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Abstract— In this paper we present a novel method for the
efficient segmentation of 3D laser range data. The proposed
algorithm is based on a radially bounded nearest neighbor
strategy and requires only two parameters. It yields de-
terministic, repeatable results and does not depend on any
initialization procedure. The efficiency of the method is verified
with synthetic and real 3D data.

I. INTRODUCTION

Over the last decade the advent of affordable laser range

finders has enabled mobile robotics to shift towards a new

level of environment perception. Localization, map building

and obstacle avoidance are nowadays almost exclusively

performed based on 2D range data. While there exists an

overwhelming body of work on building meaningful 2D

representations (occupancy grids, line-based maps) and 2.5D

representations (traversability maps) for navigation, com-

paratively few researchers have addressed the problem of

dealing with 3D laser data. There are several reasons for

this. First of all, acquiring meaningful 3D range data is a

problem of its own. The number, position and actuatability of

laser scanners mounted on a mobile robot greatly influences

the quality of the acquired data. Secondly, the amount of

data obtained from a 3D sweep is generally several orders

of magnitude larger than that of a simple 2D scan. This

requires efficient algorithms and data structures for process-

ing. Finally, the segmentation, extraction and interpretation

of geometry of 3D laser data is not as straight-forward as

e.g. in a 2D occupancy grid.

In this paper a method for the efficient segmentation of

3D laser range data is proposed. We use an agglomerative

nearest neighbor clustering algorithm to segment the raw

data into meaningful portions and filter noise. The obtained

clusters may then be processed by further supervised or

unsupervised classification algorithms or be augmented with

information obtained from other sensors, e.g. cameras or

other laser scanners. The main advantage of our method

lies in its speed and simplicity. In this context it can be

seen as a preprocessing step to more sophisticated clustering

algorithms. The remainder of this paper is structured as

follows: In Section II the motivation for this work within

the Autonomous City Explorer Project is briefly explained.

Section III briefly touches on 3D laser scanning setups and

data structures and then provides an overview of clustering

algorithms. Section IV explains the proposed framework

in detail. In Section V the performance of the method is

evaluated with synthetic and real data. Section VI concludes

the paper and gives an outlook on future work.

II. MOTIVATION

The goal of the ACE Project [1] is to create a mobile

robotic platform that autonomously finds its way to a desig-

nated goal location in a crowded urban setting without the

use of GPS or map information. ACE is required to only rely

on directions obtained through interaction with pedestrians.

Ideally, a semantic understanding of the environment would

allow for interpreting these directions in the correct context

and derive low-level navigation actions. However, apart from

the obvious challenges of outdoor localization and map-

building, one of the crucial prerequisites for reaching a

semantic level is the robust recognition of objects1 in the

vicinity of the robot. ACE is equipped with several laser

scanners and a powerful vision system, see Figure 1 and

[1] for details. Even before the challenge of classifying

the information from the laser scanners, we are faced with

the more fundamental problem of segmenting meaningful

portions from a set of 3D points. Thus, in this paper the

focus lies on the issue of robustly segmenting a 3D laser

point cloud acquired by a single laser scanner.

III. STATE OF THE ART

This section gives some brief remarks on 3D laser range

scanning hardware setups and suitable data structures as well

as a non-exhaustive overview of clustering methods.

A. 3D Laser Range Data Acquisition

The acquisition of 3D range data is common practice in

the field of civil engineering, where powerful LIDAR devices

are employed to capture high-resolution data of buildings and

structures. While delivering the highest accuracy available,

these devices are not well suited for mobile robotics because

they have to be in a fixed position and are not designed

for time critical applications. IHigh-definition LIDARs for

autonomous vehicles, e.g. the Velodyne HDL-64E2, are gen-

erally not affordable for the average roboticist. The most

popular solution to the problem of acquiring 3D laser data

is to mount a 2D laser scanner, e.g. a SICK LMS, in some

vertical orientation at a fixed position on the robot [1], [2].

Actuated setups with pan, tilt or pan/tilt platforms allow for

1humans being a specific kind of object
2www.velodyne.com/lidar/whatis.html
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(a) (b) (c)

Fig. 1. (a) Schematic configuration of two SICK LMS400 for object detection in the vicinity of ACE (b) The ACE robot (c) A close-up of the actual
sensors mounted on ACE

more refined scanning, see e.g. Kurt3D 3 or the Stanford

SegBot4. An interesting approach is presented in [3], where

a SICK LMS200 laser scanner has been modified so as to

perform a continuous rolling scan without cable wind-up.

B. Suitable 3D Data Structures

Existing data structures for processing 3D range data can

be divided into two types: those that incorporate beam infor-

mation and those that do not. Occupancy grids as an example

of a beam-based method are by far the most prominent data

structure for 2D navigation because they can among other

things robustly deal with occlusions. Unfortunately, the use

of 3D occupancy grids is computationally prohibitive due

to the drastic increase in the number of cells that need to

be updated. An efficient beam-based method using triangle

meshes is desribed in [4]. Neglecting beam information,

point clouds merely store the actual spatial coordinates of

each measurement, while mesh-based methods try to retain

some amount of surface information.

C. 3D Clustering

Data clustering is a vast research discipline that spans

– among others – the areas of data mining, image seg-

mentation, object recognition and information retrieval. A

comprehensive overview of existing techniques can be found

in [5] and an even more exhaustive one in [6]. On a top

level, clustering methods can be divided into hierarchical

and partitional techniques. As the name suggests, the for-

mer try to capture a hierarchy of levels of similarity in

the form of nested groupings represented by dendrograms.

For the segmentation of laser data into discrete groups of

3D points such a hierarchy is largely irrelevant, which is

why hierarchical methods are not considered in this paper5.

Partitional techniques yield a single partition of the data

set and encompass square error algorithms (e.g. k-means,

3www.ais.fraunhofer.de/ARC/kurt3D/
4robots.stanford.edu/segbot/
5This is with the exception of graph-theoretic algorithms that operate

hierarchically but are intended to yield partitions.

ISODATA), mixture resolving algorithms (e.g. expectation

maximization), mode seeking algorithms as well as graph

theoretic algorithms. Square error algorithms such as k-

means and ISODATA are highly popular in the image

segmentation community, e.g. for LANDSAT satellite image

segmentation [7] These algorithms are unsuitable because

they are restricted to finding hyperellipsoidal clusters in the

feature space; the laser data may, however, be arbitrarily

shaped. Mixture resolving approaches such as expectation

maximization are deemed similarly inapplicable to the seg-

mentation because they require a model of the underlying

distributions and an initial guess of the number of clusters.

Iterating over different initial guesses is computationally

costly (see [8]) and renders the method unsuitable for online

processing. Mode seeking algorithms such as MeanShift [9]

and the recently developed MedoidShift [10] are powerful

nonparametric methods for robust feature space analysis

of (multispectral) images. However, here segmentation is

performed on a 2D lattice with different thresholds in the

spatial and the range domain. The application of mode

seeking algorithms to a 2D depth map projection of the 3D

laser data is not investigated in this paper. Graph-theoretic

approaches are the most promising class of algorithms for

robust segmentation of 3D laser data. This is because they

can capture arbitrarliy shaped clusters using only the concept

of local neighborhood. In this paper the focus is on k-

nearest neighbor graphs and more refined clustering methods

based on these (DBScan [11], Chameleon [12]). Section IV

explains our proposed method which is based on a simple

nearest neighbor strategy. At this point, the application of

algorithms such as Chameleon has not been investigated.

The reader is referred to the discussion in Section VI for

an outlook on future work.

In spite of the richness of clustering literature, we are

unaware of significant applications in the field of 3D laser

data segmentation. Many approaches try to segment points

by matching them to geometrical templates such as planes,

cylinders, tori etc. [13], [14]. However, such model-based
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matching algorithms can only succeed if the data is already

reasonably segmented. For large 3D point clouds obtained

from complicated geometry, template matching is compa-

rable to searching a needle in a haystack. In [15] object

detection in 3D data is performed by generating depth and

reflectance maps of the 3D data through off-screen rendering

methods and then running a cascade of (supervised) feature

classification algorithms on the 2D representation. While this

seems to yield satisfactory classification results it bypasses

the problem of segmenting the 3D representation.

IV. CLUSTERING METHOD

In this section the proposed clustering framework is ex-

plained in detail. A description of the segmentation algorithm

is given along with remarks on complexity and applicability

of the method.

A. Definitions and Notation

Before we start describing the clustering process, it

is useful to formalize the problem description. Given n

points or patterns in d-dimensional feature space, xi =
[xi1 , . . . , xid

]
T

, i = 1, . . . , n, we seek to find m clusters

Cj , j = 1, . . . ,m such that every cluster contains at least

one point, that is Cj = {xj1 , . . . , xjk
} , ∀j : k > 0, and such

that all clusters are disjoint, that is Ci ∩ Cj = ∅, ∀i 6= j.

Furthermore, we assume that some distance metric ρ(xa, xb)
exists that accurately reflects the simliarity between any two

points xa and xb.

For the scope of this paper, we are concerned with a 3-

dimensional space in which the distinguishing features of

points are their spatial locations along the three cartesian

axes. We use a Euclidean distance metric ρ(xa, xb) =
‖xa − xb‖2

.

In graph notation every point xi is mapped to a cor-

responding node ui in a directed graph G(U,E), where

U = {u1, . . . , un} represents the set of nodes and E =
{e1, . . . , em} the set of edges. An edge is defined as a triplet

e = {u1, u2, d(u1, u2)} containing the two connected nodes

and their distance d(u1, u2) = ρ(x
1
, x

2
). We will abbreviate

d(u1, u2) as d1,2 in the following.

B. Clustering Procedure

The clustering method that we employ to segment the

laser data can best be described as a radially bounded

nearest neighbor graph (RBNN). In this graph every node is

connected to all neighbors that lie within a predefined radius

r. Formally, the set of edges in the RBNN graph is:

ERBNN = {{ui, uj , di,j} | di,j ≤ r} , ∀ui, uj ,∈ U, i 6= j

(1)

This is in contrast to the well-known k-nearest neighbor

graph (kNN) [16], which connects every node to its k nearest

neighbors, regardless of distance:

EkNN = {{ui, uj , di,j} |uj ∈ NNk(ui)} ,∀ui ∈ U , (2)

where NNk(ui) represents the outcome of a k-nearest neigh-

bor query for ui. To clarify how the two methods differ in

terms of segmentation performance, consider Figure 2 which

shows a basic 2D data set with two clusters and a noisy

outlier. Given the correct r as a parameter the RBNN method

nicely separates the two clusters and the outlier from each

other6. While the 1-NN graph produces too many distinct

clusters, the 2-NN and 3-NN graphs (and in fact all k-

NN graphs with k > 3) produce one continuous cluster.

The reader may rightly argue that the k-nearest neighbor

graph must not be used naı̈vely but instead be constructed

and then cut at a certain distance threshold to yield a

proper partitioning. This, however, is the main point of our

method: the construction of a suitable k-NN graph causes

considerable computational overhead. The main advantage

of using the RBNN method is that we do not actually have

to perform a nearest neighbor query for every node and

there is no graph cutting and rearranging of graph structures

involved. In fact it is not even necessary to build a graph

structure. The algorithm can briefly be described by the

following steps:

1) Step through the list of all points.

2) If the current point has been assigned to a cluster go

to the next point.

3) For the current point

• Find all neighbors within distance r.

• If any of these neighbors is in a cluster, assign the

current point to the same cluster, then assign all

neighbors without a cluster to the same cluster.

• If the current point has been assigned to a cluster

and there exist neighbors assigned to different

clusters, merge all these clusters.

Algorithm 1 shows a detailed pseudo-code description of

the RBNN method.

C. Complexity

The algorithm proposed in the previous subsection is

efficient because it avoids maintaining and updating a graph

structure and because it does not actually need to perform

a nearest neighbor query for every point in the set. As a

spatial data structure we have chosen kd-trees because they

offer very competitive look-up times for radially bounded

queries. An alternative that has not been investigated would

be the use of a Delaunay tesselation graph. The construction

time of a kd-tree is O(n log(n)), the expected complexity

of a nearest neighbor lookup is O(log(n)). While this is

close to optimal, nearest neighbor queries still account for

the bulk of the running time of NN algorithms. The objective

is therefore to reduce the number of needed queries as much

as possible. Our algorithm achieves this speedup by skipping

all points that have been assigned to a cluster already (Line

4 in Algorithm 1). This means that the more points can be

assigned to a cluster in a single nearest-neighbor lookup, the

more subsequent lookups can be avoided. Expected computa-

tional complexity can be approximated by O( n
kaverage

log(n)),
where kaverage represents the average number of neighbors

6We will consider clusters with less than nmin points as noise. In this
example nmin = 1.
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(a) (b) (c) (d) (e)
outlier

Fig. 2. (a) The data set with 2 clusters and 1 outlier (b) 1-NN graph yielding 6 clusters (c) 2-NN graph yielding 1 cluster (d) 3-NN graph yielding
1 cluster (e) RBNN graph yielding 2 clusters and 1 outlier

Algorithm 1 The RBNN Algorithm

1: RBNN(r, nMin)
2: for i← 1, . . . , n do

3: if (hasCluster(ui)) then

4: continue;
5: end if

6: NN ← findNeighborsInRadius(xi, r)
7: for all (uj ∈ NN) do

8: if (hasCluster(ui) ∧ hasCluster(uj ) then

9: if (clusterOf (ui) 6= clusterOf (uj )) then

10: mergeClusters(clusterOf (ui),clusterOf (uj ));
11: end if

12: else

13: if (hasCluster(uj )) then

14: clusterOf (ui) ← clusterOf (uj ));
15: else

16: if (hasCluster(ui)) then

17: clusterOf (uj ) ← clusterOf (ui));
18: end if

19: end if

20: end if

21: end for

22: if (¬hasCluster(ui)) then

23: clusterOf (ui) ← createNewCluster();
24: for all (uj ∈ NN) do

25: clusterOf (uj ) ← clusterOf (ui);
26: end for

27: end if

28: end for

29: for all (Ci ∈ Clusters) do

30: if (‖Ci‖ < nMin) then

31: delete(Ci);
32: end if

33: end for

34: return Clusters;

over all queries found within r. It is obvious that r should

be chosen as large as possible such that it still yields the same

segmentation but maximizes the number of visited neighbors

per query.

D. Applicability

A remark must be made concerning the applicability of

the method to arbitrary data. For robust segmenation results,

the algorithm hinges on the important requirement that the

data to be segmented is dense. This means that noisy outliers

must be sufficiently spaced in comparison with points that

belong to actual objects so that there exists a value for r that

separates the two. Fortunately, for 3D data acquired by range

finders this is the case. In fact the minimum spacing between

scanned points depends only on the angular resolution and

the sweeping frequency of the scanner.

V. RESULTS

To verify our analysis and the efficiency of the proposed

method the algorithm was benchmarked on synthetic as well

as real data from 3D laser scans. This section presents the

simulation and experimental scenarios and results.

A. Implementation Details

The RBNN clustering algorithm was implemented in C++,

using kd-trees from the ANN library7 and Coin3D8 for

visualization. All simulation and experiments were run on

a 1.8 GHz Intel Pentium with 2GB of RAM.

B. Synthetic Data

As a synthetic benchmark scenario we generated point

clouds with up to 100, 000 points in a 3D environment of size

8x8x3m. The points were randomly uniformly distributed

within flat boxes (similar to object surfaces scanned by

a laser) whose number, size, position and orientation was

also randomly varied. Figure 3 shows such a data set.

For some clustering algorithms, e.g. k-means, retrieving the

correct partition in this scenario is a hard problem, because

the clusters cannot be captured by ellispoids. Graph-related

methods, such as the proposed RBNN approach, however,

handle this setup with ease. RBNN correctly identified all

clusters in all generated scenarios. To verify our complexity

analysis from Section IV-C, we compared a naı̈ve variant of

RBNN that performs nearest neighbor queries for every point

with the optimized version from Algorithm 1. The number

of boxes was fixed at 10, while the total number of points

was increased from 10,000 to 50,000 in steps of 10,0000.

Figure 4 shows the runtime of both algorithms averaged over

20 runs. Clearly, there is a drastic difference between the

exponential complexity of the naı̈ve version and the far better

sub-exponential performance of the optimized version. In a

second round of simulations we ran the optimized version

with different values for the radius r, this time going up to

100, 000 points. Figure 5 confirms our assertion that a larger

distance measure yields better performance.

C. Real Data

A real 3D laser data set acquired with the ACE robot was

used to further test the performance of the algorithm. Figure

6 shows the scenario from the view of both the camera and

7www.cs.umd.edu/˜mount/ANN/
8www.coin3d.org
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(a) (b)

Fig. 6. (a) The scene as seen by the left robot camera (b) The scene as captured by the left laser in a rotating sweep

(a) (b) (c)

Fig. 7. (a) Front view of the segmented scene (b) Top view before removing noise (c) Top view after removing noise

the left laser scanner. The point cloud of the overall scene

contains approximately 150,000 points and was acquired by a

5s̃econd 150◦ rotating sweep of the ACE robot. With a setting

of r = 1cm and nMin = 1000 the RBNN algorithm yielded

the 4 clusters depicted in Figure 7(a) after 468milliseconds.

Since the algorithm is deterministic, there is no need to

average this result over several runs. The running time of the

algorithm on this scenario suggests that it is very well suited

for online segmentation of 3D laser data. The segmented

portions may then be further processed by more refined

algorithms operating at a lower frequency. Notice how a lot

of noisy measurements occur around the silhouette of the

scanned person. Figures 7 (a) and (b) illustrate nicely how

these noisy outliers result in clusters with very few points

and can thus easily be filterd.

VI. DISCUSSION

In this paper we have presented a method for online

segmentation of 3D laser data. The proposed algorithm is

nonparametric in that the only two parameters, r and nMin,

depend on the laser scanner and not on the specific data set.

Furthermore, the algorithm is deterministic which means that

running times and segmentation results are repeatable and

do not require initialization. We have analyzed the factors

influencing the runtime complexity of the RBNN method and

have verified the analysis by a series of benchmark evalu-

taions with synthetic data. Finally, the efficient performance

of the algorithm on a real 3D laser point cloud acquired by

a mobile robot has been demonstrated.

There are still several open questions concerning the

robustness of the method for sparse laser data. It is expected

that the application of more sophisticated graph-theoretic al-
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Fig. 3. A synthetic dat set consisting of 100, 000 points distributed over
15 flat boxes.
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Fig. 4. A runtime comparison of naı̈ve and optimized RBNN segmentation.
Clearly, optimized RBNN is a drastic improvement in terms of average
runtime and standard deviation.
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gorithms such as Chameleon may increase the segmentation

quality in the presence of chains of outliers connecting two

distinct clusters. Augmenting the feature space by estimated

surface normals will also increase segmentation quality. Both

these extensions incur a significant computational overhead,

however, since they require the construction and processing

of a complete neighborhood graph. Future research will aim

to achieve a balancing between more powerful algorithms

and realtime capability. Furthermore, the extraction of ge-

ometry will be addressed.
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[15] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “Accurate
object localization in 3d laser range scans,” in Proceedings of the 12th

International Conference on Advanced Robotics (ICAR ’05), (Seattle),
pp. 665 – 672, July 2005.
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