that we minimize the time spent

moving the COG while the robot is not moving its feet, and

Fig. 5. Desired trajectory for moving feet over obstacles.

we never move the COG backwards. These two effects allow

for fast locomotion, even over very challenging terrain.

We determine the height and pitch of the robot’s body by

the height of the four feet. Given four foot locations, we set

the the height to be the average height of these four foot

locations, plus a constant amount. We determine the pitch

by the average height of the front two feet relative to the

average height of the back two feet. While moving a foot

we interpolate between the height and pitch defined by the

initial foot location and the height and pitch defined by the

final foot location.

Finally, to plan the desired trajectories for the moving feet

we take a very simple approach, and move the feet in a box

pattern, where the height of the box is determined to lie some

margin above the tallest obstacle crossed by the foot. This

approach is shown in Figure 5. While this is not the shortest

possible path, an advantage of this approach is that we do

not need to adjust the foot trajectory based on where the

tallest obstacle is relative to the foot’s path.

Previous work on quadruped locomotion has often focused

on periodic patterns (for example, sinusoidal trajectories)

for COG movement, with a fixed duty factor (percentage

of time spent moving the feet versus merely shifting the

COG) [21], [2]. While such trajectories can be very efficient

for fixed walking patterns, and have desirable properties

such as smoothness (i.e., being twice differentiable) they are

much more difficult to maintain given the irregular footsteps

required to navigate difficult terrain. Recently, researchers

have proposed a technique for online modification of periodic

COG trajectories that maintains the smooth nature of these

trajectories while adjusting for the current position of the

feet, and applied this to the LittleDog robot [17]. However,

in their implementation, the robot’s COG still moves slightly

backwards for a short time period during each step. As we

will show in the next section, our system is able to achieve

very robust performance on challenging terrain even with

our non-smooth COG trajectories, and we therefore prefer to

814

minimize the length of these trajectories as much as possible,

thereby increasing the speed of locomotion.

The COG trajectory planning used in [18] bears a great

deal of similarity to our own, though they do not explicitly

consider the double supporting triangle. When executing

the irregular footstep patterns required to navigate large

obstacles, we have found that often times the projection of

the current COG into the first supporting triangle actually lies

ahead of the projection of the final center into the second

supporting triangle. By explicitly considering the double

support triangle, we guarantee that we never need to move

the COG backwards. In addition, the system presented in

[18] occasionally opts to move the COG into the center of

the current supporting triangle for a greater stability margin.

While this technique can increase stability we found that

for our system, moving the COG into the center of the

supporting triangle actually often increased the chance of

falling over. We discuss this effect further in Section IV.

C. Low-Level Controller

Given the desired trajectories for the COG and moving

feet, we use inverse kinematics to convert these to joint

trajectories, then use a PD controller to apply torques that

move the robot along these trajectories. However, due to the

challenging nature of the terrains we consider, this approach

alone is highly unreliable. Regardless of how well we plan,

and regardless of how well the individual joints track their

desired trajectories, it is almost inevitable that at some point

the robot will slip slightly and deviate from its desired

trajectory. Therefore, a critical element of our system is a

set of closed-loop control mechanisms that detect failures

and either stabilize the robot along its desired trajectory or

re-plan entirely. In particular, we found three elements to

be especially crucial: 1) stability detection and recovery, 2)

body stabilization, and 3) closed-loop foot placement. We

now describe each of these in greater detail.

Stability Detection and Recovery. Recall that (ignoring

friction effects, which do not appear to have a major effect in

the terrain we consider) the robot is statically stable only if

the projection of the COG onto the ground plane lies within

the triangle formed by the supporting feet (also projected

onto the ground plane). If the robot slips while following its

trajectory, the COG can move outside the supporting triangle,

causing the robot to tip over. To counteract this effect, we

compute the current (double) support triangle at each time

step, based on the current locations of the feet as determined

by state estimation. If the COG lies outside this triangle, then

we re-run the low-level planner (planning only one step if

the robot falls while moving a front foot). This has the effect

of lowering all the robot’s feet to the ground, then re-shifting

the COG back into the inset support triangle.

Body Stabilization. While sometimes the recovery proce-

dure in unavoidable, as much as possible we would like to

ensure that the COG does not move outside the supporting

triangle, even in light of minor slips. To accomplish this, we

adjust the commanded positions of the supporting feet so as

to direct the COG toward its desired trajectory. In particular,

we multiply the commanded positions of the supporting feet

by a transformation that will move the robot’s COG from its

current position and orientation to its desired position and

orientation (assuming the supporting feet are fixed to the

ground).

More formally, let Tdes be the 4×4 homogeneous transfor-

mation matrix specifying the desired position and orientation

of the robot relative to the world frame, and similarly let Tcur

be the homogeneous transformation specifying the current

position and orientation of the robot relative to the world

frame. In addition, let feet denote the default commanded

positions of the supporting feet expressed in the robot’s frame

of reference, based on the desired trajectory for the COG. If

we transform the commanded positions for the feet by

T−1

des
Tcurfeet

then (assuming the supporting feet remain fixed) this would

move the COG to its desired position and orientation. How-

ever, when coupled with PD control, this typically leads to

large oscillations, so instead we employ a common interpo-

lation scheme and command the supporting feet according

to

(1 − α)feet + αT−1

des
Tcurfeet

for some 0 < α < 1 (in our experiments we found α = 0.1
to be a good value). This causes the robot’s COG to move

gradually to track the desired trajectory, even if the robot

slips slightly. In addition, we project the desired position

Tdes into the current (double) supporting triangle, thereby

working to stabilize the robot even if the initially computed

trajectory becomes unstable due to the feet slipping. During

our development we found this approach to be slightly

more robust than attempting to move the supporting feet

individually to stabilize the body, as our method keeps intact

the relative positions of the supporting feet, leading to fewer

unstable configurations. While the stabilization does lead to

kinematic infeasibilites on occasion, we find that usually

in such cases the robot is about to fall, and the recovery

procedure shortly replans (feasible) footsteps.

Closed-loop Foot Placement. Finally, we want to ensure

that the moving foot tracks its desired trajectory as closely as

possible, even if the body deviates from its desired path. To

accomplish this, at each time step we compute the desired

location of the foot along its (global) trajectory, and use

inverse kinematics based on the current pose of the robot’s

body to find a set of joint angles that achieves the desired foot

location. This is particularly important in cases where the

robot slips downward. If the robot’s body is below its desired

position and we merely execute an open loop trajectory for

the moving foot, then the foot can punch into the ground,

knocking the robot over faster than we can stabilize it.

Computing a closed-loop trajectory for the foot in the manner

described above avoids this situation.

It may seem as if there are also cases where closed-loop

foot placement could actually hinder the robot rather than

help. For example, if the robot is falling, then it may be

best to simply put its foot down, rather than attempt to keep

815

TABLE I

THE FOUR TERRAINS USED FOR EVALUATION.

Terrain # 1 2 3 4

Max Height 6.4 cm 8.0 cm 10.5 cm 11.7 cm

Picture

Heightmap

Fig. 6. Example of a typical setup for the robot and terrain (shown here with Terrain #3).

its foot along the proper (global) trajectory. However, in our

experience this nearly always occurs in situations where the

recovery procedure mentioned previously will catch the robot

anyway, and this is borne out in the experimental results, as

we will discuss shortly.

IV. EXPERIMENTAL RESULTS

In this section we present experimental results for our

controller on a variety of challenging terrain. The chief

result is that our system is able to reliably cross difficult

terrain at relatively fast speeds. In order to better understand

the performance of the system, we perform experiments to

analyze its behavior with and without several of the planning

and control elements described above, thereby demonstrating

their usefulness.

A video of the robot crossing the evaluation terrains is

included with the paper. A higher-resolution version of this

video is available at

http://cs.stanford.edu/˜kolter/icra08videos/

A. Experimental Setup

The LittleDog robot, shown in Figure 1, was designed

and built by Boston Dynamics, Inc. It is a quadruped robot,

about 30 cm long, whose legs lie 12 cm below its body

when fully extended; the robot weights about 3kg. The

robot has 12 independently actuated electric motors, three

on each leg. A separate “host” computer performs nearly all

processing, running a control loop at 100hz and relaying

servo commands to the robot once every 10ms over a

wireless channel. The robot’s on-board hardware runs a joint-

level PD servo controller at 500hz.

A motion capture (MOCAP) system estimates the position

and orientation of the robot’s body by tracking reflective

markers attached to the robot. Joint encoders provide esti-

mates of the robot’s joint angles. Although we have exper-

imented extensively with the use of additional localization

methods, such as Kalman filters, we found in general that the

raw estimates provided by the MOCAP and joint encoders

were sufficient for complete pose estimation. The robot

also contains an on-board IMU that can provide orientation

estimates, but we do not make use of this component in our

current system. Finally, the MOCAP also tracks markers on

the terrains; we combine this with 3D models of the terrain

to estimate the state of the entire environment.

We evaluated the performance of our system on four

different terrains of varying difficulty, two that were provided

by the official LittleDog program and two that we built

ourselves. Pictures of the terrains and their corresponding

heightmaps are shown in Table I. For all the terrains we

considered all four crossing directions, and planned five

separate paths across each direction by varying the initial

position of the robot. This lead to a total of 20 paths across

816

TABLE II

SUCCESS PROBABILITIES OUT OF 20 RUNS ACROSS DIFFERENT

TERRAINS FOR THE CONTROLLER WITH AND WITHOUT RECOVERY,

BODY STABILIZATION, AND CLOSED-LOOP FOOT PLACEMENT.

Terrain All w/o Rec. w/o Stab. w/o CLF None

1 100% 100% 100% 100% 100%

2 100% 60% 95% 95% 55%

3 95% 25% 55% 75% 35%

4 95% 0% 75% 85% 35%

Total 97.5% 46.25% 81.25% 88.75% 56.25%

each terrain. A standard setup for the robot and terrain is

shown in Figure 6. Figure 7 shows several snapshots of the

robot crossing Terrain #3.

B. Results and Discussion

Overall, the system we present is able to successfully cross

a wide variety of challenging terrains with a 97.5% success

rate, at an average speed of 3.28 cm/sec. To put these results

in context, we note that at the most recent public test of

the LittleDog systems (which had an overall setup virtually

identical to the one we use for our experiments, but which

used a different terrain), the controller we describe in this

paper achieved a speed of 3.63 cm/s on its best run, which

was the fastest time of any group across this terrain; the

next-fastest time on this test by another team was 2.85 cm/s.

This result should be taken with some caution, since there

are a very limited number of these tests, and not all teams

were optimizing for speed. Nonetheless, based on these tests

and personal communication with other researchers, we feel

justified in our claim that the system we present is on par

with the very best that had been achieved with the LittleDog

robot at the time of original submission (September, 2007).

In our first set of experiments, we analyze the performance

of the system with and without the low-level controller

elements described previously. For each of the 20 planned

paths across each of the four terrains, we evaluated the

performance of our system with and without the stability

detection and recovery, body stabilization, and closed-loop

foot placement. In addition, we evaluated the performance of

the system with none of these elements enabled. As shown in

Table II, the controller with all elements enabled substantially

outperforms the controller when disabling any of these three

elements. This effect becomes more pronounced as the

terrains become more difficult: Terrain #1 is easy enough

that all the controllers achieve 100% sucess rates, but for

Terrains #3 and #4, the advantage of using all the control

elements is clear.2

Subjectively, the failure modes of the different controllers

are as expected. Without the stability detection and recovery,

the robot frequently falls over entirely after slipping a

small amount. Without body stabilization, the robot becomes

2Statistically, over all four terrains the full controller outperforms the
controller with no recovery, with no stabilization, with no closed-loop foot
placement, and with none of these elements in terms of success probability
with p-values of p = 2.2 × 10−13, p = 0.0078, p = 0.0012, and p =
5.8× 10−11 respectively, via a pairwise Bernoulli test.

TABLE III

SUCCESS PROBABILITIES AND AVERAGE SPEED (IN CM/S) OF

SUCCESSFUL RUNS FOR OUR COG TRAJECTORY PLANNING METHOD,

FOR KEEPING THE COG FIXED WHILE MOVING THE FEET, AND FOR

MOVING THE COG TO THE CENTER OF THE SUPPORTING TRIANGLE.

Terrain Our Method Fixed COG Centered COG

1 100% (3.67) 100% (2.99) 100% (2.28)

2 100% (3.31) 75% (2.61) 70% (2.22)

3 95% (3.07) 60% (2.62) 35% (2.10)

4 95% (3.01) 50% (2.45) 30 % (2.26)

Total 97.5% (3.28) 71.25% (2.72) 58.75% (2.23)

noticeably less stable during small slips, which sometimes

leads to falls that even the recovery routine cannot salvage.

Without closed-loop foot placement, the feet can punch into

the ground during slips, occasionally flipping the robot. One

interesting effect is that without recovery, the controller actu-

ally performs worse with body stabilization and closed loop

foot movement enabled, especially on the more challenging

terrains. This appears to be due to the fact that when the robot

falls significantly (and makes no attempt to recover) both the

body stabilization and closed-loop foot placement attempt to

make large changes to the joint angles, causing the robot

to become less stable. However, with recovery enabled the

robot never strays too far from its desired trajectory without

attempting to re-plan; in this case the advantage of using the

body stabilization and closed-loop foot placement is clear

from the experiments above.

In our second set of experiments, we compare the perfor-

mance of the our COG trajectory planning method versus

several alternatives. In particular, we consider a planner

that does not make use of the double support triangle, but

merely projects the COG into the current support triangle

and keeps it fixed in this location while moving the feet.

Second, we consider a planner that moves the COG into

center of the supporting triangle as done (for some steps)

in [18]. Table III shows the success percentages and speeds

for each of the different methods. Not surprisingly, keeping

the COG fixed or moving it to the center of the supporting

triangle significantly lowers the speed of the the gait. More

surprisingly, however, is the fact that for harder terrains these

seemingly more stable methods actually perform much worse

in terms of success rates.3

Based on our observations, we feel this performance is

due to the fact that in challenging terrains, failures are often

caused by collision between the robot’s legs and the terrain.

Moving the COG to a greater extent, while potentially

increasing stability, also increases the likelihood of collision

with the terrain. Given the fact that our controller is able to

maintain stability of the robot with the minimum-length COG

trajectories that we plan, we feel that moving the COG more

to achieve “greater” stability does more harm than good.

3Statistically, our method performs better in terms of success/failure rates
than the fixed COG and centered COG methods with p-values of p = 4.8×
10−7 and p = 4.9×10−9 respectively using a pairwise Bernoulli test. Our
method performs better in terms of speed with p-values p = 2.1× 10−26

and p = 4.6× 10−34 using a pairwise t-test.

817

Fig. 7. Snapshots of the robot crossing Terrain #3.

V. CONCLUSION

In this paper we presented a hierarchical control system

for the LittleDog robot that enables it to navigate over

rough terrain. We conducted experimental evaluations which

showed that using our control system the robot is able to

robustly cross a wide variety of challenging terrains. We

also highlighted several elements of the controller that we

found to be particularly crucial for robust locomotion, and

which are applicable to quadruped robots in general. For

these elements we conducted extensive experiments that

demonstrated their usefulness in our control system.

VI. ACKNOWLEDGMENTS

This work was supported by the DARPA Learning Lo-

comotion program under contract number FA8650-05-C-

7261. This work benefited from numerous discussions with

researchers working on the LittleDog robot at Carnegie

Mellon, IHMC, MIT, University of Pennsylvania, and USC,

and from frequent interaction with the government team

running the Learning Locomotion program. We also thank

the anonymous reviewers for many helpful suggestions,

and for noticing an earlier error in the body stabilization

equations.

REFERENCES

[1] R. B. McGhee and A. A. Frank, “On the stability properties of
quadruped creeping gaits,” Mathematical Biosciences, vol. 3, pp. 331–
351, 1968.

[2] V. Hugel and P. Blazevic, “Towards efficient implementation of
quadruped gaits with duty factor of 0.75,” in Proceedings of the IEEE

International Conference on Robotics and Automation, 1999.
[3] F. Hardarson, “Stability analysis and synthesis of statically balanced

walking for quadruped robots,” Royal Institute of Technology, 2002.
[4] S. Ma, T. Takashi, and H. Waka, “Omnidirectional staic walking of a

quadruped robot,” IEEE Transactions on Robotics, vol. 21, no. 2, pp.
152–161, 2005.

[5] S. Bai, K. Low, G. Seet, and T. Zielinska, “A new free gait generation
for quadrupeds based on primary/secondary gait,” in Proceedings of

the IEEE International Conference on Robotics and Automation, 1999.
[6] J. Estremera and P. G. de Santos, “Free gaits for quadruped robots

over irregular terrain,” The International Journal of Robotics Research,
vol. 21, no. 2, pp. 115–130, 2005.

[7] ——, “Generating continuous free crab gaits for quadruped robots
on irregular terrain,” in Proceedings of the IEEE Transactions on

Robotics, 2005.
[8] H. Lee, Y. Shen, C.-H. Yu, G. Singh, and A. Y. Ng, “Quadruped robot

obstacle negotiation via reinforcement learning,” in Proceedings of the

IEEE International Conference on Robotics and Automation, 2006.
[9] M. H. Raibert, Legged Robots that Balance. MIT Press, 1986.

[10] J. G. Nichol, S. P. Singh, K. J. Waldron, L. R. P. III, and D. E. Orin,
“System design of a quadrupedal galloping machine,” International

Journal of Robotics Research, vol. 23, no. 10–11, pp. 1013–1027,
2004.

[11] I. Poulakakis, J. A. Smith, and M. Buehler, “Modeling and experiments
of untethered quadrupedal running with a bounding gait: The scout II

robot,” The International Journal of Robotics Research, vol. 24, no. 4,
pp. 239–256, 2005.

[12] K. D. Mombaur, R. W. Longman, H. G. Bock, and J. P. Schloder,
“Open-loop stable running,” Robotica, vol. 23, pp. 12–33, 2005.

[13] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on irregular terrain based on biological concepts,”
The International Journal of Robotics Research, vol. 22, pp. 187–202,
2003.

[14] S. Peng, C. P. Lam, and G. R. Cole, “A biologically inspired four
legged walking robot,” in Proceedings of the IEEE International

Conference on Robotics and Automation, 2003.
[15] H. Kimura, Y. Fukuoka, and A. H. Cohen, “Adaptive dynamic walking

of a quadruped robot on natural ground based on biological concepts,”
The International Journal of Robotics Research, vol. 26, no. 5, pp.
475–490, 2007.

[16] Z. G. Zhang, Y. Fukuoka, and H. Kimura, “Adaptive running of a
quadruped robot on irregular terrain based on biological concepts,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 2003.
[17] D. Pongas, M. Mistry, and S. Schaal, “A robust quadruped walking gait

for traversing rough terrain,” in Proceedings of the IEEE International

Conference on Robotics and Automation, 2007.
[18] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and

J. E. Pratt, “A controller for the littledog quadruped walking on rough
terrain,” in Proceedings of the IEEE International Conference on

Robotics and Automation, 2007.
[19] J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical apprenticeship

learning, with application to quadruped locomotion,” in Neural Infor-

mation Processing Systems 20, 2007.
[20] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning

biped navigation strategies in complex environments,” in International

Conference on Humanoid Robotics, 2003.
[21] K. Yoneda and S. Hirose, “Dynamic and static fusion gait of a

quadruped walking vehicle on a winding path,” in Proceedings of the

IEEE International Conference on Robotics and Automation, 1992.

818

